Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/21732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScott Weichentha-
dc.contributor.authorMarianne Hatzopoulou-
dc.contributor.authorMichael Brauer-
dc.date.accessioned2025-04-14T20:59:48Z-
dc.date.available2025-04-14T20:59:48Z-
dc.date.issued2019-
dc.identifier.urihttp://umt-ir.umt.edu.my:8080/handle/123456789/21732-
dc.description.abstractBackground: Artificial intelligence (AI) is revolutionizing our world, with applications ranging from medicine to engineering. Objectives: Here we discuss the promise, challenges, and probable data sources needed to apply AI in the fields of exposure science and environmental health. In particular, we focus on the use of deep convolutional neural networks to estimate environmental exposures using images and other complementary data sources such as cell phone mobility and social media information. Discussion: Characterizing the health impacts of multiple spatially-correlated exposures remains a challenge in environmental epidemiology. A shift toward integrated measures that simultaneously capture multiple aspects of the urban built environment could improve efficiency and provide important insights into how our collective environments influence population health. The widespread adoption of AI in exposure science is on the frontier. This will likely result in new ways of understanding environmental impacts on health and may allow for analyses to be efficiently scaled for broad coverage. Image-based convolutional neural networks may also offer a cost- effective means of estimating local environmental exposures in low and middle-income countries where mon- itoring and surveillance infrastructure is limited. However, suitable databases must first be assembled to train and evaluate these models and these novel approaches should be complemented with traditional exposure metrics. Conclusions: The promise of deep learning in environmental health is great and will complement existing measurements for data-rich settings and could enhance the resolution and accuracy of estimates in data poor scenarios. Interdisciplinary partnerships will be needed to fully realize this potential.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectOpportunities and challengesen_US
dc.subjectdeep learning image analysesen_US
dc.subjectexposure science and environmentalen_US
dc.subjectepidemiologyen_US
dc.titleEnvironment Internationalen_US
dc.title.alternativeA picture tells a thousand…exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiologyen_US
dc.typeOtheren_US
Appears in Collections:E-Book

Files in This Item:
File Description SizeFormat 
A-picture-tells-a-thousand-exposures--Opportunities-and-chal_2019_Environmen.pdf
  Restricted Access
1.79 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.