Please use this identifier to cite or link to this item:
http://umt-ir.umt.edu.my:8080/handle/123456789/4529
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Norizan Mohamed | - |
dc.date.accessioned | 2016-04-29T13:08:52Z | - |
dc.date.available | 2016-04-29T13:08:52Z | - |
dc.date.issued | 2011-05 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/4529 | - |
dc.description.abstract | Kajian ini bertujuan membina model terbaik bagi penelahan tenaga elektrik di Malaysia. Untuk mendapatkan model terbaik, data setiap setengah jam tenaga elektrik bagi tempoh setahun digunakan dengan peratus purata ralat mutlak (PPRM) sebagai ukuran kejituan telahan. Tiga kaedah iaitu model Purata Bergerak Terkamir Autoregresi Dua Musim (PBTADM), model rangkaian neural pelbagai lapis suap hadapan dan model gabungan dipertimbangkan. | en_US |
dc.language.iso | en | en_US |
dc.publisher | [Johor]: Universiti Teknologi Malaysia | en_US |
dc.subject | TJ 216 .N6 2011 | en_US |
dc.subject | Norizan Mohamed | en_US |
dc.subject | Tesis Universiti Teknologi Malaysia 2011 | en_US |
dc.title | Parametric and artificial intelligence based methods for forecasting short term electricity | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | Staff Thesis |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tesis TJ 216 .N6 2011 Abstract.pdf | 1.26 MB | Adobe PDF | View/Open | |
tesis TJ 216 .N6 2011 FullText.pdf Restricted Access | 21.95 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.