Please use this identifier to cite or link to this item:
http://umt-ir.umt.edu.my:8080/handle/123456789/5425
Title: | Attribute Selection-based Ensemble Method for Dataset Classification |
Authors: | Mohammad Aizat bin Basir Faudziah binti Ahmad |
Keywords: | Attribute reduction Classification Reduction algorithm Ensemble Classifier |
Issue Date: | 2016 |
Publisher: | International Journal of Computer Science and Electronics Engineering (IJCSEE) |
Citation: | Vol 4 (2); 70-74 p. |
Abstract: | Attribute reduction and classification task are an essential process in dealing with large data sets that comprise numerous number of input attributes. There are many search methods and classifiers that have been used to find the optimal number of attributes. The aim of this paper is to find the optimal set of attributes and improve the classification accuracy by adopting ensemble classifiers method. Research process involves 2 phases; finding the optimal set of attributes and ensemble classifiers method for classification task. Results are in terms of percentage of accuracy and number of selected attributes. 6 datasets were used for the experiment. The final output is an optimal set of attributes with ensemble classifiers method. The experimental results conducted on public real dataset demonstrate that the ensemble classifiers methods consistently show improve classification accuracy on the selected dataset. Significant improvement in accuracy and optimal set of attribute selected is achieved by adopting ensemble classifiers method. |
URI: | http://hdl.handle.net/123456789/5425 |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
031-Attribute Selection-based Ensemble Method for Dataset Classification.pdf | Full Text | 722.95 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.