Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/5431
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMohd Asamudin, A. Rahman-
dc.contributor.authorJeremy, Leggoe-
dc.contributor.authorKrish, Thiagarajan-
dc.contributor.authorMohd Hairil, Mohd-
dc.contributor.authorJeom Kee, Paik-
dc.date.accessioned2017-04-09T07:53:05Z-
dc.date.available2017-04-09T07:53:05Z-
dc.date.issued2015-03-02-
dc.identifier.citationVol.11(4);405-423p.en_US
dc.identifier.urihttp://hdl.handle.net/123456789/5431-
dc.description.abstractThis paper presents a computational fluid dynamics (CFD) study of vortex-induced vibration (VIV) for different aspect ratio (L/D) cylinder. Of particular interest was to measure hydrodynamic forces and numerically investigate the wake behaviour of VIV while varying the aspect ratio. The simulation models represented the actual experimental conditions with idealised free-surface boundary condition to capture the responses from fluid-structure interaction phenomenon. The simulations were performed in the subcritical flow region (7.4×103 < Re < 2×105), corresponding to a range of reduced velocity (Ur) from 2 to 14. The results of the cases studied were discussed and compared with the experimental data to verify the accuracy and validity of the present simulation. The comparisons have shown a similar curved-shape drag coefficient plot, and however underestimated the value of the drag coefficients over the reduced velocity. Additionally, the simulations seemed to capture a higher lift force response compared with the experimental data for a low aspect ratio. The correlation length was observed to be longer for larger aspect ratio and proportionally decreases as the aspect ratio decreases.en_US
dc.language.isoenen_US
dc.publisherShips and Offshore Structuresen_US
dc.titleNumerical Simulations Of Vortex-Induced Vibrations On Vertical Cylindrical Structure With Different Aspect Ratiosen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.