Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/21517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarielle Thomas-
dc.contributor.authorAlain Pasquet-
dc.contributor.authorJoël Aubin-
dc.contributor.authorSarah Nahon-
dc.contributor.authorThomas Lecocq-
dc.date.accessioned2025-02-25T14:37:35Z-
dc.date.available2025-02-25T14:37:35Z-
dc.date.issued2021-
dc.identifier.urihttp://umt-ir.umt.edu.my:8080/handle/123456789/21517-
dc.description.abstractHuman population growth has increased demand for food products, which is expected to double in coming decades. Until recently, this demand has been met by expanding agricultural area and intensifying agrochemical-based monoculture of a few species. However, this development pathway has been criticised due to its negative impacts on the environment and other human activities. Therefore, new production practices are needed to meet human food requirements sustainably in the future. Herein, we assert that polyculture practices can ensure the transition of aquaculture towards sustainable development. We review traditional and recent polyculture practices (ponds, recirculated aquaculture systems, integrated multi-trophic aquaculture, aquaponics, integrated agriculture–aquaculture) to highlight how they improve aquaculture through the coexistence and interactions of species. This overview highlights the importance of species compatibility (i.e. species that can live in the same farming environment without detrimental interactions) and complementarity (i.e. complementary use of available resources and/or commensalism/mutualism) to achieve efficient and ethical aquaculture. Overall, polyculture combines aspects of productivity, environmental protection, resource sharing, and animal welfare. However, several challenges must be addressed to facilitate polyculture development across the world. We developed a four-step conceptual framework for designing innovative polyculture systems. This framework highlights the importance of (i) using prospective approaches to consider which species to combine, (ii) performing integrated assessment of rearing environments to determine in which farming system a particular combination of species is the most relevant, (iii) developing new tools and strategies to facilitate polyculture system management, and (iv) implementing polyculture innovation for relevant stakeholders involved in aquaculture transitions.en_US
dc.language.isoenen_US
dc.publisherCambridge Philosophical Societyen_US
dc.subjectaquacultureen_US
dc.subjectsustainabilityen_US
dc.subjectpolycultureen_US
dc.subjectspecies diversityen_US
dc.subjectfishen_US
dc.titleWhen more is more: taking advantage of species diversity to move towards sustainable aquacultureen_US
dc.typeArticleen_US
Appears in Collections:UMT Niche E-Book



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.