Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/5572
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu Shiung Lam-
dc.contributor.authorWan Adibah Wan Mahari-
dc.contributor.authorChin Kui Cheng-
dc.contributor.authorRozita Omar-
dc.contributor.authorCheng Tung Chong-
dc.contributor.authorHoward A. Chase-
dc.date.accessioned2017-04-10T07:31:43Z-
dc.date.available2017-04-10T07:31:43Z-
dc.date.issued2016-
dc.identifier.citationVol.115; 791-799 p.en_US
dc.identifier.issn3605442-
dc.identifier.urihttp://hdl.handle.net/123456789/5572-
dc.description.abstractMicrowave pyrolysis using a well-mixed bed of activated carbon as both the microwave absorber and reaction bed was investigated for its potential to recover useful products fromwaste palm cooking oil e a cooking oil widely used in Asia. The carbon bed provided rapid heating (~18 C/min) and a localized reaction hot zone that thermally promoted extensive pyrolysis cracking of the waste oil at 450 C, leading to increased production of a biofuel product in a process taking less than 25 min. It also created a reducing reaction environment that prevented the formation of undesirable oxidized compounds in the biofuel. The pyrolysis produced a biofuel product that is low in oxygen, free of sulphur, carboxylic acid and triglycerides, and which also contains light C10-C15 hydrocarbons and a high calorific value nearly comparable to diesel fuel, thus showing great potential to be used as fuel. This pyrolysis approach offers an attractive alternative to transesterification that avoids the use of solvents and catalysts, and the need to remove free fatty acids and glycerol from the hydrocarbon product. The pyrolysis apparatus operated with an electrical power input of 1.12 kW was capable of producing a biofuel with an energy content equivalent to about 3 kW, showing a positive energy ratio of 2.7 and 73% recovery of the energy input to the system. The results show that the pyrolysis approach has huge potential as a technically and energetically viable means for the recovery of biofuels from the waste oil.en_US
dc.language.isoenen_US
dc.publisherEnergyen_US
dc.subjectPyrolysisen_US
dc.subjectMicrowave pyrolysisen_US
dc.subjectWaste cooking oilen_US
dc.subjectPalm oilen_US
dc.subjectActivated carbonen_US
dc.titleRecovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbonen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.