: 0/2876

1100042313 Kolej Universiti Sains Dan Teknologi Malaysia (KUSTEM)

1100042313 Major element and oxides in sediments of Johor Coasts (South China Sea) / Cung Mei Kim.

11000423	13	
 	-	
	× 1	

HAK MILIK PERPUSTAKAAN NUSTEI

MAJOR ELEMENTS AND OXIDES IN SEDIMENTS OF JOHOR COASTS (SOUTH CHINA SEA)

By

Chung Mei Kim

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Science and Technology COLLAGE UNIVERSITY SCIENCE AND TECHNOLOGY MALAYSIA 2006

1100042313

DEDICATED TO:

MY DEAREST FATHER, MOTHER AND FAMILY. THANKS FOR YOUR ENCOURAGEMENT AND SUPPORT.

This project report should be cited as:

Chung Mei Kim. 2006. Major elements and oxides in sediments of Johor coasts (South China Sea). Undergraduate thesis, Bachelor of Science in Marine Science, Faculty of Science and Technology, University Collage of Science and Technology Malaysia, Terengganu. 112p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor of the project.

JABATAN SAINS SAMUDERA FAKULTI SAINS DAN TEKNOLOGI KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk:

Kajian Perkaitan Major Elements and Oxides in Sediments of Johor Coasts (South China Sea) oleh Chung Mei Kim, No. Matrik: UK 7771 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Samudera sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains - Sains Samudera, Fakulti Sains dan Teknologi, Kolej Universiti Sains dan Teknologi Malaysia.

Disahkan oleh:

Penyelia Utama

Nama:

Cop Rasmi: Dr. Nor Antonina Abdullah Lecturer Department of Marine Science Faculty of Science and Technology University College of Science and Technology Malaysia 21030 Kuala Terengganu.

Ketua Jabatan Sains Samudera

Nama:

Cop Rasmi:

Tarikh: PROF. MADYA DR. HJ. ROSNAN HJ. YAACOB

Ketua Jabatan Sains Samudera Fakulti Sains dan Teknologi Kotej Universiti Sains dan Teknologi Malaysia 21030 Kuala Terengganu.

Tarikh: 26 April 2006

ACKNOWLEDGEMENT

First and foremost, my sincere gratitude and appreciation are due to my supervisor, Dr. Nor Antonina binti Abdullah for her professional guidance, concerned advice and constructive comments from the beginning of the research till the final submission of the thesis. In addition, I really appreciate Dr. Nor Antonina for her concerned follow up of my research progress and helpful suggestion to make the completion of my research possible.

Special thanks to Encik Nasir, for his technical assistance and introduction to SEM-EDS techniques. I wish to express my gratitude to him for allowing me to use the facilities of SEM lab and also for his help on the SEM-EDS observation. His whole hearted help during my lab work has contributed a lot to the completion of my study.

I am very much thankful to Mr. Suffian, for his professional guidance and constructive advice on the GIS mapping work to make the completion of my research. Thanks also to Mr. Nasiaq for allowing me to use the facilities of GIS lab and also for his kindly help and guidance on the mapping work.

I wish to thank also the lab assistants of Oceanography Laboratory, Mr. Sulaiman, Mr. Rajah and Mr. Kamari for allowing me to use the apparatus and instruments during my lab work.

I would like to express my thankful to my best friend, Soh Ai Ni for her caring and sharing. Last but not least, my sincere gratitude to my beloved family for their continuous support and encouragement to do the best. They are always in my heart no

ii

matter where I am. This project will not be able to complete without the help of anyone mentioned above.

Thank you very much.

TABLE OF CONTENTS

			PAGE
ACK	NOWL	EDGEMENT	īī
LIST	OF FIG	GURES	vii
LIST	OF TA	BLES	х
LIST	OF AB	BREVIATIONS	xi
LIST	OF AP	PENDICES	xiii
ABST	RACT		xv
1.0	INTR	ODUCTION	1
2.0	RESE	CARCH OBJECTIVES	3
3.0	LITE	RATURE REVIEW	4
	3.1	South China Sea	4
	3.2	Basic Characteristics of Modern Sedimentation in South China Se	ea 4
		3.2.1 Grain-Size and Genetic Types of Sediments	5
		3.2.2 Mineralogical and Geochemical Features	5
	3.3	Coastal Sediments	6
	3.4	Sources and Components of Marine Sediments	7
	3.5	The Chemical Composition of Marine Sediments	8
	3.6	The Major Elements	10
		3.6.1 Silicon	10
		3.6.2 Aluminium	11
		3.6.3 Iron	11
		3.6.4 Potassium	12

iv

	3.6.5	Sodium	12
	3.6.6	Magnesium	12
3.7	The M	fajor Oxides in Sediments	13
	3.7.1	Silicon oxide (SiO ₂)	13
	3.7.2	Aluminium oxide (Al ₂ O ₃)	14
	3.7.3	Iron oxide (FeO)	14
	3.7.4	Calcium oxide (CaO)	15
3.8	Chem	ical Composition of Sediments in Relation to	15
	Miner	alogical Characteristics	
3.9	Major	Elements Composition Analysis	16
	3.9.1	Scanning Electron Microscope and	17
		Energy Dispersive X-ray Spectroscopy (SEM-EDS)	
3.10	Textu	re Sediments	18
	3.10.1	Texture Analysis	20
	3.10.2	2 Hydrometer Method	20
MATERIALS AND METHODS		22	
4.1	Study	Area	23
4.2	Labor	ratory Analysis	25
	4.2.1	Sample Preparation	25
4.3	Majo	r Element Composition Analysis	28
	4.3.1	SEM-EDS Analysis	28
	4.3.2	SEM Operation JOEL Model 6360 LA	28
	4.3.3	EDS Operation System	29

4.0

	4.4	Texture Analysis	29
		4.4.1 Hydrometer Method	29
5.0 RESU		ULTS	32
	5.1	SEM-EDS Analysis	31
	5.2	Texture Sediments	54
	5.3	Percentage Sand, Silt and Clay	57
6.0	DISC	CUSSION	62
	6.1	Major Elements in Sediments	62
	6.2	Major Oxides in Sediments	65
	6.3	Major Oxides Ratio in Sediments	68
	6.4	Sediment Distribution	70
	6.5	Percentage of Sand, Silt and Clay	72
7.0	CON	CLUSION	74
8.0	REF	ERENCES	75
9.0	APPENDICES		80

LIST OF FIGURES

Figure		Page
4.1a	Map of Sampling Site and Location	23
4.1b	Map of Sampling Site and Location	24
5.1a	SEM image of sample (station 1) magnified to 750X	34
5.1b	Spectrum of sample (station 1) in the study area	34
5.1c	Mass % of the major elements in station 1	34
5.2a	SEM image of sample (station 5) magnified to 1000X	35
5.2b	Spectrum of sample (station 5) in the study area	35
5.2c	Mass % of the major elements in station 5	35
5.3a	SEM image of sample (station 11) magnified to 1000X	36
5.3b	Spectrum of sample (station 11) in the study area	36
5.3c	Mass % of the major elements in station 11	36
5.4a	SEM image of sample (station 15) magnified to 1000X	37
5.4b	Spectrum of sample (station 15) in the study area	37
5.4c	Mass % of the major elements in station 15	37
5.5a	SEM image of sample (station 16) magnified to 1000X	38
5.5b	Spectrum of sample (station 16) in the study area	38
5.5c	Mass % of the major elements in station 16	38
5.6a	SEM image of sample (station 20) magnified to 1000X	39
5.6b	Spectrum of sample (station 20) in the study area	39
5.6c	Mass % of the major elements in station 20	39

5.7a	SEM image of sample (station 22) magnified to 1000X	40
5.7b	Spectrum of sample (station 22) in the study area	40
5.7c	Mass % of the major elements in station 22	40
5.8a	SEM image of sample (station 24) magnified to 1000X	41
5.8b	Spectrum of sample (station 24) in the study area	41
5.8c	Mass % of the major elements in station 24	41
5.9a	SEM image of sample (station 26) magnified to 1000X	42
5.9b	Spectrum of sample (station 26) in the study area	42
5.9c	Mass % of the major elements in station 26	42
5.10a	SEM image of sample (station 30) magnified to 1000X	43
5.10b	Spectrum of sample (station 30) in the study area	43
5.10c	Mass % of the major elements in station 30	43
5.1d:	Mass % of the major oxides in station 1	44
5.2d:	Mass % of the major oxides in station 5	44
5.3d:	Mass % of the major oxides in station 11	44
5.4d:	Mass % of the major oxides in station 15	45
5.5d:	Mass % of the major oxides in station 16	45
5.6d:	Mass % of the major oxides in station 20	45
5.7d:	Mass % of the major oxides in station 22	46
5.8d:	Mass % of the major oxides in station 24	46
6.9d:	Mass % of the major oxides in station 26	46
5.10d:	Mass % of the major oxides in station 30	47
5.11a	Average of major elements in the sediments of the study area (nearshore stations)	48

5.11b	Average of major oxides in the sediments of the study area (nearshore stations)	48
5.12a	Average of major elements in the sediments of the study area (offshore stations)	49
5.12b	Average of major oxides in the sediments of the study area (offshore stations)	49
5.13a	Average of major elements in the sediments of the study area (all stations)	50
5.13b	Average of major oxides in the sediments of the study area (all stations)	50
5.14a	Average mass (%) of major elements from the nearshore and offshore stations in the study area	51
5.14b	Average mass (%) of major oxides from the nearshore and offshore stations in the study area	51
5.2.1	Percentage textural classes of sediments in the study area	55
5.2.2	Patterns of texture distribution in the study area	56
5.3.1	Patterns of % sand distribution in the study area	59
5.3.2	Patterns of % silt distribution in the study area	60
5.3.3	Patterns of % clay distribution in the study area	61

LIST OF TABLES

Table		Page
3.4a	Elemental composition of marine sediment (units, $\mu g/g$)	9
3.4b	The major element composition of the deep sea sediments (units, weight% oxides)	9
4.1	Location Of The Sampling Site	22
4.2.1	Settling Time Table	27
5.1.9	Mean mass (%) of major oxide and major oxide ratio in the study area (nearshore, offshore and overall)	52
5.2.1	% particle size and textural classes of sediment in the study	54
5.3.1	Average percentage sand, silt and clay in sediments of the study are	a 57

LIST OF ABBREVIATIONS / SYMBOLS

percentage	
degree Celcius	
phi	
liter	
mililiter	
micrometer	
centimeter	
milimeter	
gram	
Normality	
mol	
quartz	
opaque material	
silicon	
aluminium	
oxygen	
calcium	
potassium	
magnesium	
iron	
sodium	
chlorine	
	degree CelciusphilitermilitermililitermicrometercentimetergramNormalitymolquartzopaque materialsiliconaluminiumoxygencalciumpotassiummagnesiumironsodium

Mn	manganese
SiO ₂	Silicon oxide
Al ₂ O ₃	Aluminium oxide
FeO	Iron oxide
CaO	Calcium oxide
Na ₂ O	Sodium oxide
MgO	Magnesium oxide
K ₂ O	Potassium oxide
NaHCO ₃	Sodium Bicarbonate
HCI	Hydrochloric Acid
H_2O_2	Hydrogen Peroxide
MgCl ₂	Magnesium Chlorite
AV	average
SD	standard deviation
>	more than
<	less than
SEM-EDS	Scanning Electron Microscope & Energy Dispersive Specroscopy

LIST OF APPENDICES

Appendi	ix		Page
Figure 4.	.2.1	Textural classes	80
Table 5.1	1.1	Mass (%) of major elements for all stations in the study area	81
Table 5.1	1.2	Mass (%) of major oxides for all stations in the study area	81
Table 5.1	1.3	Descriptive statistics for major elements in the study area for all nearshore stations (station 1, 11, 16, 22 and 26)	82
Table 5.1	1.4	Descriptive statistics for major oxides and major oxides ratio in the study area for all nearshore stations (station 1, 11, 16, 22 and 26)	82
Table 5.	1.5	Descriptive statistics for major elements in the study area for all offshore stations (station 5, 15, 20, 24 and 30)	83
Table 5.	1.6	Descriptive statistics for major oxides and major oxides ratio in the study area for all offshore stations (station 5, 15, 20, 24 and 30)	83
Table 5.	1.7	Descriptive statistics for major elements in the study area for all stations	84
Table 5.	1.8	Descriptive statistics for major oxides and major oxides ratio in the study area for all stations	84
Table 5.	1.10	Independent T-test results for nearshore and offshore stations in the study area	85
1 (Calcul	lation for hydrometer reading	86
2 5	Sampl	le preparation	106
3 5	Steps	for SEM-EDS analysis	108
4 5	Steps	for Energy Dispersive Spectrometer (EDS) operation system	109
5 5	Steps	for texture analysis (hydrometer method)	110
6 I	List of	f apparatus, material and instruments used in the research	111
7 5	SEM-	EDS	112

8	Sedimentation cylinder	112
9	Instruments for texture analysis	112

ABSTRCT

Twenty sediments samples were collected from the Johor coastal areas (South China Sea). The sediments were analyzed to determine the major elements, oxides and sediment texture in the study area. The major elements and oxides were analyzed using the Scanning Electron Microscope and Energy Dispersive Spectroscopy (SEM-EDS) while the texture was determined using the hydrometer method. In general, the dominant elements found in the sediments of the study area are Si, Al and Fe and the oxide is SiO₂ which indicates that the area is highly siliceous (SiO₂). The dominance of quartz might be due to the weathering products of granite, which is the dominant rock found along the coastal area of East Coast of Peninsular Malaysia. Al₂O₃ and FeO are the next most abundant major oxide components after SiO₂ which indicates that feldspar and iron minerals are the common minerals found in sediments of the study area. MgO and K₂O are the minor oxides in sediments. In addition, the SiO2 / Al2O3 ratio indicates that quartz and feldspar are present in roughly equal abundances in the sediments while the range of SiO₂/CaO ratios indicates that quartz has a much greater abundance than calcium carbonate in sediments of study area. For the texture analysis, sandy clay loam covers almost 70% in the study area. It clearly showed that the study area was mainly covered by sandy sediment. Clay texture was only found in station 30 which is located offshore.

ABSTRAK

Sebanyak dua puluh sampel telah diambil semasa penyempalan, dimana ia telah dijalankan di persisiran pantai Johor (Laut China Selatan). Sampel sedimen telah dilakukan analisis untuk mengkaji komposisi elemen dan oxida serta juga tekstur sedimen untuk sedimen persisiran pantai Johor (Laut China Selatan). Alat Scanning Electron Microscope dan Energy Dispersive Spectroscopy (SEM-EDS) telah digunakan untuk menganalisis komposisi dan oxida sedimen manakala bagi tekstur sedimen, kaedah hyrometer telah digunakan. Secara umumnya, Si, Al dan Fe adalah dominan dalam sedimen kawasan kajian dan silika oxida (SiO₂) yang tinggi menunjukkan kawasan kajian adalah sangat siliceous. Kuarza adalah dominan di kawasan kajian. Kawasan kajian ini didominasi oleh kuarza adalah disebabkan hasilan produk daripada granite akibat proses luluhawa, dimana batu granite adalah dijumpai mendominasi di sepanjang persisiran pantai timur Semenanjung Malaysia. Al₂O₃ dan FeO adalah dominan oxida selepas SiO₂ yang menunjukkan feldspar dan Fe mineral adalah mineral yang biasa didapati dalam sedimen di kawasan kajian. MgO dan K₂O wujud sebagai minor oxida dalam sedimen. Tambahan pula, nisbah bagi SiO₂ / Al₂O₃ menunjukkan kuarza dan feldspar wujud dalam peratus yang agak sama dalam sedimen di kawasan kajian manakala nisbah bagi SiO₂ / CaO pula menunjukkan lebih banyak kuarza daripada kalsium karbonat dalam sedimen di kawasan kajian. Bagi analisis tekstur pula, sandy clay loam adalah dominan tekstur kelas yang merangkumi 70% kawasan kajian.. Ini dengan jelas menunjukkan kawasan kajian adalah didominasikan oleh sedimen pasir. Namun begitu, tekstur berliat hanya dijumpai di stesen 30 di kawasan luar pantai.