Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/22723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPamela Linford-
dc.contributor.authorván Pérez-Santo-
dc.contributor.authorPaulina Montero-
dc.contributor.authorPatricio A. Díaz-
dc.contributor.authorClaudia Aracena-
dc.contributor.authorElías Pinilla-
dc.contributor.authorFacundo Barrera-
dc.contributor.authorManuel Castillo-
dc.contributor.authorAida Alvera-Azcárate-
dc.contributor.authorMónica Alvarado-
dc.contributor.authorGabriel Soto-
dc.contributor.authorCécile Pujol-
dc.contributor.authorCamila Schwerter-
dc.contributor.authorSara Arenas-Uribe-
dc.contributor.authorPilar Navarro-
dc.contributor.authorGuido Mancilla-Gutiérrez-
dc.contributor.authorRobinson Altamirano-
dc.contributor.authorJaviera San Martín-
dc.contributor.authorCamila Soto-Riquelme-
dc.date.accessioned2025-08-18T08:00:10Z-
dc.date.available2025-08-18T08:00:10Z-
dc.date.issued2024-
dc.identifier.urihttp://umt-ir.umt.edu.my:8080/handle/123456789/22723-
dc.description.abstractThe dissolved oxygen (DO) levels of coastal ocean waters have decreased over the last few decades in part because of the increase in surface and subsurface water temperature caused by climate change, the reduction in ocean ventilation, and the increase in stratification and eutrophication. In addition, biological and human activity in coastal zones, bays, and estuaries has contributed to the acceleration of current oxygen loss. The Patagonian fjord and channel system is one world region where low-DO water (LDOW, 30 %– 60% oxygen saturation) and hypoxia conditions ( < 30% oxygen saturation, 2mLL􀀀1 or 89.2 μmol L􀀀1/ are observed. An in situ dataset of hydrographic and biogeochemical variables (1507 stations), collected from sporadic oceanographic cruises between 1970 and 2021, was used to evaluate the mechanisms involved in the presence of LDOWand hypoxic conditions in northern Patagonian fjords. Results denoted areas with LDOW and hypoxia coinciding with the accumulation of inorganic nutrients and the presence of salty and oxygen-poor Equatorial Subsurface Water mass. The role of biological activity in oxygen reduction was evident in the dominance of community respiration over gross primary production. This study elucidates the physical and biogeochemical processes contributing to hypoxia and LDOW in the northern Patagonian fjords, highlighting the significance of performing multidisciplinary research and combining observational and modeling work. This approach underscores the importance of a holistic understanding of the subject, encompassing both real-world observations and insights provided by modeling techniques.en_US
dc.language.isoenen_US
dc.publisherCopernicus Publications on behalf of the European Geosciences Unionen_US
dc.subjectdissolved oxygen (DO)en_US
dc.subjectdriving low-oxygen conditionsen_US
dc.subjectchannel systemen_US
dc.subjectPatagonian fjordsen_US
dc.titleOceanographic processes driving low-oxygen conditions inside Patagonian fjordsen_US
dc.typeArticleen_US
Appears in Collections:UMT Niche E-Book

Files in This Item:
File Description SizeFormat 
Oceanographic processes driving low.pdf
  Restricted Access
19.28 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.