Please use this identifier to cite or link to this item: http://umt-ir.umt.edu.my:8080/handle/123456789/1621
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChew-Seng, Chee-
dc.date.accessioned2012-07-23T07:04:33Z-
dc.date.available2012-07-23T07:04:33Z-
dc.date.issued2011-
dc.identifier.urihttp://hdl.handle.net/123456789/1621-
dc.description.abstractThe primary goal of this thesis is to provide a mixture-based framework for nonparametric density estimation. This framework advocates the use of a mixture model with a nonparametric mixing distribution to approximate the distribution of the data. The implementation of a mixture-based nonparametric density estimator generally requires the specification of parameters in a mixture model and the choice of the bandwidth parameter. Consequently, a nonparametric methodology consisting of both the estimation and selection steps is described.en_US
dc.language.isoenen_US
dc.publisherNew Zealand: University of Aucklanden_US
dc.relation.ispartofseries;QA 278.8 .C4 2011-
dc.subjectQA 278.8 .C4 2011en_US
dc.subjectChew-Seng, Cheeen_US
dc.subjectTesis University of Auckland 2011en_US
dc.subjectNonparametric statistics -- Researchen_US
dc.titleA mixture- based framework for nonparametric density estimationen_US
dc.typeThesisen_US
Appears in Collections:Staff Thesis

Files in This Item:
File Description SizeFormat 
QA 278.8 .C4 2011 Abstract.pdf526.26 kBAdobe PDFView/Open
QA 278.8 .C4 2011 FullText.pdf
  Restricted Access
6.7 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.