EQUICA DI STOTICE CRIZEIOCORINE UMIOL N. 2000 STOTI STOL SRUNG, UTER, 2000 ST

ch: 4842

Universiti Malaysia Terengganu (UMT)

1100046131

Ecological study of Cryptocoryne Uenoi y. sasaki from Sabal Kruing River, Sarawak / Siti Suhana Sulaiman.

KOLEJ UNIV	PERPUSTAKA /ERSITI SAINS & TE 1030 KUALA TERE	EKNOLOGI MALAYSIA
2	100046	
	1100040	
1. J. J. M. M. M.		
Coloradii -		
(6		
		Lihat sebelah

HAK MILIK PERPUSTAKAAN KUSTEM

ECOLOGICAL STUDY OF *CRYPTOCORYNE UENOI* Y. SASAKI FROM SABAL KRUING RIVER, SARAWAK

By Siti Suhana binti Sulaiman

Research Report submitted in partial fulfillment of the requirements for degree of Bachelor of Applied Science (Biodiversity Conservation and Management)

Department of Biological Sciences Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2006

1100046131

JABATAN SAINS BIOLOGI FAKULTI SAINS DAN TEKNOLOGI KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk: ECOLOGICAL STUDY OF *CRYPTOCORYNE UENOI* Y. SASAKI FROM SABAL KRUING RIVER, SARAWAK oleh Siti Suhana binti Sulaiman, no. matrik: UK7936 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Biologi sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains Gunaan (Pengurusan dan Pemuliharaan Biodiversiti)., Fakulti Sains dan Teknologi, Kolej Universiti Sains dan Teknologi Malaysia.

Disahkan oleh: Penyelia Utama

Nama: En. Amirrudin bin Ahmad

Cop Rasmi: Jabatan Sains Biologi Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia 21030 Kuala Terengganu.

Penyelia Kedua (jika ada) Nama: Prof. Madya Dr. Isa bin Ipor Cop Rasmi <u>() ວິ ໂທງ ເ</u>ເບປນີ້ Tarikh:

Tarikh:

.

Ketua Jabatan Sains Biologi Nama: Cop Rasmi:

PROF. MADYA DR. NAKISAH BT. MAT AMIN Ketua Jabatan Sains Biologi Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia (KUSTEM) 21030 Kuala Terengganu.

4/5/06

ACKNOWLEDGEMENT

I would like to thank to whom much tribute for the success of this thesis, my supervisors Mr. Amirrudin bin Ahmad and Assoc. Prof. Dr. Isa bin Ipor who has offered precious information, suggestion, comments and guidance while the sampling and carrying out this study.

I would also like to express my sincere gratitude to Mr. Mekiong, and Ms Noor Hasmah, Unimas master student for the help and support. Special thanks also go to Mr. Hanafi, lecturer of biostatistics and Mr. Kartik for the guidance.

I would also like to take this advantage to specially thank my fellow friends, Ms. Rohani Rashid, Ms. Ati, K. Ngah, Ms. Nurin, Ms. Naziah, my housemate Ms. Huda and Ms. Suzana for their support. I am also indebted to my special friend, Mr. Farhan Hanaffi for the material support and encouragement.

Finally, I am deeply grateful to my lovely parents, the person who always give me encouragement, motivation and boundless of support, Mr. Sulaiman bin Jamin and Ms. Alimah binti Tauhid. Thank you also for all my brothers, M.Dom, M.Rani and M.Shahir for their support.

i

TABLE OF CONTENT

ACK	NOWLWDGEMENT	i
TAB	LE OF CONTENT	ii
LIST	T OF TABLES	v
LIST	r of figures	vi
LIST	COF ABBREVIATIONS	vii
LIST	COF APPENDICIES	viii
ABS	TRACT	ix
ABS	TRAK	x
CHA	PTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Objective	3
CHA	PTER 2 LITERITURE REVIEW	4
2.1	Introduction to genus Cryptocoryne	4
2.2	Introduction to Cryptocoryne uenoi	5
2.3	Study Status of Cryptocoryne and Population Distribution	6
2.4	Biomass Allocation and Leave Area Ratio	8
2.5	Photosynthetic Rate Measurement	11
2.6	Physico-chemical Parameters	12
2.7	Nutrient Concentration	14
	2.7.1 Soil analysis	14

	2.7.2	Micronutrient analysis	15	
СНА	PTER 3	3 METERIALS AND METHODOLOGY	16	
3.1	Study	Area	16	
3.2	Physic	co-chemical Parameters	16	
3.3	Photo	synthetic Rate Measurement	16	
3.4	Bioma	ass Allocation	17	
3.5	Nutrient Concentration		17	
3.6	Data A	Analysis	18	
CHA	PTER 4	RESULTS	19	
4.1	Physic	cochemical Parameters	19	
4.2	Bioma	ass Allocation	20	
	4.2.1	Dry weight, total number and total leaves number of plant	20	
	4.2.2	Leaf weight ratio	22	
	4.2.3	Petiole weight ratio	23	
	4.2.4	Root weight ratio	24	
	4.2.5	Specific leave area	25	
	4.2.6	Leave area ratio	26	
4.3	Regre	Regression Relationship of Biomass Allocation		
	5.3.1	Shallow water regime	28	
	5.3.2	Deep water regime	30	
4.4	Photosynthesis			

	4.4.1	Yield of light intensity	32
	4.4.2	Relationship of ETR (Electron Transport Rate) and PAR	32
		(Photosynthetic Active Radiation)	
4.5	Soil A	Analysis	34
СНА	PTER 5	5 DISCUSSION	35
5.1	Physic	cochemical Parameters	35
5.2	Bioma	ass Allocation	36
	5.2.1	Dry weight, total number and total leaves number of plant	36
	5.2.2	Leaf weight ratio	37
	5.2.3	Petiole weight ratio	38
	5.2.4	Root weight ratio	39
	5.2.5	Specific leave area (SLA) and leaf area ratio (LAR)	40
5.3	Regre	ssion Relationship of Biomass Allocation	42
5.4	Photo	osynthesis	42
5.5	Soil a	nalysis	43
СНА	PTER	5 CONCLUSION	44
REF	FEREN	CES	45
APPI	ENDIC	ES	51

LIST OF TABLE

Table		Page
1	Species distribution of Cryptocoryne in Peninsular Malaysia	7
2	Total of dry weight, number of plants and leaves number of	21
	Cryptocoryne uenoi of each quadrate at Sabal Kruing River,	
	Sarawak	
3	Total of dry weight, number of plant and leaves number of	21
	Cryptocoryne uenoi at Sabal Kruing River, Sarawak	
4	Result of soil analysis at Sabal Keruing River, Sarawak	34

LIST OF FIGURES

Figure

1	Leaf weight ratio of C. uenoi between shallow water regime and deep water	
	regime in Sabal Kruing River, Sarawak	22
2	Leaf weight ratio of C. uenoi between shallow water regime and deep water	
	regime in Sabal Kruing River, Sarawak	23
3	Root weight ratio of C. uenoi between shallow water regime and deep water	
	regime in Sabal Kruing River, Sarawak	24
4	Specific leave area of C. uenoi between shallow water regime and deep water	
	regime in Sabal Kruing River, Sarawak	25
5	Leave area ratio of C. uenoi between shallow water regime and deep water	
	regime in Sabal Kruing River, Sarawak	26
6	Regression relationship within dry weight of vegetative part of C. uenoi under	
	shallow water regime	28
7	Regression relationship within dry weight of vegetative part of C. uenoi under	
	deep water regime	30
8	Effect of depth on maximal quantum yield in C. uenoi	31
9	Effect of depth on light curve (electron transport rate (ETR) vs. photosynthetic	
	active radiation (PAR) in C. uenoi	32

LIST OF ABBREVATIONS

Al	: <u>-</u>	Aluminium
Cu	<u>i</u>	Copper
CR		Chromium
Mn	-	Manganese
Pb	. .	Lead
Zn	-	Zinc
ETR	19 19	Electron transport rate
LWR		Leave weight ratio
PWR	: 	Petiole weight ratio
RWR	·-	Root weight ratio
PAR	-	Photosynthetic active radiation
RGR	-	Relative growth rate
mg	-	milligram
pН	÷	potential of hydrogen
cm	-	centimeter

LIST OF APPENDICES

A	opendix		Page
	1	Dry weight and biomass allocation	51
	2	One way ANOVA analysis output	52
	3	T-Test analysis output	56
	4	Summary of t-Test output	59
	5	Regression relationship output	60
	6	Descriptive statistic output	62

ABSTRACT

A study was carried out to compare the growth pattern of Cryptocoryne uenoi of shallow water regime and deep water regime collected from Sabal Kruing River, Sarawak. Sample in $0.5m \times 0.5m$ quadrate in triplicate were collected where the biomass allocation, leaf area and photosynthesis measurement was carried out. Total dry weight of plant was higher at deep water regime with 143.14 g while 63.09 g at shallow water regime. The total number of leaves at deep water regime was 1637 while 1112 for shallow water regime. Total leaves area also shown higher at deep water regime with 4347 cm² while 2599 cm² for shallow water regime. Deep water regime was shown higher in leaves biomass, petiole biomass, root biomass and individual leave area with the average was 0.1549 ± 0.045 g, 0.1549 ± 0.058 g, 0.2032 ± 0.063 g and 48.3 ± 6.79 cm² respectively. Statistical analysis was shown significantly different of leaf weight ratio (LWR), petiole weight ratio (PWR), root weight ratio (RWR), specific leaf area (SLA) and leaf are ratio (LAR) between shallow water regime and deep water regime respectively. Plant under shallow water regime resulted higher maximum quantum yield and higher of electron transport rate (ETR) at photosynthetic active radiation (PAR) is 476 μ mol quanta m⁻² s⁻¹