TOTAL SUSPENDED SOLID (TSS) MONITORING IN BIDONG ISLAND BY USING REMOTE SENSING

DESSY DIRA BINTI KAIS

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2011

Total suspended solid (TSS) monitoring in Bidong Island by using remote sensing / Dessy Dira Kais.

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UNIT) 2000 KUALA TERENGGANU

Lihet sebelah

TOTAL SUSPENDED SOLID (TSS) MONITORING IN BIDONG ISLAND BY USING REMOTE SENSING

By

Dessy Dira Binti Kais

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science
Faculty of Maritime Studies and Marine Science
UNIVERSITI MALAYSIA TERENGGANU
2011

This project report should be cited as:

Dessy D.K. 2011 Total Suspended Solid (TSS) monitoring in Bidong Island by using remote sensing. Undergraduate thesis, Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu. 68P

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be sorted in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor of the project.

DEPARTMENT OF MARINE SCIENCE

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION REPORT

FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

Total Suspended Solid (TSS) Monitoring In Bidong Island By Using Remote Sensing by Dessy Dira Binti Kais, Matric No. UK 18224 have been examined and all errors identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree on Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Verified by:	
Principal Supervisor	
Name:	
Official stamp:	Date:
Second Supervisor (where applicable)	
Name:	
Official stamp:	Date:
Head of Department of Marine Science	
Name: Dr. Razak bin Zakariya	
Official stamp:	Date: 21/H/11

DR. RAZAK ZAKARIYA ketua Jabatan Sains Marin Fakulti Pengajian Meritim dan Sains Marin Univer_iti Malaysia Terenggenu

ACKNOWLEDGEMENTS

First of all, I would like to thanks God because give me strength to finish this project starting from proposal writing, sampling until this thesis is produced. I also would like to thanks my family especially my parents, Kais Bin Una and Sofiah Binti Gaun, for giving me full and continuous support for me to ensure that this project is done. They always advised me to be a good person, I must have strong determination in everything that I want to do.

Then, I would like to thanks my supervisor, Dr Razak Zakariya for his effort to guide and give the best way to make sure that this project is done well. Not forgotten, all the master students, laboratory assistants either in Oceanography Laboratory or Remote Sensing Laboratory, practical students from UiTM Arau especially to Mohd Norhafizi Bin Rusli, Al-Emran Bin Zolkepli and Jumaeiza Binti Mohd and also UTM student.

I want to say thank you to all of my friends that help me during sampling and lab analysis. I admit that there are lots of the obstacles and problems that I need to face in finishing this project and without their help, I think it is impossible for me to produce this thesis. It is a pleasure for me to thank those who made this thesis possible.

TABLE OF CONTENTS	Page
ACKNOWLEDMENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF ABBREVIATIONS	vii
LIST OF APPENDICES	viii
ABSTRACT	ix
ABSTRAK	Х
CHAPTER 1: INTRODUCTION	
1.1 Introduction	1
1.2 Objectives of the study	2
1.3 Justification	2
CHAPTER 2: LITERATURE REVIEW	
2.1 Total Suspended Solid (TSS)	3
2.2 TSS and Water Quality	5
2.3 TSS and Water Color	6
2.4 Remote Sensing	7
2.5 QuickBird Satellite	8
2.6 TSS Monitoring by using Remote Sensing	11
CHAPTER 3: METHODOLOGY	
3.1 Study site	12
3.2 General Methodology	14
3.3 Material	15
3.4 Field Work Methodology	16
3.5 Laboratory Methodology	16
3.6 Remote Sensing Methodology	17
3.6.1 Geometric Correction	18

3.6.2 Atmospheric Correction	19
3.6.3 Image Masking	19
3.6.4 Accuracy Assessment	20
CHAPTER 4: RESULTS	
4.1 TSS results for first sampling	22
4.2 TSS results for second sampling	26
4.3 Geometric correction	30
4.4 Atmospheric correction	30
4.5 Image masking	31
4.6 Regression analysis	32
4.7 Accuracy assessment	35
CHAPTER 5: DISCUSSION	
5.1 TSS for first sampling	38
5.2 TSS for second sampling	38
5.3 TSS in-situ measurement	39
5.4 Spatial distribution of TSS	42
5.5 Accuracy Assessment of TSS	43
CHAPTER & CONCLUCION	
CHAPTER 6: CONCLUSION	44
REFERENCES	45
APPENDICES	48
CURRICULUMVITAE	68

LIST OF TABLES

Table		Page
2.1	QuickBird Satellite Sensor Specification	9
2.2	QuickBird Satellite Sensor Characteristic	10
4.1	The points used to produce regression model	32
4.2	TSS accuracy assessment	35

LIST OF FIGURES

Figures		Page
3.1	The map of Peninsular Malaysia	12
3.2	Bidong Island and transects for sampling	12
3.3	Flow diagram of general methodology	14
3.4	Flow chart of field work methodology	16
3.5	Flow chart of remote sensing procedure	18
3.6	Raw image of QuickBird 2007	21
4.1.1	Concentration of TSS (mg/L) for Transect 1	22
4.1.2	Concentration of TSS (mg/L) for Transect 2	22
4.1.3	Concentration of TSS (mg/L) for Transect 3	23
4.1.4	Concentration of TSS (mg/L) for Transect 4	23
4.1.5	Concentration of TSS (mg/L) for Transect 5	24
4.1.6	Concentration of TSS (mg/L) for Transect 6	24
4.1.7	Concentration of TSS (mg/L) for Transect 7	25
4.1.8	Concentration of TSS (mg/L) for Transect 8	25
4.2.1	Concentration of TSS (mg/L) for Transect 1	26
4.2.2	Concentration of TSS (mg/L) for Transect 2	26
4.2.3	Concentration of TSS (mg/L) for Transect 3	27
4.2.4	Concentration of TSS (mg/L) for Transect 4	27
4.2.5	Concentration of TSS (mg/L) for Transect 5	28
4.2.6	Concentration of TSS (mg/L) for Transect 6	28

4.2.7	Concentration of TSS (mg/L) for Transect 7	29
4.2.8	Concentration of TSS (mg/L) for Transect 8	29
4.3	The image after atmospheric correction	30
4.4	The image after masking	31
4.5	The correlation between concentration of TSS (mg/L) with reflectance	33
4.6	The final map of TSS	34
4.7	Comparison of predicted and measured TSS	36
4.8	Correlation between the predicted TSS and measured TSS	37

LIST OF ABBREVIATIONS

TSS - Total Suspended Solid

mg - milligram

L - Litre

mL - millilitre

m - Meter

^oC - degree Celsius

LIST OF APPENDICES

Appendix		Page
Α	The Coordinate for First Sampling	48
В	The Coordinate for First Sampling	50
C	The Concentration of TSS for First Sampling	52
D	The Concentration of TSS for Second Sampling	57
E	Raw Image of Quickbird 2007	62
F	The Image after Atmospheric Correction	63
G	The Image after Land & Cloud Masking	64
Н	The regression analysis graph	65
I	The Final Map	66
J	The Accuracy Assessment Results	67

ABSTRACT

This study was conducted in Bidong Island. There are two times of sampling. The first sampling was done in March 2010 while the second sampling was done in July 2010. There are 32 stations that set up in this study. The 32 stations are covered the whole Bidong Island. The water samples were collected by using Niskin water sampler according to the depth of each station. Then, the water samples were filtered and the filter papers were kept in ice box as the preservation step. Then, filter papers were dried and weighted. The TSS formula was applied to calculate the concentration of TSS. The image that has been used in this study is QuickBird satellite image that was captured in 2007. The images are corrected and analysed. There are lots of differences of TSS data for the first and second sampling. The TSS concentrations are affected by many factors such as land runoff, domestic wastes and so on.

Pemantauan Jumlah Pepejal Terampai di Pulau Bidong dengan menggunakan kaedah

Penderiaan Jauh

ABSTRAK

Kajian ini telah dijalankan di Pulau Bidong sebanyak dua kali. Kali pertama adalah pada bulan Mac 2010 dan yang kedua pula adalah pada bulan Julai 2010. Terdapat 32 stesyen yang telah ditetapkan untuk kajian ini. Di mana, kesemua stesyen ini merangkumi keseluruhan kawasan Pulau Bidong. Sampel air diambil dengan menggunakan Penyampel air "Niskin" mengikut kedalaman air setiap stesyen. Kemudian, sampel air ditapis dan kertas turas akan disimpan di dalam bekas ais sebagai langkah pengawetan. Seterusnya, kertas turas akan dikeringkan dan ditimbang. Kepekatan TSS dikira dengan menggunakan formula TSS. Imej satelit yang digunakan dalam kajian ini adalah imej QuickBird tahun 2007. Imej tersebut diperbetulkan dan dianalisa. Terdapat perbezaan yang dapat diperhatikan pada data TSS untuk kajian kali pertama dan kali kedua. Kepekatan TSS dipengaruhi oleh pelbagai faktor seperti limpasan tanah, bahan buangan domestik dan lain-lain lagi.