THE INFLUENCES OF TIDAL CYCLE TO THE IN-SITU PHYSICO-CHEMICAL PARAMETER IN ESTUARY AT CHUKAI-KEMAMAN, RIVER BASIN, TERENGGANU

NORAFIDAH BINTI ZULKIFLI

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2010

1100088949

Puset Pembelajaran Digital Sultaneh Nur Zahirah (UMT) Universiti Malaysia Terengganu.

1100088949

The influences of tidal cycye to the in-situ physico-chemical parameter in estuary at Chukai-Kemaman, River Basin, Terengganu / Norafidah Zulkifli.

	21030 KUALA TER	88949	
	11000	00010	
			_
			_
~			

HAK MILIK PUSAT PEMBELAJARAN DIGITAL SULTAMAN NUR ZAHIRAN

PUSAT PEMBELAJARAN DIGITAL SULTANAH NUR ZAHIRAH

THE INFLUENCES OF TIDAL CYCYE TO THE IN-SITU PHYSICO-CHEMICAL PARAMETER IN ESTUARY AT CHUKAI-KEMAMAN, RIVER BASIN, TERENGGANU.

By

Norafidah Binti Zulkifli

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE

UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND APPROVAL FOR FINAL YEAR PROJECT (I & II)

Student Name	: Norafidah Binti Zulkifli
Program	: Bachelor Of Science (Marine Science)
Matric Number	: UK 14697
Main Supervisor	: Dr. Zainudin B. Bachok
Second Supervisor	: Dr. Mohd Fadzil B Mohd Akhir

Title : THE INFLUENCES OF TIDAL CYCYE TO THE IN-SITU PHYSICO-CHEMICAL PARAMETER IN ESTUARY AT CHUKAI-KEMAMAN, RIVER BASIN, TERENGGANU.

Hereby I confirm that I have read, checked and all errors has been repaired. This report is to fulfil the condition to get Bachelor of Science (Marine Science), Faculty of Marine Studies & Marine Science, University of Malaysia Terengganu (UMT).

Chop	1	
Name	1	
Date	:	

ACKNOWLEDGEMENT

First of all, I would like precious to thank to Dr. Zainuddin as my first supervisor, who given me direction to go through my research final year project, to conducted me on my project.

Special thanks to my second supervisor Dr. Fadzil lecturer in Faculty of Maritime and Science Marine at University Malaysia Terengganu for his meaningful guidelines, concerns and advices during my research project. Thanks for them for being so courteous and helpful.

Secondly, I would to thank to En. Shukri Arshad, science officer in Institute of Oceanography and En.Sainol, science officer at University Malaysia Terengganu, for always tolerances with me, concern and take us safety during samplings was done.

Besides that, I also would to thank all lecturers and staffs that have spend their time, advices and give us knowledgeable about marine instrument. Thank you.

TABLE OF CONTENTS

			Page
ACK	NOWI	LEDGEMENTS	ii
TAB	LE OF	CONTENT	ii
LIST	OF T A	ABLE	V
LIST	OF FI	GURES	vi
ABB	REVIA	TIONS	viii
ABS	ГАСТ		ix
ABS	ГRAK		Х
1.0	INT	RODUCTION	1
	1.1	Estuaries	1
	1.2	Chukai-Kemaman, River Basin.	2
	1.3	Important of Study	3
	1.4	Objectives	4
2.0	LIT	ERATURE REVIEW	5
	2.1	River and Estuaries	5
	2.2	Tides and tidal terminology	6
	2.3	In-situ Physico-chemical Parameter	6
		2.3.1 pH	7
		2.3.2 Salinity	8

		2.3.3 Temperature	9
		2.3.4 Dissolved Oxygen	9
		2.3.5 Turbidity	10
		2.3.6 Depth	11
		2.3.7 Tidal current	11
	2.4	Tidal Datum	12
	2.5	Tidal Cycle	13
	2.6	Tide Table	15
METHODOLOGY			16
	3.1	Study Area	17

3.2	Sampling Stations	15
3.3	Data Collections	18
	3.3.1 Instrument	20
3.4	Data and Statistical Analysis	21

4.0 **RESULT**

3.0

4.1	Tidal Cycle	22
4.2	The In-Situ Physico-Chemical Parameters at Different	22
	Station During Low and High Tide	22
	4.2.1 Temperature	22
	4.2.2 Dissolved Oxygen	25
	4.2.3 pH	27

	4.2.4 Salinity	29
	4.2.5 Turbidity	31
4.3	3 The In-Situ Physico-Chemical Parameters at Different	33
	Layer: Surface, Middle and Bottom	
	4.3.1 Temperature	33
	4.3.2 Dissolved Oxygen	34
	4.3.3 pH	35
	4.3.4 Salinity	37
	4.3.5 Turbidity	38
4.4	4 The In-situ Physico-chemical Parameter at Different	39
	Time of Tidal Cycle	
	4.4.1 Temperature	40
	4.4.2 Dissolved Oxygen	42
	4.4.3 pH	44
	4.4.4 Salinity	46
	4.4.5 Turbidity	48
4.	5 Effect of Tide to Current Flow and Current Movement	50
D	ISCUSSION	62
5.	1 Temperature	62
	5.1.1 Temperature in Different Layer	64
5.	2 Dissolved Oxygen	65
	5.2.1 Dissolved Oxygen in Different Layer	67

5.0

6.0	CON	NCLUSION	80
		5.6.1 Current Movement	78
	5.6	Effect of Tide to Current Flow and Current Movement	76
		5.5.1 Turbidity in Different Layer	75
	5.5	Turbidity	74
		5.4.1 Salinity in Different Layer	72
	5.4	Salinity	70
		5.3.1 pH in Different Layer	69
	5.3	рН	68

82

REFERENCES

CURICULUM VITAE

LIST OF TABLES

TablePage3.4 (a)Tidal condition in Kemaman taken from the tidal book
published by Hydroographic Branch, Royal Malaysia Navy
for the year 2008.193.4 (c)Tidal condition in Kemaman taken from the tidal book
published by Hydroographic Branch, Royal Malaysia Navy
for the year 2008.20

LIST OF FIGURES

Figure		Page
2.4	Tidal Datum	13
3.1	The distric of Kemaman River	16
3.2	Sampling stations in Chukai-Kemaman	17
3.4	Tidal Condition in Kemaman teken from Tide Gauge	19
3.5	Tidal Condition in Kemaman teken from Tide Gauge	20
4.2.1	Graph Temperature for every stations 30 th April 2009and 7 th August 2009 during low and high tide	24
4.2.2	Graph Dissolved oxygen for every stations 30 th April 2009and 7 th August 2009 during low and high tide	26
4.2.3	Graph pH for every station on 30 th April 2009 and 7 th August 2009 during low and high tide.	28
4.2.4	Graph Salinity for every station on 30 th April 2009 and 7 th August 2009 during low and high tide.	30
4.2.5	Graph Turbidity for every station on 30 th April 2009 and 7 th August 2009 during low and high tide.	32
4.4.1	The Temperature at station 6 completed the tidal cycle in one day observation on 30 th April 2009 (i) and 8 th August 2009 (ii).	y 41
4.4.2	The Dissolved oxygen at station 6 completed the tidal cycle in one day observation on 30^{th} April 2009 (i) and 8^{th} August 2009 (ii).	e 39
4.4.3	The pH at station 6 completed the tidal cycle in one day observation on 30^{th} April 2009 (i) and 8^{th} August 2009 (ii).	y 43
4.4.4	The Salinity at station 6 completed the tidal cycle in one day observation on 30 th April 2009 (i) and 8 th August 2009 (ii).	y 45

- 4.4.5 The Turbidity at station 6 completed the tidal cycle in one day 47 observation on 30th April 2009 (i) and 8th August 2009 (ii).
- 4.5 (a) The current stick plot showing the current vectors at surface, mid 51 and bottom in station 1-12 on 30th April 2009 (High Tide). A stick pointing downward (perpendicular to time axis) indicates a southerly current. The Y-axis indicates value of flow in m/second.
- 4.5 (b) The current stick plot showing the current direction at surface (i), 52 middle (ii) and bottom (iii) in station 1-12 on 30th April 2009 (High Tide)
- 4.5 (c) The current stick plot showing the current vectors at surface, mid and bottom in station 1-12 on 30th April 2009 (Low Tide). A stick pointing downward (perpendicular to time axis) indicates a southerly current. The Y-axis indicates value of flow in m/second.
- 4.5 (d) The current stick plot showing the current direction at surface (i), 55 middle (ii) and bottom (iii) in station 1-12 on 30th April 2009 (Low Tide)
- 4.5 (e) The current stick plot showing the current vectors at surface, mid 57 and bottom in station 1-12 on 7th August 2009 (High Tide). A stick pointing downward (perpendicular to time axis) indicates a southerly current. The Y-axis indicates value of flow in m/second.
- 4.5 (f) The current stick plot showing the current direction at surface (i), 58 middle (ii) and bottom (iii) in station 1-12 on 7th August 2009 (High Tide)
- 4.5 (g) The current stick plot showing the current vectors at surface, mid and bottom in station 1-12 on 7th August 2009 (Low Tide). A stick pointing downward (perpendicular to time axis) indicates a southerly current. The Y-axis indicates value of flow in m/second.
- 4.5 (h) The current stick plot showing the current direction at surface (i), 61 middle (ii) and bottom (iii) in station 1-12 on 7th August 2009 (Low Tide)

ABBREVIATIONS

- ms⁻¹ : Meter per second
- m : Meter
- GPS : Global Positioning Systems
- NTU : Turbidity Units
- Ppt : Parts Per thousand
- M l⁻¹ : Miligram perliter
- DO : Dissolved Oxygen
- °C : Degree Celsius
- CO² : Carbon Dioxide

ABSTRAC

This study regarding the influences of tidal cycle to in-situ physico-chemical in tidal estuary was conducted at Chukai-kemaman river basin, Terengganu. Sampling was done twice at 12 stations on 30th April 2009 and 7th August 2009. During samplings has two high tides and two low tides occur each tidal day, the tide is semidiurnal. Several of parameter has significant changes affected by tidal cycle such dissolved oxygen, temperature, salinity, turbidity, current movement and current direction while pH was not affected. Even though, a few parameters has significant correlation between other parameters. For example, the temperature was high, the salinity and dissolved oxygen was low. Besides that, if salinity was high, the dissolved oxygen was low moreover, the salinity concentration influenced by tidal current. While, turbidity was high when the dissolved oxygen was low. Physico-chemical pamaters also affected by position and depth each station. The presented of tidal cycle every day would affected the parameters reading at Chukai-kemaman estuary.

ix

KESAN PASANG SURUT AIR KEPADA PAMETER IN-SITU FIZIKO-KIMIA DI MUARA CHUKAI-KEMAMAN, LEMBANGAN SUNGAI TERENGGANU

ABSTRAK

Kajian mengenai kesan pasang surut air kepada parameter fiziko-kimia secara *in-stu* telah dijalankan di muara Chukai-Kemaman, lembangan sungai Terengganu. Pengambilan sampel secara *in-situ* telah dijalankan 2 kali iatu pada 30/04.2009 dan 07/08/2009 pada 12 stesen yang berlainan. Terdapat 2 kali pasang tinggi dan 2 kali pasang rendah di muara sungai Cukai-Kemaman dimana ia menandakan bahawa di tempat berkenaan mengalami pasang surut 'semidiurnal'. Sesetengah parameter fiziko-kimia mengalami perubahan kesan kepada aktiviti pasang surut air seperti kandungan oksigen terlarut dam air, suhu, salinitI, kekeruhan air, pengerakan air dan halaju air. Manakala parameter seperti pH tidak mengalami perubahan secara langsung apabila terjadinya pasang surut air. Nemun demikian, ada juga parameter yang saling berkait antara satu dengan yang lain misalnya, peningkatan suhu akan menyebabkan kandungan garam dan oksigen terlarut dalam air akan menurun. Selain itu, peningkatan salinity akan meningkatkan pH air dan salinity dipengaruhi oleh halaju air kesan kepada pasang surut. Manakala, kekeruhan akan tinggi apabila kandungan oksigen terlarut rendah. Parameter fiziko-kimia r ini juga dipengaruhi oleh kedudukan dan kedalam setiap stesen yang berlainan. Kehadiran pasang surut yang berlaku setiap hari akan mempengaruhi setiap bacaan parameter di muara Chukai-kemaman.

х