DISTRIBUTION OF Ca AND Pb (DISSOLVED AND PARTICULATE) IN THE SOUTH CHINA SEA OFF DUNGUN-KEMAMAN COAST

RAJA AHMAD ZUHAIRI BIN RAJA OTHMAN

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2010

Jh: 8560

1100088955

Pusat Pembelajaran Digital Sultanah Nur Zahlrah (L Universiti Malaysia Terengganu,

1100088955

Distribution of Cd and Pb (Dissolved and Particulate) in the South China Sea off Dungun-Kemaman Coast / Raja Ahmad Zuhairi Raja Othman.

	110	0088	955	
* <u>2</u>				

HAK MILIK pusat penbelajaran digital sultanah nur zahirah

Distribution of Cd and Pb (Dissolved and Particulate) in the South China Sea off

Dungun-Kemaman Coast

By

Raja Ahmad Zuhairi Bin Raja Othman

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2010

This project report should be cited as:

Zuhairi, R.O. 2010. Distribution of Cd and Pb (Dissolved and Particulate) In The South China Sea Off Dungun-Kemaman Coast. Undergraduate thesis, Bachelor of Science in Marine Science, Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu, Terengganu. 60p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

St. Stram

1100088955

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE **UNIVERSITI MALAYSIA TERENGGANU**

DECLARATION AND VERIFICATION REPORT FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

Distribution of Cd and Pb (Dissolved and Particulate) in the South China Sea off Dungun-Kemaman Coast by Raja Ahmad Zuhairi Bin Raja Othman, Matric No. UK15880 have been examined and all errors identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, University Malaysia Terengganu.

Verified by:

No -

Principal Supervisor Name: PROF DR. NOOR AZHAR MOHAMED SHAZILI Official stamp: PROF. DR. NOOR AZHAR MOHAMED SHAZILI Timbalan Naib Canselor

(Akademik dan Antarabangsa)

21030 Kuala Terengganu

Universiti Malaysia Terengganu

Head of Department of Marine Science

Name: DR. RAZAK BIN ZAKARIYA

Official stamp:

DR. RAZAK ZAKARIYA Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu (UMT)

Date: 27 April 2010

25/4/10 Date: ..

ACKNOWLEDGMENT

Bismillahirrahmanirrahim,

First and foremost, I would like to thank the Most Gracious Allah for giving me His Bless to conduct and complete this project.

I would like to express my deep and sincere gratitude to my supervisor, Professor Dr. Noor Azhar Bin Mohamed Shazili, Deputy Vice Chancellor (Academic and Internationalization). His wide knowledge and logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

A special thank to PITA coordinator Dr. NorAntonina Bt Abdullah for giving her guide to complete this projects. A special thank also for master's students especially Kak Adiana, Kak Siti and Abang Fuad for helping me during my sampling and also to Mr. Joseph for their help and guide that give me the strength to go through this project.

Thank you to my family for their love and support during my education years. Especially my lovely parents, YM Mr. Raja Othman and Madam Razakiah who have bring me to all of this wonderful life.

Last but not least, I would like to extend again my sincere appreciation to all, thank you so much.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGMENT	ii
LIST	T OF TABLES	vi
LIST	T OF FIGURES	vii
LIST	OF ABBREVIATION	ix
LIST	COF APPENDICES	xi
ABS	TRACT	xii
ABS	TRAK	xiii
CHA	PTER 1: INTRODUCTION	
1.1	General	1
1.2	Objectives	3
CHA	PTER 2:LITERATURE REVIEW	
2.1	Dungun-Kemaman Coast	4
2.2	Heavy Metal and Trace Metal	6
	2.2.1 Particulate and Dissolved Heavy Metal	6
2.3	Individual Characteristic of Trace Metals Metal	7
	2.3.1 Cadmium (Cd)	7
	2.3.2 Lead (Pb)	8
2.4	Pollution and sources of trace metal	9
2.5	Previous studies	10

 $\hat{\mathbf{x}}$

CHAPTER 3: METHODOLOGY

3.1	Cleaning procedure	12
3.2	Research Locations	12
3.3	Sampling	15
3.4	Analysis of dissolved samples	16
	3.4.1 Preparation of reagent for extraction	16
	3.5.1a Preparation of APDC aqueous solution	16
	3.5.1b Preparation of HNO ₃ (2M) solution	16
	3.5.1c Preparation of NaOH (2M) aqueous solution	16
	3.4.2 Recovery test for metals	17
	3.4.3 Calibration curve for metals	17
	3.4.4 Solvent extraction for dissolved trace metals	17
3.5	Preconcentration factor of metals	18
3.6	Analysis of particulate samples	19

CHAPTER 4: RESULTS

4.1	Recovery Test (Dissolved)	20
4.2	Recovery Test (Particulate)	20
4.3	Dissolved Trace Metals	20
	4.3.1 Cadmium in surface seawater	20
	4.3.2 Cadmium in bottom seawater	23
	4.3.3 Lead in surface seawater	25
	4.3.4 Lead in bottom seawater	27
4.4	Particulate Trace Metals	29
	4.4.1 Cadmium in surface seawater	29

	4.4.2 Cadmium in bottom seawater	31	l
	4.4.3 Lead in surface seawater	33	3
	4.4.4 Lead in bottom seawater	35	5
4.5	Result Analysis	36	5

CHAPTER 5: DISCUSSION

5.1	Cadmium Distributions (Dissolved and Particulate)	39
5.2	Lead Distributions (Dissolved and Particulate)	42
5.3	Result Camparison	43

CHAPTER 6: CONCLUSION AND RECOMMENDATION 46

REFERENCES	48
APPENDICES	51
CURICULUM VITAE	60

LIST OF TABLES

Table		Page
2.1	Types and Products of Industries in Dungun-Kemaman Corridor	5
2.2	The status of trace metals in previous study	10
2.3	Heavy metal concentration before and after Tsunami	11
2.4	Stastics results of metals concentrations in water of the Nerus River	11
3.1	Coordinate of sampling sites in South China Sea off Dungun- Kemaman Coast	14
4.1	Concentration of dissolved Cd $(\mu g L^{-1})$ in surface layer with replicates samples	21
4.2	Concentration of dissolved Cd $(\mu g L^{-1})$ in bottom layer with replicates samples	23
4.3	Concentration of dissolved Pb $(\mu g L^{-1})$ in surface layer with replicates samples	25
4.4	Concentration of dissolved Pb $(\mu g L^{-1})$ in bottom water with replicates samples	27
4.5	Concentration of particulate Cd (μgg^{-1}) in surface layer with replicates samples	29
4.6	Concentration of particulate Cd (μgg^{-1}) in bottom layer with replicates samples	31
4.7	Concentration of particulate Pb (μgg^{-1}) in surface layer with replicates samples	33
4.8	Concentration of particulate Pb (μgg^{-1}) in bottom layer with replicates samples	35
5.1	Comparison between concentrations of Cd and Pb with INWQS classification	43

LIST OF FIGURES

Figure		Page
3.1	Locations of sampling stations in the South China Sea (Dungun- Kemaman Waters)	13
4.1	Concentration of dissolved Cd $(\mu g L^{-1})$ in surface layer with replicates samples	22
4.2	Concentration of dissolved Cd $(\mu g L^{-1})$ in bottom layer with replicates samples	24
4.3	Concentration of dissolved Pb $(\mu g L^{-1})$ in surface layer with replicates samples	26
4.4	Concentration of dissolved Pb $(\mu g L^{-1})$ in bottom layer with replicates samples	28
4.5	Concentration of particulate Cd (μgg^{-1}) in surface layer with replicates samples	30
4.6	Concentration of particulate Cd (μgg^{-1}) in bottom layer with replicates samples	32
4.7	Concentration of particulate Pb (μgg^{-1}) in surface layer with replicates samples	34
4.8	Concentration of particulate Pb (μgg^{-1}) in surface layer with replicates samples	36
4.9	Concentration of Cadmium (dissolved) in surface and bottom	37
4.10	layer Concentration of Lead (dissolved) in surface and bottom layer	37
4.11	Concentration of cadmium (particulate) in surface and bottom layer	38
4.12	Concentration of lead (particulate) in surface and bottom layer	38
5.1	Relationship between cadmium and lead concentration in dissolve fraction	44
5.2	Relationship between cadmium and lead concentration in particulate fraction	44

- 5.3 Relationship between dissolved and particulate for cadmium 45 concentration
- 5.4 Relationship between dissolved and particulate for lead 45 concentration

LIST OF ABBREVIATIONS

Ag	-	Argentum
ANOVA	-	Analysis of Varians
APDC	-	Ammonia pyrrolidine dithiocarbamate
APHA	-	American Public Health Association
As	-	Arsenic
Au	-	Aureum
Be	-	Berium
Cd	-	Cadmium
Cs	1 0	Cesium
DHFS	-	Department of Health and Family Services
EPA	÷	Environmental Protection Agency
GFAAS	-	Graphite Furnace Atomic Absorption Spectrometry
GPS	-	Global Positioning System
HCl	-	Hydrocloric Acid
Hg	*	Mercury
HNO ₃	-	Nitric Acid
HF	-	Hydroflouric Acid
ICP-OES	-	Inductively Couple Plasma-Optical Emission Spectrometer
INWQS	-	Malaysia Interim National Water Quality Standard
Li	-	Lithium
MIBK	-	Methyl isobutyl ketone
µgg ⁻¹		microgram per gram
μgL ⁻¹	-	microgram per liter
Pb	-	Lead

PTFE	(-)	Polytetrafloroethlene
Sg.	-	River (Sungai)
Sn	-	Tin
Sr	-	Strontium

LIST OF APPENDICES

÷.

Appendix

1	Malaysia Interim National Water Quality Standard	51
2	Two-factor ANOVA with replication for dissolved cadmium (surface)	52
3	Two-factor ANOVA with replication for dissolved Cadmium (bottom)	53
4	Two-factor ANOVA with replication for dissolved Lead (surface)	54
5	Two-factor ANOVA with replication for dissolved Lead (bottom)	55
6	Two-factor ANOVA with replication for particulate cadmium (surface)	56
7	Two-factor ANOVA with replication for particulate cadmium (bottom)	57
8	Two-factor ANOVA with replication for particulate lead (surface)	58
9	Two-factor ANOVA with replication for particulate lead (bottom)	59

ABSTRACT

Dungun-Kemaman Coast is located in east of Peninsular Malaysia where surrounded with human activities and industrial. The area of this study also influenced by the water inlet from South China Sea Ocean and from the major River of Terengganu Terengganu River, Dungun River, Kemaman River, Paka River and other small rivers. There have 12 stations that have been detect the concentration of Cd and Pb in dissolved and particulate fraction. On the other hand, the objective of this study is to determine the status of Cd and Pb concentrations according to Malaysia Interim National Water Quality Standards (INWQS). The particulate samples were separated from water by using 0.45 µm pore size PTFE filter paper. Water (filtered) samples were subjected to APDC-MIBK pre-concentration and particulate samples were totally digested by using strong acids. Cd and Pb were analyzed using GFAAS and ICP-OES. The range of cadmium concentrations (dissolved) in Dungun-Kemaman Coast is as follow: Dungun $(0.031-0.132 \mu g L^{-1})$, Paka $(0.020-0.909 \mu g L^{-1})$, Kerteh $(0.026-0.065\mu gL^{-1})$ and Kemaman $(0.015-0.271\mu gL^{-1})$. Meanwhile, the lead concentrations were Dungun $(0.038-0.508\mu gL^{-1})$, Paka $(0.095-1.174\mu gL^{-1})$, Kerteh $(0.036-0.358\mu gL^{-1})$ and Kemaman $(0.041-0.360\mu gL^{-1})$. According to the INWQS, these concentrations in Dungun-Kemaman coast are classified in Class I (Natural level). In addition, for cadmium particulate fraction in Dungun-Kemaman Coast is as follow: Dungun (26.45-267.51µgg⁻¹), Paka (32.92-202.03µgg⁻¹), Kerteh (17.11-143.34µgg⁻¹) and Kemaman (11.34-71.82µgg⁻¹). Meanwhile, the lead concentrations were Dungun (9.16-110.70µgg⁻¹), Paka (19.42-30.85µgg⁻¹), Kerteh (17.08-65.99 µgg⁻¹) ¹) and Kemaman (15.52-34.98µgg⁻¹).

TABURAN KADMIUM DAN PLUMBUM (TERLARUT DAN PARTIKULAT) DI LAUT CHINA SELATAN BERDEKATAN PANTAI DUNGUN-KEMAMAN

ABSTRAK

Pantai Dungun-Kemaman terletak di timur Semenanjung Malaysia dimana dikelilingi dengan aktiviti manusia dan industri. Kawasan kajian ini juga dipengaruhi oleh aliran dari Laut China Selatan dan daripada sungai utama di Terengganu seperti Sg. Terengganu, Sg. Dungun, Sg. Kemaman, Sg. Paka dan sungai-sungai kecil. Terdapat 12 stesen yang dipilih untuk mengesan kepekatan Cd dan Pb dalam bentuk terlarut dan partikulat. Selain itu, objektif lain bagi kajian ini adalah untuk menentukan status kepekatan Cd dan Pb mengikut Piawaian Interim Kualiti Air Kebangsaan (INWQS). Sampel partikulat dipisahkan dengan menggunakan kertas turas PTFE 0.45µm. Sampel air yang telah ditapis akan diekstrak menggunakan APDC-MIBK prakepekatan dan sampel partikulat dicernakan menggunakan asid kuat dan dianalisis dengan menggunakan GFAAS dan ICP-OES. Julat kepekatan kadmium (terlarut) di kawasan kajian adalah sebagai berikut:Dungun(0.031-0.132µgL⁻¹), Paka(0.020- $0.909\mu gL^{-1}$), Kerteh $(0.026-0.065\mu gL^{-1})$ dan Kemaman $(0.015-0.271\mu gL^{-1})$. Manakala, kepekatan plumbum adalah Dungun(0,038-0.508µgL⁻¹), Paka(0,095-1.174µgL⁻¹), Kerteh $(0,036-0.358\mu g L^{-1})$ dan Kemaman $(0,041-0.360\mu g L^{-1})$. Menurut INWQS, kepekatan Cd dan Pb di Pantai Dungun-Kemaman dikelaskan dalam Kelas I (peringkat semulajadi). Selain itu, kadmium partikulat di Pantai Dungun-Kemaman berikut:Dungun($26.45-267.51\mu gg^{-1}$), Paka($32.92-202.03\mu gg^{-1}$), adalah sebagai Kerteh(17.11-143.34 μgg^{-1}) dan Kemaman (11.34-71.82 μgg^{-1}). Sementara itu, kepekatan Pb adalah seperti berikut Dungun(9.16-110.70µgg⁻¹), Paka(19.42-30.85µgg-1), Kerteh(17.08-65.99µgg⁻¹) dan Kemaman (15.52-34.98 µgg⁻¹).