MASITAF BINT MUSLIM

1100090218

Pusat Pembelajaran Digital Sutanen Yur Zahnan Yu Universita Malaysia Torongenu.

1100090218

Optimization of protein enzymatic hydrolysis of blood cockle (Anadara granosa) / Masitah Muslim.

 110		NIC	
	0000		
	~		

HAK MILIK							
PUSAI	PEMBELAJARAN	DICITAL	SULTANAH	NUR	ZAHIRAH		

OPTIMIZATION OF PROTEIN ENZYMATIC HYDROLYSIS OF BLOOD COCKLE (Anadara granosa)

By Masitah Binti Muslim

Research Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Food Science (Food Technology)

਼ੁ

4

DEPARTMENT OF FOOD SCIENCE FACULTY OF AGROTECHNOLOGY AND FOOD SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2011

ENDORSEMENT

To project report entitled **Optimization of Protein Enzymatic Hydrolysis of Bood Cockle (Anadara granosa)** by **Masitah Binti Muslim, UK 17033** has been reviewed and corrections have been made according to the recommendations by examiners. This report is submitted to the Department of Food Science in partial fulfilment of the requirement of the degree of Food Science (Food Technology), Faculty of Agrotechnology and Food Science, University Malaysia Terengganu.

and

ASSOC. PROF DR. AMIZA BINTI MAT AMIN

Main supervisor

-Stamp-PROF. MADYA DR. AMIZA MAT AMIN Tembaran Dekan Hill Engel

Date: 8/2/12

DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledge

Signature

Matric No

GQ-

Name

: UK17033 9/2/12

: Masitah Binti Muslim

Date

ii

ACKNOWLEDGEMENT

In the name of Allah, the most gracious and the most merciful. Firstly, I gratefully to Allah because strengthened my spirit to continue this project regardless of the hardship.

I would like to give my deepest appreciation to my supervisor and also our head department, Associate Professor Dr. Amiza Binti Mat Amin for her invaluable knowledge advice, continues supervision and guidance, her kindness and willingness to help throughout the course of this study. Thanks for her dynamic help, support and encouragement with golden advices throughout very much to face in much kind of challenges throughout this study.

I also forward my special thanks to all lab assistants in the Chemical Analysis Laboratory (MAK), Food Science Laboratory (MSM), Food Preparation Laboratory (MTKM), and Food Service Laboratory (MPM) for their valuable help.

Finally, special thanks are also extended to all my members in Food Science Course and all members in University Malaysia Terengganu for their support and advice in strengthen my spirit to finish my project research.

Thank you.

TABLE OF CONTENT

	ORSEM LARAT		i ii	
ACK	NOLED	GEMENT	iii	
ABS	FRACT		iv	
ABS	ΓRAK	45	v	
LIST	OF TA	BLE	vii-ix	
LIST	OF FIC	GURE	х	
LIST	OF AB	BREVATIONS	xi	
СНА	PTER 1	INTRODUCTION		
1.1		rch Background	1	
1.2	Proble	m statement	3	
1.3	Signif	icance of Study	3	
1.4	Object	tives	4	
СНА	PTER 2	LITERATURE REVIEW		
2.1	Blood	Cockle (Anadara granosa)	5	
	2.1.2	Commercial use of blood cockle	6	
2.2	Enzyn	Enzymatic Hydrolysis of Protein		
	2.2.1	Factors affecting enzymatic hydrolysis of protein	8	
		2.2.1.1 Type of Proteinase	9	
		2.2.1.2 pH	11	
		2.2.1.3 Temperature	11	
		2.2.1.4 Hydrolysis time	12	
	2.2.2	Degree of hydrolysis (DH)	12	
	2.2.3	Optimum condition for enzymatic hydrolysis based on previous study	14	
2.3	Protei	Protein Hydrolysate (PH)		
	2.3.1	Preparation of PH	17	
	2.3.2	Application of PH	18	
	2.3.3	Previous study on seafood protein hydrolysate (SPH)	18	
		2.3.3.1 Proximate analysis of SPH based on previous study	19	
2.4	Optimization Study		20	
	2.4.1	Introduction	20	
	2.4.2	Response Surface Methodology	21	
		2.4.2.1 Two-level Fractional Factorial Design	22	
		2.4.2.2 Central Composite Design	23	
		2.4.2.3 The sequential nature of RSM	25	

CHAF	PTER 3	MATERIALS AND METHOD
3.1	Materi	als
3.2	Metho	ds
	3.2.1	Preparation of raw materials
	3.2.2	Experimental Design
	3.2.3	Preparation of cockle hydrolysate powder
	3.2.4	Determination of Degree of hydrolysis DH in
		protein hydrolysate

3.2.5	Determination of proximate analysis	35
	3.2.5.1 Determination of moisture content	35
	3.2.5.2 Determination of ash	36
	3.2.5.3 Determination of fat	36
	3.2.5.4 Determination of protein	37
	3.2.5.5 Determination of carbohydrate	39
3.2.6	Recovery	39
3.2.7	Determination of Heavy metals composition by AAS	40

40

3.3 Statistical Analysis

CHAPTER 4 RESULT AND DISCUSSION

4.1	Experimental data		
4.2	2 Analysis for degree of hydrolysis		
	4.2.1 Model adequacy checking for degree of hydrolysis	43	
	4.2.2 Analysis of variance (ANOVA) for degree of hydrolysis	44	
	4.2.3 Coefficient variation for degree of hydrolysis	48	
	4.2.4 Diagnostic case statistics for degree of hydrolysis	49	
	4.2.5 Response surface plots and the effects of factors for	52	
	degree of hydrolysis response		
4.3	Optimization for degree of hydrolysis of blood cockle	53	
	4.3.1 Conditions for optimum response	53	
	4.3.2 Maximum degree of hydrolysis	54	
4.4	Proximate compositions of cockle mixture and cockle	56	
	hydrolysate powder		
4.5	Heavy metals compositions from cockle and its hydrolysate powder	59	
CHA	PTER 5 CONCLUSION AND DISCUSSION		
5.1	Conclusion	61	
5.2	Suggestion for further study	61	
REFF	ERENCES	63	
APPE	ENDICES	71	
CUR	ICULUM VITAE	84	

ABSTRACT

The objective of this study is to establish the optimum hydrolysis conditions for blood cockle cockles (*Anadara granosa*) using Alcalase® by employing response surface methodology (RSM). A three-level face-centered central composite design (CCD) was adapted in the study. The effects of temperature, enzyme to substrate level (E/S %) and hydrolysis time were studied in order to obtain the maximum degree hydrolysis (DH %). The optimal condition for protein enzymatic hydrolysis of cockle were found to be at 65°C for temperature, pH at 9.5 enzyme concentration at 2% and hydrolysis time of 180 minutes. The maximum DH obtained was 37.27%, meanwhile the predicted values for maximum DH was 34.04% for cockle hydrolysis. The enzymatic hydrolysis of cockles gave a quadratic fit with the experimental data. The proximate composition of the lyophilized cockle hydrolysate contained 8.59% moisture, 74.00% protein content, 5.80% fat, 10.22% ash and 1.39% carbohydrate.

ABSTRAK

Objektif kajian ini ialah untuk menentukan keadaan optimum untuk hidrolisis kerang darah (*Anadara granosa*) menggunakan Alcalase® dengan menggunapakai *response surface methodhology* (RSM). Rekabentuk *face-centered central composite design* (*CCD*)dengan tiga tahap bagi setiap faktor telah digunakan. Kesan suhu (T), kepekatan enzim (E/S %), pH dan masa untuk hidrolisis (t) telah dikaji untuk mendapatkan darjah hidrolisis yang optimum. Keadaan optimum untuk hidrolisis protein menggunakan enzim Alcalase® daripada kerang didapati berada pada suhu 65°C, pH pada 9.5, kepekatan enzim pada 2% dan 180 minit masa hidrolisis. Nilai maksimum untuk degree hidrolisis yang diperolehi adalah 37.27 %, manakala nilai ramalan untuk hasil maksimum adalah sebanyak 34.04%. Hidrolisis berenzim kerang memberikan padanan kuadratik dengan data eksperimen. Komposisi proksimat kerang hidrolisat kering sejukbeku terdiri daripada adalah 8.59% air, 74.00% protein , 5.80% lemak, 10.22% abu dan 1.39% karbohidrat.