





## THE COMPLEX CHITINOLYTIC SYSTEM OF

**ASPERGILLUS FUMIGATUS** 

by

#### MARIAM TAIB

Submitted in accordance with the requirements for the degree of Doctor of Philosophy

The University of Leeds School of Biochemistry and Microbiology

May 2005

The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others

This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement

1100042644

#### **Acknowledgements**

I am extremely grateful to my supervisor, Dr. David Adams for the opportunity to undertake this study and for his continuous advice, support and encouragement. I have the pleasure of thanking Dr. Alex Jaques for his invaluable help and advice throughout my study. This has been a great experience that I shall never forget.

I would like to express my gratitude to the staff of the School of Biochemistry and Microbiology, especially Ms Diana Hall for the technical assistance. My gratitude extends to Dr Kenny McDowall, his lab members Jonathan Stead and Jane Towle, Prof. Steve Baldwin and his lab members, for their help with parts of the study.

I would like to thank the Government of Malaysia for the financial support.

My heartfelt thanks go to my mother and father, mother and father in-law, and my families, for their love, support and patience. I would also like to thank all my friends for their support, especially Azna, Farid and Erin.

Special thanks and love to my husband Zaba, whose love shines through his patience, support and understanding.

i

#### Abstract

Aspergillus fumigatus is one of the most important fungal pathogens of humans and there is an urgent need for new drugs to counter infections caused by A. fumigatus and other pathogenic species. Enzymes of chitin metabolism, and their regulators present novel targets for antifungal agents. During the work described here, the patterns of expression of the chiA1 and chiB1 chitinase genes of A. fumigatus during batch culture were investigated using real-time, reversetranscription PCR. The chiA1 gene, encoding the fungal/plant chitinase ChiA1, was expressed at significant levels throughout the six days of culture. However, the level of expression of *chiB1*, encoding the fungal/bacterial chitinase ChiB1, was only just detectable on day one but had been induced 1280-fold, to a level similar to that detected for chiA1 expression, by day 6. The results suggest markedly different roles for these enzymes. The gene encoding the transcription factor CreA was cloned and expressed, as a glutathione S-transferase (GST) fusion protein, in Escherichia coli. In electrophoretic mobility shift assays purified GST-CreA, or an A. fumigatus cell extract, bound specifically to putative CreA binding sites upstream of the chiB1 gene. CreA may therefore have a role in the regulation of chitinase activity in A. fumigatus. The effects of a range of compounds on A. fumigatus chitinase activity were determined. The cyclopentapeptides, argadin and argifin (each at 0.6 µM), were potent inhibitors of enzyme activity. The cyclic dipeptides, D-Leu-D-Pro, cyclo-(D-Leu-D-Pro) and cyclo-(L-His-L-Pro) (each at 300 µM), did not inhibit chitinase activity, while the methylxanthines, pentoxyfylline and theophylline, caused significant inhibition at concentrations of 75 µM and 300 µM, respectively. In preliminary expression studies, ChiA1 was fused with GST or maltose-binding protein (MBP) and expressed in E. coli. In addition, ChiA1-His<sub>6</sub> peptide was expressed in Pichia pastoris. These constructs will be used in future work which will further explore the complex chitinolytic system of A. fumigatus and which may lead to the exploitation of this system as a target for antifungals.

## Contents

|                                                           | Page  |
|-----------------------------------------------------------|-------|
| Acknowledgements                                          | i     |
| Abstract                                                  | ii    |
| Contents                                                  | ili   |
| Tables and Figures                                        | xviii |
| Abbreviations                                             | xxiii |
|                                                           |       |
| Chapter 1: General Introduction                           | 1     |
|                                                           |       |
| 1.1 Human Mycoses                                         | 2     |
| 1.2 Aspergillus and Aspergillosis                         | 3     |
| 1.3 Putative Virulence Factors of A. fumigatus            | 6     |
| 1.4 Fungal cell wall                                      | 8     |
| 1.4.1 Architecture of the fungal cell wall                | 9     |
| 1.4.2 Biosynthesis of the fungal cell wall                | 12    |
| 1.5 Roles for chitinases                                  | 15    |
| 1.5.1 Roles for chitinases in yeast                       | 19    |
| 1.5.2 Roles for chitinases in filamentous fungi           | 20    |
| 1.6 Regulation of chitinase activity                      | 27    |
| 1.6.1 The role of transcription factors in the regulation | 30    |
| of chitinase expression                                   |       |
| 1.7 Antifungal Agents                                     | 33    |
| 1.8 Aims of Study                                         | 36    |

iii

| Chapter 2: General Methods                                      | 37 |
|-----------------------------------------------------------------|----|
|                                                                 |    |
| 2.1 Materials                                                   | 38 |
| 2.2 Growth and maintenance of A. fumigatus                      | 38 |
| 2.3 Preparation of mycelial pads of A. fumigatus                | 38 |
| 2.4 Agarose gel electrophoresis                                 | 39 |
| 2.5 Isolation of genomic DNA from A. fumigatus                  | 39 |
| 2.6 General PCR reaction                                        | 40 |
| 2.7 Growth and maintenance of <i>E. coli</i>                    | 40 |
| 2.8 Cloning of PCR products                                     | 41 |
| 2.9 Ligation                                                    | 41 |
| 2.10 Transformation                                             | 41 |
| 2.11 Isolation of plasmid DNA                                   | 42 |
| 2.12 Restriction digests                                        | 42 |
| 2.13 Gel-purification of DNA                                    | 42 |
| 2.14 Protein estimation                                         | 42 |
| 2.15 Sodium dodecyl sulphate polyacrylamide gel electrophoresis | 43 |
| (SDS-PAGE)                                                      |    |
| 2.16 Coomassie blue staining of polyacrylamide gels             | 43 |
| 2.17 Preparation of DIG-labelled probes                         | 44 |
| 2.18 Southern Blotting                                          | 44 |
| 2.19 Western blotting                                           | 45 |
| 2.20 Micro-fluorescence assay for chitinase activity            | 46 |
| 2.21 Glycol chitin gel electrophoresis                          | 47 |

iv

| Chapter 3. Expression of Chitinase Genes of A. fumigatus    | 49 |
|-------------------------------------------------------------|----|
| 3.1 Introduction                                            | 50 |
| 3.2 Materials and Methods                                   | 54 |
| 3.2.1 Real-time reverse transcription PCR analysis of       | 54 |
| A. fumigatus chitinase gene expression                      |    |
| 3.2.1.1 Induction of chitinase expression under conditions  | 54 |
| of starvation                                               |    |
| 3.2.1.2 Total RNA isolation                                 | 54 |
| 3.2.1.3 DNase I treatment                                   | 54 |
| 3.2.1.4 Quality control of total RNA by standard PCR        | 55 |
| amplification and reverse transcription PCR                 |    |
| amplification (RT-PCR)                                      |    |
| 3.2.1.5 Reverse transcription of total RNA                  | 56 |
| 3.2.1.6 Quantitative assay of chitinase expression by       | 56 |
| Real-time PCR                                               |    |
| 3.2.1.7 Determination of dry weight of A. fumigatus         | 57 |
| and microfluorescence chitinase assay                       |    |
| 3.2.2 Green Fluorescent Protein as a Reporter for Chitinase | 58 |
| Gene Expression in A. fumigatus                             |    |
| 3.2.2.1 Amplification of the promoter and N-terminal        | 58 |
| domains of chiA1 or chiB1 by polymerase chain               |    |
| reaction (PCR)                                              |    |
| 3.2.2.2 Ligation and transformation of competent E. coli    | 60 |
| JM109 cells                                                 |    |

v

| vi                                                                      |    |
|-------------------------------------------------------------------------|----|
| 3.2.2.3 Sub-cloning of the <i>chiA1</i> or <i>chiB1</i> insert into the | 60 |
| pUCGH expression vector                                                 |    |
| 3.2.2.4 Transformation of A. fumigatus with                             | 61 |
| recombinant plasmids pUCGH-chiA1                                        |    |
| or pUCGH- <i>chiB1</i>                                                  |    |
| 3.2.2.4.1 Protoplast preparation                                        | 61 |
| 3.2.2.4.2 Transformation using protoplasts                              | 62 |
| 3.2.2.5 Southern blotting and hybridization analysis                    | 63 |
| using DIG-labelled DNA probes                                           |    |
| 3.2.2.5.1 Preparation of DIG-labelled                                   | 63 |
| DNA probes                                                              |    |
| 3.2.2.5.2 Isolation of chromosomal DNA from                             | 63 |
| A. fumigatus transformants and                                          |    |
| digestion with restriction enzymes                                      |    |
| 3.2.2.5.3 Southern blotting and hybridization                           | 64 |
| with DIG-labelled probes                                                |    |
| 3.2.2.6 Expression of the chitinase-green fluorescent                   | 64 |
| protein construct and fluorescence microscopy                           |    |
| analyses                                                                |    |
| 3.2.2.6.1 Induction of chitinase-GFP expression                         | 64 |
| under conditions of starvation                                          |    |
| 3.2.2.6.2 Fluorescence and light microscopy                             | 65 |
| analyses                                                                |    |
|                                                                         |    |

| 3.3 Results                                                          | 66 |
|----------------------------------------------------------------------|----|
| 3.3.1 Real-time reverse transcription PCR analysis of                | 66 |
| A. fumigatus chitinase gene expression                               |    |
| 3.3.1.1 Determining the quality of A. fumigatus RNA                  | 66 |
| preparations prior to real-time RT-PCR analysis                      |    |
| 3.3.1.2 Establishing the reaction conditions for real-time           | 68 |
| PCR analysis                                                         |    |
| 3.3.1.3 Analysis and quantification of <i>chiA1</i> and <i>chiB1</i> | 69 |
| mRNA transcript levels during conditions                             |    |
| of starvation                                                        |    |
| 3.3.2 Green Fluorescent Protein as a Reporter for Chitinase          | 77 |
| Gene Expression in A. fumigatus                                      |    |
| 3.3.2.1 Amplification of the chiA1 or chiB1                          | 77 |
| gene fragments                                                       |    |
| 3.3.2.2 Ligation of the PCR product into pGEM-T and                  | 77 |
| transformation of <i>E. coli</i> JM109                               |    |
| 3.3.2.3 Sub-cloning of the chiA1 or chiB1 insert into                | 79 |
| pUCGH, transformation of E. coli JM109 and                           |    |
| transformation of A. fumigatus                                       |    |
| 3.3.2.4 Amplification of DIG-labelled DNA probes                     | 79 |
| 3.3.2.5 Southern blot analysis of A. fumigatus                       | 79 |
| transformants                                                        |    |
| 3.3.2.6 Fluorescence and light microscopy analyses of                | 82 |
| chiB-egfp gene expression under conditions of                        |    |
| starvation                                                           |    |
|                                                                      | 96 |
| 3.4 Discussion                                                       | 86 |

vii

## Chapter 4.0: Heterologous expression of the gene encoding the 90 A. fumigatus chitinase ChiA1

| 4.1 Introduction          |                                         | 91 |
|---------------------------|-----------------------------------------|----|
| 4.2 Materials and Methods |                                         | 95 |
| 4.2.1 Expression of A     | . <i>fumigatus chiA1</i> gene in        | 95 |
| Pichia pastoris           |                                         |    |
| 4.2.1.1 Recomb            | inant P. pastoris strains               | 95 |
| 4.2.1.2 Induction         | n of heterologous gene expression       | 95 |
| 4.2.1.3 Analysis          | of heterologously-expressed gene        | 96 |
| products                  | 3                                       |    |
| 4.2.2 Expression of A     | <i>fumigatus chiA1</i> gene in          | 96 |
| Escherichia coli          |                                         |    |
| 4.2.2.1 Express           | on of <i>A. fumigatus</i> ChiA1 as      | 96 |
| MBP-fus                   | sion protein                            |    |
| 4.2.2.1.1                 | Polymerase chain reaction               | 96 |
| 4.2.2.1.2                 | Cloning of the PCR product using        | 97 |
|                           | pGEM-T, and transformation of           |    |
|                           | competent <i>E. coli</i> JM109 cells    |    |
| 4.2.2.1.3                 | Sub-cloning of the cloned PCR           | 98 |
|                           | product using pMAL-c2x                  |    |
|                           | and pMAL-p2x expression vectors         |    |
|                           | 4.2.2.1.3.1 Preparation of insert       | 98 |
|                           | 4.2.2.1.3.2 Preparation of vector       | 98 |
|                           | 4.2.2.1.3.3 Ligation of isolated insert | 99 |
|                           |                                         |    |

viii

|         |            |               | into pMAL expression        |     |
|---------|------------|---------------|-----------------------------|-----|
|         |            |               | vectors, transformation of  |     |
|         |            |               | E. coli JM109 and           |     |
|         |            |               | screening of colonies       |     |
|         | 4.2.2.1.4  | Expression    | of the MBP-ChiA1 fusion     | 99  |
|         |            | protein in E  | E. coli BL21(DE3)pLysS      |     |
|         |            | 4.2.2.1.4.1   | Induction of heterologous   | 99  |
|         |            |               | expression                  |     |
|         |            | 4.2.2.1.4.2   | Analysis of recombinant     | 100 |
|         |            |               | MBP-ChiA1 protein           |     |
|         |            |               | expression                  |     |
|         |            | 4.2.2.1.4.3   | Purification of recombinant | 101 |
|         |            |               | MBP-ChiA1 fusion protein    |     |
|         |            | 4.2.2.1.4.4   | Cleavage of MBP-ChiA1       | 102 |
|         |            |               | fusion protein by Factor Xa |     |
|         |            |               | protease                    |     |
|         | 4.2.2.1.5  | Expression    | of the MBP-ChiA1            | 103 |
|         |            | fusion prote  | ein in <i>E. coli</i>       |     |
|         |            | BL21-Code     | onPlus(DE3)-RP              |     |
|         | 4.2.2.1.6  | Expression    | of the MBP-ChiA1            | 103 |
|         |            | fusion prote  | ein in <i>E. coli</i>       |     |
|         |            | Origami B(    | (DE3)pLysS                  |     |
| 4.2.2.2 | Expression | on of A. fumi | <i>igatus</i> ChiA1 as      | 104 |
|         | GST-fusio  | on protein    |                             |     |
|         | 4.2.2.2.1  | Polymerase    | chain reaction              | 104 |
|         | 4.2.2.2.2  | Cloning of th | ne PCR product              | 105 |
|         |            |               |                             |     |

ix

| using pGEM-T, subcloning using                             |     |
|------------------------------------------------------------|-----|
| pGEX-4T-3 expression vector,                               |     |
| and transformation of E. coli                              |     |
| JM109 competent cells                                      |     |
| 4.2.2.2.3 Expression of the GST-ChiA1fusion                | 106 |
| protein in <i>E. coii</i> Origami B(DE3)pLysS              |     |
| 4.2.2.3.1 Analysis of recombinant                          | 106 |
| GST-ChiA1 protein                                          |     |
| expression                                                 |     |
| 4.2.2.3.2 Purification of recombinant                      | 107 |
| GST-ChiA1 fusion protein                                   |     |
| 4.3 Results                                                | 108 |
| 4.3.1 Expression of A. fumigatus chiA1 gene in P. pastoris | 108 |
| 4.3.2 Expression of A. fumigatus chiA1 gene in E. coli     | 108 |
| 4.3.2.1 Expression of A. fumigatus ChiA1 as                | 108 |
| MBP-fusion protein                                         |     |
| 4.3.2.1.1 Amplification of the chiA1 gene                  | 108 |
| 4.3.2.1.2 Ligation of the <i>chiA1</i> PCR product         | 111 |
| into pGEM-T, and transformation                            |     |
| of <i>E. coii</i> JM109                                    |     |
| 4.3.2.1.3 Sub-cloning of <i>chiA1</i> gene using           | 111 |
| pMAL-c2x or pMAL-p2X, and                                  |     |
| transformation of E. coii JM109                            |     |
| 4.3.2.1.4 Expression of MBP-ChiA1                          | 114 |
| fusion protein in <i>E. coli</i> BL21                      |     |
| (DE3)pLysS                                                 |     |

х

| 4.3.2.1.4.1 Purification of MBP-ChiA1       |     |
|---------------------------------------------|-----|
| fusion protein                              | 114 |
| 4.3.2.1.4.2 Cleavage of MBP-ChiA1           | 117 |
| fusion protein by                           |     |
| Factor Xa protease                          |     |
| 4.3.2.1.5 Expression of chiA1 in E. coli    | 117 |
| BL21-CodonPlus(DE3)-RP                      |     |
| 4.3.2.1.5.1 Purification of MBP-ChiA1       | 120 |
| fusion protein                              |     |
| 4.3.2.1.5.2 Cleavage of MBP-ChiA1           | 120 |
| fusion protein by                           |     |
| Factor Xa protease                          |     |
| 4.3.2.1.6 Expression of chiA1 in E. coli    | 123 |
| Origami B(DE3)pLysS                         |     |
| 4.3.2.1.6.1 Purification of MBP-ChiA1       | 123 |
| fusion protein                              |     |
| 4.3.2.2 Expression of A. fumigatus ChiA1 as | 126 |
| GST-fusion protein                          |     |
| 4.3.2.2.1 Amplification of the chiA1 gene   | 126 |
| 4.3.2.2.2 Ligation of the chiA1 gene        | 126 |
| PCR product into pGEM-T,                    |     |
| and transformation of E. coli JM109         |     |
| 4.3.2.2.3 Sub-cloning of chiA1 gene using   | 127 |
| pGEX-4T-3, and transformation               |     |
| of <i>E. coli</i> JM109                     |     |
| 4.3.2.2.4 Expression of GST-ChiA1 fusion    | 127 |

xi

| xii                                             |     |
|-------------------------------------------------|-----|
| protein in <i>E. coii</i> Origami               |     |
| B(DE3) pLysS                                    |     |
| 4.3.2.2.5 Purification of GST-ChiA1             | 129 |
| fusion protein                                  |     |
| 4.4 Discussion                                  | 132 |
| ter 5.0: The Transcriptional Regulator, CreA    | 136 |
| 5.1 Introduction                                | 137 |
| 5.2 Materials and Methods                       | 14  |
| 5.2.1 Cloning and heterologous expression of    | 14  |
| the A. fumigatus transcriptional regulator CreA |     |
| 5.2.1.1 Expression of A. fumigatus creA gene    | 14  |
| in <i>Pichia pastoris</i>                       |     |
| 5.2.1.1.1 Polymerase chain reaction             | 141 |
| 5.2.1.1.2 Cloning of the PCR product            | 142 |
| using pGEM-T, and transformation                |     |
| of E. coli JM109 competent cells                |     |
| 5.2.1.1.3 Sub-cloning of the cloned             | 142 |
| PCR product using pPICZ A                       |     |
| expression vector                               |     |
| 5.2.1.1.3.1 Preparation of insert               | 142 |
| 5.2.1.1.3.2 Preparation of expression           | 143 |
| vector                                          |     |
| 5.2.1.1.3.3 Ligation of isolated insert         | 143 |
|                                                 |     |
| into pPICZ A expression                         |     |

| <i>E. coli</i> JM109 and                        |     |
|-------------------------------------------------|-----|
| screening of colonies                           |     |
| 5.2.1.1.4 Transformation of <i>P. pastoris</i>  | 144 |
| 5.2.1.1.4.1 Preparation of                      | 144 |
| recombinant plasmid                             |     |
| pPICZ A/creA                                    |     |
| 5.2.1.1.4.2 Preparation of P. pastoris          | 144 |
| strain X-33                                     |     |
| 5.2.1.1.4.3 Transformation of                   | 145 |
| P. pastoris with                                |     |
| recombinant plasmid DNA                         |     |
| 5.2.1.1.5 Isolation of genomic DNA from         | 146 |
| transformed P. pastoris cells and               |     |
| PCR analysis                                    |     |
| 5.2.1.1.6 Induction of heterologous gene        | 146 |
| expression                                      |     |
| 5.2.1.1.7 Analysis of recombinant               | 146 |
| creA expression                                 |     |
| 5.2.1.2 Expression of A. fumigatus creA gene as | 147 |
| GST-CreA protein in Escherichia coli            |     |
| 5.2.1.2.1 Polymerase chain reaction             | 147 |
| 5.2.1.2.2 Cloning of the PCR product using      | 147 |
| pGEM-T, sub-cloning using                       |     |
| pGEX-4T-3 expression vector,                    |     |
| and transformation of E. coli JM109             |     |
| competent cells                                 |     |

xiii

| xiv                                                   |     |
|-------------------------------------------------------|-----|
| 5.2.1.2.3 Expression of the GST-CreA fusion           | 148 |
| protein in <i>E. coii</i> BL21 (DE3)plysS             |     |
| 5.2.1.2.4 Analysis and purification of GST-CreA       | 148 |
| protein                                               |     |
| 5.2.2 Binding of native and recombinant CreA to sites | 149 |
| upstream of A. fumigatus chitinase genes              |     |
| 5.2.2.1 Amplification of regions upstream regions of  | 149 |
| the chiA1 and chiB1 genes using the                   |     |
| polymerase chain reaction (PCR)                       |     |
| 5.2.2.1.1 Design of primers                           | 149 |
| 5.2.2.1.2 PCR and cloning of the                      | 149 |
| reaction products                                     |     |
| 5.2.2.2 Putative CreA binding sites upstream of chiB1 | 150 |
| 5.2.2.3 Preparation of A. fumigatus cytosolic extract | 151 |
| 5.2.2.4 Electrophoretic Mobility Shift Assay (EMSA)   | 152 |
| 5.2.2.4.1 DIG Gel Shift                               | 152 |
| 5.2.2.4.2 Fluorescein Method                          | 153 |
| 5.2.3 Polymerase chain reaction and cloning of the    | 154 |
| A. fumigatus transcriptional regulator ACE2 gene      |     |
| 5.2.3.1 PCR amplification                             | 154 |
| 5.2.3.2 Cloning of the PCR product using pGEM-T       | 155 |
| and transformation of <i>E. coli</i> JM109            |     |
| competent cells                                       |     |
| 3 Results                                             | 156 |
| 5.3.1 Cloning and heterologous expression of the      | 156 |
| A. fumigatus creA gene                                |     |

5.

|    | XV                                                   |     |
|----|------------------------------------------------------|-----|
| 5  | 3.1.1 Expression of A. fumigatus creA gene           | 156 |
|    | in Pichia pastoris                                   |     |
|    | 5.3.1.1.1 Polymerase chain reaction                  | 156 |
|    | 5.3.1.1.2 Cloning of the PCR product using           | 156 |
|    | pGEM-T, and transformation of                        |     |
|    | E. coli JM109 competent cells                        |     |
|    | 5.3.1.1.3 Sub-cloning of the creA gene using         | 159 |
|    | pPICZ A expression vector                            |     |
|    | 5.3.1.1.4 Isolation of genomic DNA from              | 159 |
|    | transformed P. pastoris cells and                    |     |
|    | PCR analysis                                         |     |
|    | 5.3.1.1.5 Expression of CreA in <i>P. pastoris</i>   | 163 |
| 5. | 3.1.2 Expression of <i>A. fumigatus creA</i> gene as | 163 |
|    | GST-CreA fusion protein in E. coli                   |     |
|    | 5.3.1.2.1 Polymerase chain reaction                  | 163 |
|    | 5.3.1.2.2 Cloning of the PCR product using           | 163 |
|    | pGEM-T and transformation of                         |     |
|    | E. coli BL21 (DE3)plysS                              |     |
|    | competent cells                                      |     |
|    | 5.3.1.2.3 Sub-cloning of creA gene using             | 166 |
|    | pGEX-4T-3 and transformation of                      |     |
|    | E. coli JM109 competent cells                        |     |
|    | 5.3.1.2.4 Expression of GST-CreA fusion              | 166 |
|    | protein in <i>E. coli</i> BL21 (DE3)plysS            |     |
|    |                                                      |     |

| XVI                                                             |     |
|-----------------------------------------------------------------|-----|
| 5.3.2 Binding of native and recombinant CreA to sites           | 170 |
| upstream of A. fumigatus chitinase gene                         |     |
| 5.3.2.1 PCR for <i>chiA1</i> and <i>chiB1</i> upstream regions, | 170 |
| and cloning of the reaction products                            |     |
| 5.3.2.2 Electrophoretic Mobility Shift Assay (EMSA)             | 173 |
| 5.3.2.2.1 DIG Gel Shift                                         | 173 |
| 5.3.2.2.1.1 EMSA with putative CreA                             | 173 |
| binding sites and cytosolic                                     |     |
| extract                                                         |     |
| 5.3.2.2.1.2 EMSA with putative                                  | 173 |
| CreA binding sites and                                          |     |
| recombinant CreA                                                |     |
| 5.3.2.2.2 Fluorescein Method                                    | 176 |
| 5.3.2.2.1 EMSA with putative CreA                               | 176 |
| binding sites and cytosolic                                     |     |
| extract                                                         |     |
| 5.3.2.2.2 EMSA with putative CreA                               | 176 |
| binding sites and                                               |     |
| recombinant CreA                                                |     |
| 5.3.3 Amplification and cloning of an apparent ACE2 gene        | 177 |
| homologue from A. fumigatus                                     |     |
| 5.3.3.1 PCR Amplification                                       | 177 |
| 5.3.3.2 Cloning of the PCR product into pGEM-T                  | 177 |
| and transformation of E. coli JM109                             |     |
| 5.4 Discussion                                                  | 183 |

| XVII                                                      |     |
|-----------------------------------------------------------|-----|
| Chapter 6: Inhibition of Extracellular Chitinase Activity | 186 |
| 6.1 Introduction                                          | 187 |
| 6.2 Materials and Methods                                 | 190 |
| 6.2.1 Test compounds                                      | 190 |
| 6.2.2 NCCLS Microdilution Broth Method                    | 190 |
| 6.2.2.1 Preparation of medium                             | 190 |
| 6.2.2.2 Preparation and dilution of stock solutions       | 190 |
| 6.2.2.3 Preparation of A. fumigatus inoculum              | 191 |
| 6.2.2.4 Inoculation of the microtitre plates and          | 191 |
| plate reading                                             |     |
| 6.2.3 Micro-fluorescence assay for chitinase activity     | 192 |
| 6.3 Results                                               | 193 |
| 6.3.1 Microdilution Broth Method                          | 193 |
| 6.3.2 Microfluorescence Assay                             | 193 |
| 6.3.2.1 Enzyme kinetics                                   | 193 |
| 6.3.2.2 Effect of test compounds on A. fumigatus          | 193 |
| chitinase activity                                        |     |
| 6.4 Discussion                                            | 199 |
| Chapter 7: Final Discussion                               | 201 |
| Chapter 8: References                                     | 208 |

## **Tables and Figures**

xviii

|                                                                               | Page |
|-------------------------------------------------------------------------------|------|
| Tables                                                                        |      |
| Table 3.1 The primer pairs used for PCR amplification of a 180-bp fragment of | 54   |
| chiA1 and chiB1                                                               |      |
| Table 5.1 CreA binding-sites located upstream of the A. nidulans creA         | 150  |
| regulatory domain and the putative CreA binding sites located upstream of the |      |
| A. <i>fumigatus chiB1</i> chitinase gene                                      |      |

## **Figures**

| Figure 1.1 Sporulating conidiophores of <i>A. fumigatus</i>                     |    |
|---------------------------------------------------------------------------------|----|
| Figure 1.2 Schematic diagram of the architecture of the fungal cell wall        | 10 |
| Figure 1.3 Comparison of chemical structures of the fungal polysaccharide cell  | 13 |
| wall core                                                                       |    |
| Figure 1.4 Putative successive enzymatic events involved in the biosynthesis of | 14 |
| the fungal wall                                                                 |    |
| Figure 1.5 Mechanisms of action of exochitinase and endochitinase               | 16 |
| Figure 1.6 Conserved amino acids (in bold) of (A) Family 18 chitinases and (B)  | 18 |
| Family 19 chitinases                                                            |    |
| Figure 1.7 Multiple alignment of the apparent active site from the 14 (2 known  | 23 |
| and 12 hypothetical) chitinase sequences                                        |    |
| Figure 1.8 Phylogenetic tree generated from a multiple alignment of 209         | 24 |
| residues surrounding the apparent active site in the genes found                |    |
| Figure 1.9 Comparison of the domains of the ChiB1 fungal/bacterial chitinase    | 26 |

| and ChiA1 fungal/plant chitinase of A. fumigatus                                                     |    |
|------------------------------------------------------------------------------------------------------|----|
| Figure 1.10 Mechanisms of action of caspofungin, fluconazole and voriconazole                        | 34 |
| Figure 2.1 Standard curve generated for micro-fluorescence assay for chitinase                       | 47 |
| activity                                                                                             |    |
| Figure 3.1 Amplification plots of IL-4 plasmid cDNA                                                  | 51 |
| Figure 3.2 Expression plasmid pUCGH                                                                  | 59 |
| Figure 3.3 Monitoring the quality of total A. fumigatus RNA                                          | 67 |
| Figure 3.4 Establishing the reaction conditions for real time PCR analysis for                       | 70 |
| real-time PCR analysis of the chiA1 and chiB1 genes                                                  |    |
| Figure 3.5 Fluorescence profiles of the chiA1 and chiB1 amplicons                                    | 72 |
| Figure 3.6 Fluorescence profiles of the pGEMT chiA1 and pGEMT chiB1                                  | 73 |
| amplicons                                                                                            |    |
| Figure 3.7 Standard curves for pGEMT chiA1 and pGEMT chiB1                                           | 75 |
| Figure 3.8 Expression profiles for <i>chiA1</i> and <i>chiB1</i> in <i>A. fumigatus</i> during batch | 76 |
| culture                                                                                              |    |
| Figure 3.9 Amplification of the promoter and N-terminal domains of                                   | 78 |
| A. fumigatus                                                                                         |    |
| Figure 3.10 Restriction digests for positive clones containing the 760 bp                            | 80 |
| fragment of <i>chiA1</i> or <i>chiB1</i> in pUCGH                                                    |    |
| Figure 3.11 Amplification of DIG-labelled 760 bp fragment of                                         | 81 |
| A. fumigatus chiA1 and chiB1                                                                         |    |
| Figure 3.12 Identification of an A. fumigatus transformant carrying the PchiB1-                      | 83 |
| egfp fusion integrated in a single copy at the chiB1 gene locus                                      |    |
| Figure 3.13 Bright light (a, e, i, c, g, k) and fluorescence (b, f, j, d, h, l)                      | 85 |
| microscopy for wild-type A. fumigatus and apparent A. fumigatus PchiB1-egfp                          |    |
| transformant (lane 3, Figure 3.12) grown under batch culture conditions                              |    |

xix

| Figure 4.1 Glycol chitin zymography analysis of ChiA1 (full length protein with     | 109 |
|-------------------------------------------------------------------------------------|-----|
| histidine tag) expressed in <i>P. pastoris</i>                                      |     |
| Figure 4.2 Amplification of the A. fumifatus chiA1 gene                             | 110 |
| Figure 4.3 Restriction digest of the pGEM-T Easy vector from a 'positive' colony    | 112 |
| of <i>E. coli</i> JM109                                                             |     |
| Figure 4.4 Restriction digests for positive clones, containing the 2.5 kb PCR       | 113 |
| product in (a) pMAL-c2x and (b) pMAL-p2x, to determine the orientation of the       |     |
| insert in the plasmid                                                               |     |
| Figure 4.5 Analysis of expression of the MBP-ChiA1 fusion protein in                | 115 |
| E. coli BL21(DE3)pLysS cells                                                        |     |
| Figure 4.6 SDS-PAGE analysis following fractionation of the E. coli                 | 116 |
| BL21(DE3)pLysS cell lysate using amylose affinity chromatography                    |     |
| Figure 4.7 SDS-PAGE analysis of MBP-ChiA1 after incubation with Factor Xa           | 118 |
| Figure 4.8 Analysis of expression of the MBP-ChiA1 fusion protein in                | 119 |
| E. coli BL21-CodonPlus(DE3)-RP                                                      |     |
| Figure 4.9 SDS-PAGE analysis following fractionation of the E. coli BL21-           | 121 |
| CodonPlus(DE3)-RP cell lysate using amylose affinity chromatography                 |     |
| Figure 4.10 SDS-PAGE analysis of MBP-ChiA1 after incubation with Factor Xa          | 122 |
| Figure 4.11 Analysis of expression of the MBP-ChiA1 fusion protein in               | 124 |
| E. coli Origami B(DE3)pLysS                                                         |     |
| Figure 4.12 SDS-PAGE analysis following fractionation of the E. coli Origami        | 125 |
| B(DE3)pLysS cell lysate using amylose affinity chromatography                       |     |
| Figure 4.13 Restriction digests for positive clones (lanes 2-6), containing the 2.5 | 128 |
| kb PCR product in pGEX-4T-3 to determine the orientation of the insert in the       |     |
| plasmid                                                                             |     |
| Figure 4.14 Analysis of expression of the GST-ChiA1 fusion protein in E. coli       | 130 |

XX

| Origami B(DE3)pLysS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 4.15 SDS-PAGE and glycol-chitin SDS-PAGE zymography analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 131   |
| following purification of the E. coli Origami B cell lysate using Glutathione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Sepharose 4B affinity chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 5.1 Alignment of the amino acid sequence of A. fumigatus CreA with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ə 139 |
| amino acid sequence of A. nidulans CreA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| Figure 5.2 Amplification of the creA gene for expression in P. pastoris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 157   |
| Figure 5.3 Restriction digests for positive clones of the apparent creA PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 158   |
| product in pGEM-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Figure 5.4 Restriction digests for positive clones containing the 1.3 kb PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160   |
| product in pPICZ A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Figure 5.5 Restriction digests for positive clones containing the 1.3 kb PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 161   |
| product in pPICZ A to determine the orientation of the insert in the plasmid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| Figure 5.6 Agarose gel electrophoresis following the integration of creA into the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e 162 |
| P. pastoris genome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| Figure 5.7 Amplification of the creA gene for expression in E. coii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 164   |
| BL21(DE3)pLysS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Figure 5.8 Restriction digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the PCR product of the creation digests for positive clones of the posit | A 165 |
| gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 5.9 Restriction digests for positive clones containing the 1.3 kb PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 167   |
| product in pGEX-4T-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 5.10 Restriction digests for positive clones containing the 1.3 kb PCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 168   |
| product in pGEX-4T-3 to determine the orientation of the insert in the plasmid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| Figure 5.11 SDS-PAGE analysis of the GST-CreA fusion protein following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 169   |
| expression in E. coli BL21 and purification using Glutathione Sepharose 4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| affinity chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |

xxi

| Figure 5.12 Amplification of the regions upstream of A. fumigatus chiA1 and      | 171 |
|----------------------------------------------------------------------------------|-----|
| chiB1 genes                                                                      |     |
| Figure 5.13 Restriction digests for positive clones of PCR products of chitinase | 172 |
| gene upstream regions                                                            |     |
| Figure 5.14 EMSA with putative CreA binding sites and cytosolic extract using    | 174 |
| DIG gel shift kit                                                                |     |
| Figure 5.15 EMSA with putative CreA binding site 2 upstream of the               | 175 |
| A. fumigatus chiB1 gene, and recombinant GST-CreA using the DIG gel shift kit    |     |
| Figure 5.16 EMSA with A. fumigatus cytosolic extract                             | 178 |
| Figure 5.17 EMSAs with recombinant A. fumigatus creA: titration of binding shift | 179 |
| using increasing amounts of unlabelled specific and non-specific competitors     |     |
| Figure 5.18 Amplification of the apparent ACE2 gene                              | 181 |
| Figure 5.19 Restriction digests for positive clones containing the apparent      | 182 |
| ACE2 PCR product in pGEM-T                                                       |     |
| Figure 6.1 Allosamidin                                                           | 187 |
| Figure 6.2 Cyclopentapeptides                                                    | 188 |
| Figure 6.3 Cyclic dipeptides                                                     | 189 |
| Figure 6.4 Methylxanthines                                                       | 189 |
| Figure 6.5 A. fumigatus extracellular chitinase activity with time               | 194 |
| Figure 6.6 Effect of cyclopentapeptides on chitinase activity                    | 195 |
| Figure 6.7 Effect of allosamidin on chitinase activity                           | 196 |
| Figure 6.8 Effect of methylxanthines on chitinase activity                       | 198 |

xxii

#### Abbreviations

The following abbreviations are used:

| ATCC     | American Type Culture Collection                                      |
|----------|-----------------------------------------------------------------------|
| ddH₂O    | Double distilled water                                                |
| DIG      | Digoxygenin                                                           |
| DMSO     | Dimethylsulfoxide                                                     |
| DTT      | Dithiothreitol                                                        |
| EDTA     | Diaminoethane tetraacetic acid, disodium salt                         |
| EMSA     | Electrophoretic Mobility Shift Assay                                  |
| GIcNAc   | N-acetylglucosamine                                                   |
| GST      | Glutathione S-transferase                                             |
| HEPES    | N-[2-Hydroxyethyl]piperazine-N'-(2-ethylsulfonic acid)                |
| IPTG     | Isopropyl β-D thiogalactoside                                         |
| LB       | Luria-Bertani                                                         |
| MBP      | Maltose-binding protein                                               |
| MMS      | Minimal Medium with 1 M sucrose                                       |
| MOPS     | 3-(N-morpholino)propanesulfonic acid                                  |
| MU       | Methylumbelliferone                                                   |
| NBT/BCIP | Nitro blue tetrazolium chloride / 5-Bromo-4-chloro-3-indoyl phosphate |
| NCCLS    | The U.S National Committee of Clinical Lab Standard                   |
| NTP      | Nucleoside Triphosphates                                              |
| PAGE     | Del com demide del electronic                                         |
|          | Polyacrylamide gel electrophoresis                                    |
| PBS      | Polyacrylamide gel electrophoresis<br>Phosphate-buffered saline       |

xxiii

#### xxiv

ŝ

| PMSF | Phenylmethylsulphonylfluoride                                 |
|------|---------------------------------------------------------------|
| rpm  | Revolutions per minute                                        |
| SDS  | Sodium dodecyl sulphate                                       |
| TBS  | Tris-buffered saline                                          |
| Tris | Tris(hydroxymethyl)aminoethane                                |
| TTBS | Tween Tris-buffered saline                                    |
| YNB  | Yeast Nitrogen Base with ammonium sulfate without amino acids |
| YPD  | Yeast Peptone Dextrose                                        |

1.1 Harrish Mycones

# Chapter 1

## **General Introduction**

-

#### 1.1 Human Mycoses

Fungi can cause a variety of diseases of humans and other animals ranging from minor superficial skin and mucous membrane infections to life-threatening, systemic involvement of the internal organs. There are three major types of disease caused by fungi: allergies, poisonings and fungal infections (Schaechter *et al.*, 1998). Allergic reactions to fungi are caused by sensitivity to fungal proteins, such as those present in inhaled fungal spores, while poisonings result from the ingestion of fungal toxins in contaminated food or poisonous mushrooms. Fungal allergies and poisonings are important concerns in agriculture and other industries where fungal contamination is common. Fungal infections, or mycoses, result from the invasion of living tissue by a fungus and they represent the most common form of fungal disease (http://www.mercksharpedohme.com).

There are more than 100,000 recognised species of fungi, but only about 400 are known to infect humans (de Hoog & Guarro, 1995). Some species of fungi, called primary pathogens, cause disease regardless of the individual's state of health. Other species that infect individuals with a weakened immune system are described opportunistic pathogens. However, as among patients with severe immunosuppression, almost any type of fungus can exhibit pathogenic potential which may have devastating consequences for the host (Dunn, 2000). The most common fungal infections in immunocompromised hosts are candidiasis, aspergillosis, cryptococcosis, mucormycoses (zygomycoses) and Pneumocystis carinii pneumonia (http://merckmedicus.com).

2