STUDY ON BEACH PROFILE AND SEDIMENT DISTRIBUTION OF BIDONG ISLAND

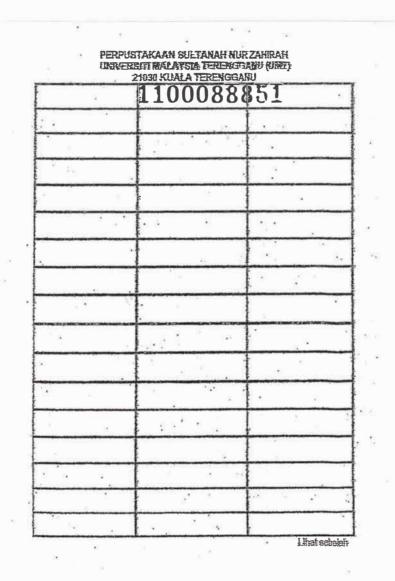
PRISCILLA PUYANG MAXWILL

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2011

CAN: 8606

1100088851


Perpustakaan Sultanah Nur Zahirah Universiti Malavsia Terengganu (UMT)

1100088851

Study on beach profile and sediment distribution of Bidong Island / Priscilla Puyang Maxwill.

HAK MILIK PERPUSTARAAN SULTANAH NUR ZAHIRAH UNT

STUDY ON BEACH PROFILE AND SEDIMENT DISTRIBUTION OF BIDONG ISLAND

4

.

By Priscilla Puyang Maxwill

Research Proposal submitted in partial fulfilment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2011

This project report should be cited as:

Puyang, P. M. 2011. Study on Beach Profile and Sediment Distribution of Bidong Island. Undegraduate Thesis, Bachelor of Science (Marine Science), Faculty of Maritime studies and Marine Science, Universiti Malaysia Terengganu, Terengganu 87p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

22

EN2M

DECLARATION AND VERIFICATION REPORT FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

Study on Beach Profile and Sediment Distribution of Bidong Island by Priscilla Puyang Maxwill, Matric No. UK18230 have been examined and all error identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtained the Degree of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Verified by:

..... **Principal Supervisor**

Official Stamp:

PROF. MADYA DR. ROSNAN YAACOB Pensyarah Name: Assoc. Prof. Dr. Rosman Marin Sains Marin Universiti Malaysia Terengganu (UMT) 21030 Kuala Terenggan

Date: 29/4/11

Second Supervisor

Official Stamp:

DR. ANTONINA ABDULLAH Lecturer Name: Dr. Nor Antonina Binti Aperuty of Marine Science Faculty of Marine Studies and Marine Science Universiti Malaysia Terengganu (UMT) 21030 Kuala Terengga-d.

Date: 27/4/11

Head of Department of Marine Science

Name: Dr. Razak Bin Zakariya

Official Stamp:

DR. RAZAK ZAKARIYA Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Univerciti Malaysia Terengganu (UMT)

21/V/II

ACKNOWLEDGEMENT

First of all I would like to thanks Assoc. Prof. Dr. Rosnan Bin Yaacob for giving me the opportunity to carry out this project. Not to forget his guidance and advises from the very beginning are very much appreciated. Along this bitter sweet journey in carrying out this project, I have learnt a lot about self independent and discipline in finishing this project.

Secondly, I would like to address my deepest gratitude to Mr. Effi Helmy, Mr. Zaini Mustafa, and Miss Nur Aishah for their full guidance, time, advises, and all the sweet and sour memories along the period of this project been carried. I would not be able to finish this project without their ideas and information.

To Mr. Yuzwan, thank you so much for helping me in my samplings and teaching me using the softwares. Not to forget my friends especially Siti, Sha, Iz, Ema, Lan, Jemba, Akma, Wani, Pijie, Imran and others who have helped me in carrying out this task, thanks a lot for your co-operations, hard work and spirit. Best wishes to you guys especially in your project and future.

Last but not least, to Mr. Maxwill and Mdm. Corry who are my great and supportive parents, thank you for your spirits, advises, and understandings all this while. Thanks again for always been there for me no matter in ups and downs.

TABLE OF CONTENTS

			Page
ACK	NOWL	EDGEMENT	i
LIST	OF TA	BLES	vi
LIST	OF FI	GURES	viii
LIST	OF AB	BREVIATIONS	x
LIST	OF AP	PENDICES	x
ABST	RACT		xi
ABST	RAK		xii
1.0	INTR	ODUCTION	1
	1.1	Justification	4
	1.2	Objective	5
2.0	LITE	RATURE REVIEW	
	2.1	Coastal Studies	6
	2.2	Beach Profile	6
		2.2.1 Leveling	7
	2.3	Factors of Geological Effect	8
		2.3.1 Sediment Transportation and Net Shore Drift (NSD)	8
		2.3.2 Energy and Processes on Coastal	10

		2.3.3 Monsoon	11
		2.3.4 Winds, Waves and Tides	12
	2.4	Sediment Standards	13
3.0	METI	HODOLOGY	
	3.1	Study Area	14
		3.1.1 Sampling Location	17
	3.2	Leveling	18
	3.3	Beach Profile Data Collection	20
	3.4	Sediment Sampling	21
	3.5	Littoral Environment Observation (LEO)	22
	3.6	Dry Sieving Method	22
	3.7	Grain Size Analysis	23
		3.7.1 Mean	23
		3.7.2 Standard Deviation	24
		3.7.3 Skewness	25
		3.7.4 Kurtosis	25
	3.8	Net Shore Drift (NSD)	26
4.0	RESU	JLT	
	4.1	Physical Parameter	28
		4.1.1 Rain Distribution	28
		4.1.2 Wind	29
		4.1.3 Water Level	31

	4.2	Grain	Size Analysis	32
		4.2.1	Mean	32
		4.2.2	Standard Deviation	37
		4.2.3	Skewness	42
		4.2.4	Kurtosis	46
	4.3	Beach	Profile	51
	4.4	Net Sł	ore Drift (NSD)	59
		4.4.1	Distribution of Sediment Size	59
			4.4.1.1 Mean	60
			4.4.1.2 Sorting	62
		4.4.2	Beach Slope	64
5.0	DISC	USSIO	N	66
	5.1	Grain	Size Analysis	66
		5.1.1	Mean	66
		5.1.2	Standard Deviation	68
		5.1.3	Skewness	70
		5.1.4	Kurtosis	72
	5.2	Beach	Profile	74
	5.3	Net SI	ore Drift (NSD)	77
		5.3.1	Distribution of Sediment Size	77
			5.3.1.1 Mean	77
			5.3.1.2 Sorting	79
	5.4	Beach	Slope	80

6.0 CONCLUSION	81
REFERENCES	83
APPENDIX	86
CURRICULUM VITAE	87

LIST OF TABLES

		Page
Table 3.1	Transect points location at Station I	17
Table 3.2	Transect points location at Station II	17
Table 3.3	Transect points location at Station III	18
Table 4.1	Summary of Rainfall in Kuala Terengganu (2010)	29
Table 4.2	Average of wind velocity in Kuala Terengganu (2010)	30
Table 4.3	Tidal Range in Kuala Terengganu (2010)	31
Table 4.4	Average of Mean Size (ø) for Station I	34
Table 4.5	Average of Mean Size (ø) for Station II	35
Table 4.6	Average of Mean Size (ø) for Station III	36
Table 4.7	Average of Sorting Size (ø) for Station I	39
Table 4.8	Average of Sorting Size (ø) for Station II	40
Table 4.9	Average of Sorting Size (ø) for Station III	41
Table 4.10	Average of Skewness Size for Station I	43
Table 4.11	Average of Skewness Size for Station II	44
Table 4.12	Average of Skewness Size for Station III	45
Table 4.13	Average of Kurtosis Size (ø) for Station I	48
Table 4.14	Average of Kurtosis Size (ø) for Station II	49
Table 4.15	Average of Kurtosis Size (ø) for Station III	50
Table 4.16	Mean value (ø) at mid tide water level (MT) at Station I	61

Table 4.17	Mean value (ø) at mid tide water level (MT) at Station II	61
Table 4.18	Mean value (ø) at mid tide water level (MT) at Station III	61
Table 4.19	Sorting value (ø) at mid tide water level (MT) at Station I	63
Table 4.20	Sorting value (ø) at mid tide water level (MT) at Station II	63
Table 4.21	Sorting value (ø) at mid tide water level (MT) at Station III	63
Table 4.22	Beach Slope Degree (°) for Station I (negative values)	65
Table 4.23	Beach Slope Degree (°) for Station II (negative values)	65
Table 4.24	Beach Slope Degree (°) for Station III (negative values)	65

LIST OF FIGURES

Figure		
2.1	Beach profile structure	7
2.2	Net Shore Drift (NSD)	9
3.1	Map of the study area	15
3.2	Transect points in Station I (Vietnam Beach)	16
3.3	Transect points in Station II (UMT Research Station Beach)	16
3.4	Transect points in Station III (Teluk Belanga Beach)	16
3.5	Setting up a transit using leveling method	19
3.6	Calculation formula for beach slope	21
4.1	Mean value for Station I	34
4.2	Mean value for Station II	35
4.3	Mean value for Station III	36
4.4	Sorting value for Station I	39
4.5	Sorting value for Station II	40
4.6	Sorting value for Station III	41
4.7	Skewness value for Station I	43
4.8	Skewness value for Station II	44
4.9	Skewness value for Station III	45
4.10	Kurtosis value for Station I	48

4.11	Kurtosis value for Station II	49
4.12	Kurtosis value for Station III	50
4.13	Beach Profile of Station I	53
4.14	3D image of Station I (Vietnam Beach)	54
4.15	Beach Profile of Station II	55
4.16	3D image of Station II (UMT Research Station Beach)	56
4.17	Beach Profile of Station III	57
4.18	3D image of Station III (Teluk Belanga Beach)	58
5.1	(a) (b) The distribution of Mean value in March and July 2010	67
	(c) Location of Karah Island and wind direction	67
5.2	(a) (b) The distribution of Sorting value in March and July 2010	69
	(c) Location of Karah Island and wind direction	69
5.3	The distribution of Sorting value in March and July 2010	71
5.4	The distribution of Kurtosis value in March and July 2010	73
5.5	Wind rose diagram (blowing to) for Terengganu (January to August 2010)	76
5.6	Geographical location of stations on Bidong Island and direction of NSD	78
5.7	Average of mean at mid tide	78
5.8	Average of sorting at mid tide	78
5.9	Beach slope for all stations	80

LIST OF ABBREVIATIONS

Abbreviation

g	-:	gram
m	-	meter
mm	-	millimeter
m/s	-	meter per second
μm	-	micrometer
St.	-	station
NSD	-	Net Shore Drift

LIST OF APPENDIX

Appendix		
1	Sediment Characteristics Classification	86

ABSTRACT

Study on beach profile changes and sediment distribution was conducted in Bidong Island off the coast of Terengganu in the South China Sea. The study was carried out on March and July 2010 in order to determine the recent beach slope and sediment characteristics and their relationship. Sampling was done in three different stations with total 20 transects points with 50 m interval between each transect. Total station TOPCON GPT-3000 had been used to measure beach profile. Meanwhile, moment method was used to calculate the sedimentological parameters. Based on the beach profile analysis, deposition mostly appeared in the lower part of the beach where the upper parts were eroded. Also, the beach gradient for these three stations showed weak trend of changes where small differences in the value of degree of slope. Majority station I, II and III were decreasing in the value of beach slopes during the second sampling. However, for sediment characteristics, the mean values showed that the beaches were covered with medium, coarse and very coarse grains. Decreasing of mean values indicates that the grains were getting coarser. The sediment sorting for the stations were in the range of well sorted, moderately well sorted, moderately sorted and poorly sorted. Increasing values of sorting indicates that those beaches were experienced poorly sorted of sediments. Overall, the direction of Net Shore Drift (NSD) was also revealed based on the sedimentological characteristics and beach profiles where in station I the NSD direction was moving from Southeast to Northwest, in station II the NSD was moving from North to South and in station III the NSD was moving from East to West.

Kajian Tentang Perubahan Profil Pantai dan Taburan Sedimen di Pulau Bidong,

ABSTRAK

Kajian ke atas perubahan profil pantai dan pengedaran sedimen telah dilakukan di Pulau Bidong yang terletak di Laut China Selatan. Penyampelan telah dijalankan pada bulan Mac dan Julai 2010 untuk menentukan kecerunan pantai dan ciri-ciri sedimen serta hubungkait diantaranya. Penyampelan dilakukan di tiga stesen yang berbeza iaitu dengan jumlah 20 titik transet dengan jarak 50 m antara setiap transet. Total station TOPCON GPT-3000 telah digunakan untuk mengukur profil pantai. Kaedah Moment juga digunakan untuk mengira parameter sedimen. Berdasarkan analisis profil pantai, pengendapan banyak berlaku di bahagian bawah pantai di mana bahagian atas pantai mengalami hakisan. Kecerunan pantai pada ketiga-tiga stesen menunjukkan perubahan yang lemah dimana tiada perubahan kecerunan yeng besar di antara dua-dua penyampelan tetapi nilai kecerunan menurun pada penyampelan kali kedua. Bagi ciri-ciri sedimen, nilai min menunjukkan bahawa pantai diliputi dengan butir sedang, kasar dan sangat kasar. Penurunan nilai min menunjukkan bahawa sedimen pantai menjadi semakin kasar. Peningkatan pada nilai penyusunan sedimen pula menunjukkan bahawa pantai mengalami taburan sedimen yang tidak sekata. Secara keseluruhan, arah hanyutan bersih (NSD) juga dikenalpasti berdasarkan ciri-ciri sedimen dan profil pantai di mana pergerakan arah hanyutan bersih bagi stesen I ialah dari Tenggara ke Barat Laut. Manakala bagi stetsen II pula, arah hanyutan bersih bergerak dari Timur Laut ke Barat Daya dan stesen III bergerak dari Timur ke Barat.