Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/4716
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPong, Kuan Peng-
dc.date.accessioned2016-11-19T03:30:00Z-
dc.date.available2016-11-19T03:30:00Z-
dc.date.issued2013-10-
dc.identifier.urihttp://hdl.handle.net/123456789/4716-
dc.description.abstractMany real world optimization problems involve multi-objectives. Multi-objective problems are problem with two or more objectives and generally conflicting with each other. Multi-objective optimization algorithms goals are converge to the set of Pareto optimal solutions and maintain of diversity among Pareto optimal solutions. Multi-objective optimization approaches can be divided into classical approaches and evolutionary algorithms. Classical approaches generally convert multi-objective function into single objective function and involve decision makers in the search. Evolutionary optimization algorithms use a population based approach in which a set of solutions evolves new solutions in the next generation. The use of population of solutions helps to simultaneously find a set of Pareto optimal solution, thus making evolutionary optimization computationally efficient. Genetic algorithm parameter is the key factor to determine genetic algorithm performance.en_US
dc.language.isoenen_US
dc.publisherTerengganu: Universiti Malaysia Terengganuen_US
dc.subjectQA 402.5 .P6 2013en_US
dc.subjectPong, Kuan Pengen_US
dc.subjectTesis PPIMG 2013en_US
dc.subjectMathematical optimizationen_US
dc.titleInterval type-2 fuzzy inference system for tuning adaptive weighted multi-objective genetic algorithmen_US
dc.typeThesisen_US
Appears in Collections:Pusat Pengajian Informatik dan Matematik Gunaan

Files in This Item:
File Description SizeFormat 
tesis bpd QA 402.5 .P6 2013 Abstract.pdf942.48 kBAdobe PDFView/Open
tesis bpd QA 402.5 .P6 2013 FullText.pdf
  Restricted Access
17 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.