ORGANOMETALLIC COMPLEXES FEATURING OLIGO-PHENYLENE ETHYMYLENE LIGANDS

WAN MOND KHAIRUL WAN MOHAMED ZHI

Ph.D. THESIS

2007

PDF processed with CutePDF evaluation edition www.CutePDF.com

11 0723

Perpustakaan Sultanah Nur Zahirah Universiti Malaysia Terengganu (UMT)

SULTANAL

M

d #

1100072317

32

Organometallic complexes featuring oligo-phenylene ethynlene ligands / Wan Mohd Khairul Wan Mohamed Zin.

·	ESTIMALATSIA 20121 KILAT 5 7	TERENGGAN	B (印册T)	
	Istakaan sult RSTI Halatsia 2000 Kuala t	7231	7	
		1204	1	
	1.	a		~
		al have		
	1 .	Ì		ARGENCIAS READ
	1.			
	-	4		
		· ·		
ferfancestranden and an anna an a				
			10000000000000000000000000000000000000	Distribution
	1.			
			· · · · ·	
C. THE REAL PROPERTY IN CONTRACTOR OF	1		baran renavea	nesciolaria
eose w// # The same - The could The Six Instance + 3	1			-
• •				
		ŀ		
		· · ·		
:				
	ł			

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

ORGANOMETALLIC COMPLEXES FEATURING OLIGO-PHENYLENE ETHYNYLENE LIGANDS

WAN MOHD KHAIRUL WAN MOHAMED ZIN BSC (HONS.) (UNIPUTRAMALAYSIA), MSC (DUNELM), AMRSC

USTINOV COLLEGE

DEPARTMENT OF CHEMISTRY

DURHAM UNIVERSITY

A Thesis submitted for the degree of Doctor of Philosophy at the Durham University

September 2007

To Mek and Wae,

For simply being the most amazing and wonderful people I have ever met in my life....

STATEMENT OF COPYRIGHT

The copyright of this thesis rests with the author. No quotation from it should be published in any form, including electronic and the internet, without the author's prior written consent. All information derived from this thesis must be acknowledged appropriately.

DECLARATION

The work described in this thesis was carried out in the Department of Chemistry at the University of Durham between October 2004 and August 2007. All the work was carried out by the author unless otherwise stated and has not previously been submitted for a degree at this or any other university.

FINANCIAL SUPPORT

The financial support of the studies is fully supported by Human Resources Development (Science and Technology Division), Ministry of Science, Technology and Innovation Malaysia Fellowship.

Accompanying Compact Disc

Associated .cif files for the molecular structures, extra experimental data, the bond lengths (Å) and angles (°) not discussed in the thesis.

Memorandum

The following conferences and symposia were attended during the period of study

• Materials Chemistry Forum; MC7: Functional Materials for the 21st Century

University of Edinburgh, UK 5-8th July 2005

Departmental 2nd Year PG Symposium

Durham University, Durham, UK 4th May 2006 Talk given entitled. 'Homo and Heterometallic Clusters Complexes Featuring Oligo-Phenylenene Ethynylene As Ligands'

Chianti Meeting on Inorganic Electrochemistry

Certosa di Pontignano, Siena, Italy 15-20th July 2006 Poster Presented entitled. 'Novel Organometallic Complexes Featuring Conjugated Oligo-ethynylbenzene Derivatives As Ligands'.

◆ XXII International Conference on Organometallic Chemistry,

Zaragoza, Spain23-28th July 2006.Poster Presented entitled. 'Novel Homo- And Heterometallic Cluster ComplexesFeaturing Conjugated Oligo-Ethynylbenzene Derivatives As Ligands'.

• Royal Society Discussion Meeting: Mixed Valency in Chemistry, Physics and Biology.

Royal Society of Chemistry, Burlington House, London, UK 19-20th March 2007

• Departmental 3rd Year PG Symposium

Durham University, Durham, UK5th and 14th May 2007Poster presented and Talk Given entitled. 'Transition Metal Acetylide ComplexesFeaturing Oligo-Ethynyl Benzene Derivatives As Ligands'.

Ill

The Following Publications are based on work described on this thesis:

W. M. Khairul, L. Porrès, D. Albesa-Jové, M. S. Senn, M. Jones, D. P. Lydon, J. A. K. Howard, A. Beeby, T. B. Marder, P. J. Low, 'Metal-Terminated Molecular Wires', *Journal of Cluster Chemistry*, 2006, 17, 65.

M. A. Fox, R. L. Roberts, W. M. Khairul, F. Hartl, P. J. Low, 'Spectroscopic properties and electronic structure of 17-electron half-sandwich monoruthenium acetylide complexes, $[Ru(C=CAr)(L_2)Cp']^+$ (Ar = phenyl, p-tolyl, 1-naphthyl, 9-anthryl; $L_2 = (PPh_3)_2$, Cp' = Cp; $L_2 = dppe$; $Cp' = Cp^*$)', Journal of Organometallic Chemistry, 2007, 692, 3277.

W. M. Khairul, D. Albesa-Jové, D. S. Yufit, M. R. Al-Haddad, J. C. Collings, F. Hartl, J. A. K. Howard, T. B. Marder, P. J. Low, 'The syntheses, structures and redox properties of phosphine-gold(I) and triruthenium carbonyl cluster derivatives of tolans', *Inorganica Chimica Acta*, 2007, article in press.

TABLE of CONTENTS

Abstract	Х
Acknowledgement	XIII
Abbreviations	XVI

CHAPTER 1

Introduction

1.1.	Introduction to Molecular Electronics	1
1.2.	Oligo(Phenylene Ethynylene)s	5
1.3.	The Role of Metal Complexes in Molecular Electronics	7
1.4.	Introduction to Metal Carbonyl Cluster Chemistry	10
1.5.	The Aims and Objectives of the Thesis	13
1.6.	References	16

CHAPTER 2

'Syntheses and Characterisation of Conjugated

Oligo-phenylene ethynylenes As Ligands'	
---	--

2.1.	Introduction	23
2.2.	Result and Discussion	28
2.2.1	Syntheses	28
2.2.2	Molecular Structural Analysis of	
	$HC \equiv CC_6H_4C \equiv CC_6(OMe)_2(H)_2C \equiv C_6H_4C \equiv CH, 14$	33
2.2.3	Photophysical Properties	36
2.3.	Conclusions	36
2.4.	Experimental Details	38
2.4.1	General Condition	38
2.4.2	Experimental	39
2.5.	References	47

'Synthesis and Structural Characterisation of	
Gold(I) Oligo-phenylene ethynylene Complexes'	
3.1. Introduction	53
3.2. Result and Discussion	54
3.2.1. Syntheses	54
3.2.2. Molecular Structural Analyses	62
3.2.3. Electrochemical Properties	75
3.2.3.1. Cyclic Voltammetry	75
3.2.4. Photophysical Details	76
3.3. Conclusions	76
3.4. Experimental Details	77
3.4.1. General Condition	77
3.4.2. Experimental	78
3.5. References	85

CHAPTER 4

'Synthesis, Structural and Electronic Properties of Half-Sandwich Ruthenium

Oligo-Phenyl	ene Ethyny	lene Con	nplexes'

4.1.	Introdu	uction	90
4.2.	Genera	al Synthetic Procedures	92
4.3.	Simple	e Ruthenium Acetylide Derivatives	94
4.3.1	l. Sy	ntheses	95
4.3.2	2. Ele	ectrochemical Characterisations	96
4.3	3.2.1.	Cyclic Voltammetric Properties	96
4.3	3.2.2.	IR Spectroelectrochemical Studies	98
4.3	3.2.3.	Electronic Structure Calculations	100
4.3	3.2.4.	UV-vis Spectroelectrochemical Studies	109
4.3	3.2.5.	Conclusions from Studies of the Electrochemical Property	rties
		and Electronics Structures of Simple	
		Ruthenium Acetylide Derivatives	119

4.4. Ol	igo-Phenylene Ethynylene Ruthenium Complexes	119
4.4.1.	Syntheses	119
4.4.2.	Molecular Structural Analyses	126
4.4.3.	Electrochemical Characterisations	129
4.4.3.1	Cyclic Voltammetric Properties	129
4.4.3.2	. IR Spectroelectrochemical Studies	132
. 4.4.3.3	Electronic Structure Calculations	136
4.4.3.4	. UV-vis Spectroelectrochemical Studies	146
4.4.3.5	Conclusions Drawn from the Electrochemical Properties	
	and Electronic Structures of Ruthenium Complexes Feature	uring
	Oligo-Phenylene Ethynylene Based Ligands	149
4.5. Co	nclusions	150
4.6. Ex	perimental Details	152
4.6.1.	General Condition	152
4.6.2.	Experimental	153
4.7. Re	ferences	161

'Photophysical and Electrochemical Properties of Triruthenium Carbonyl

Clusters Featuring Phenylene Ethnylene Ligands'

5.1	Introdu	uction	165
5.2	Result	and Discussion	168
5.2.2	. Sy	ntheses	168
5.2.3	. Mo	olecular Structural Analyses	173
5.2.4	. Ele	ectrochemical Properties	185
5.2	.4.1.	Cyclic Voltammetry	186
5.2	.4.2.	IR Spectroelectrochemistry	189
5.2.5	. Ph	otophysical properties	191
5	5.2.5.1.	UV-Vis Spectroscopy	191
5	.2.5.2.	Photoluminescence Properties	196
5.3.	Conclu	usions	199
5.4	Experi	imental Details	201

5.4.1.	General Condition	201
5.4.2.	Experimental	203
5.5. R	eferences	208

Nov	el Transmetallations From Simple Gold(I) Acetylide M	oieties'
6.1. Intr	oduction	212
6.2. Res	ult and Discussion	216
6.2.1.	Syntheses	216
6.2.1.1.	Group 8 Complexes	216
6.2.1.2.	Group 9 Complex	220
6.2.1.3.	Group 10 Complexes	223
6.2.1.4.	Group 11 Complex	226
6.2.2.	The Proposed Mechanisms	227
6.2.3.	Molecular Structural Analyses	231
6.2.3.1.	Group 9 [Ir(CO)(O ₂)(PPh ₃) ₂ (C=CC ₆ H ₄ Me) (47)	231
6.2.3.2.	Group 10 [<i>trans</i> -Pt(C≡CR) ₂ (PL) ₂]	235
	trans-Pt(C=CPh) ₂ (PPh ₃) ₂ (49)	235
	trans-Pt(C=CC ₆ H ₄ Me) ₂ (PPh ₃) ₂ (50)	236
	<i>trans</i> -Pt(C=CC ₆ H ₄ Me) ₂ (PMe ₃) ₂ (51)	240
6.2.3.3.	Group 11 Au(PMe) ₃ [PF ₆] (53)	242
6.3. Cor	nclusions	244
6.4. Exp	perimental Details	246
6.4.1.	General Condition	246
6.4.2.	Experimental	247
6.5. Ref	erences	254

VIII

Conclusions and Future Work

	Conclusions Future Work		260
1.2.	rulur	e work	261
Appe	ndix:	Compounds Numbering Scheme	264

:

Abstract

Organometallic Complexes Featuring Oligo-Phenylene Ethynylene Ligands Wan Mohd Khairul Wan Mohamed Zin Durham University, 2007

This thesis describes the synthesis and analysis of organometallic complexes that feature oligo-phenylene ethynylene based ligands. **Chapter 1** introduces the general topic of molecular electronics and provides a general overview of the interest in phenylene ethynylene systems as foundation architectures for molecular wires. The role of metal complexes in molecular electronics and the application of the cluster - surface analogy to the study of model systems is also described.

Chapter 2 describes the synthesis of oligo-phenylene ethynylene pro-ligands of the general form $Me_3SiC=CC_6H_4C=CC_6H_4R$ (1-5), in which R is either an electron donor (Me, OMe) or acceptor (CO₂Me, NO₂, CN). The compounds were synthesised either via Sonogashira Pd/Cu cross-coupling reactions or via the nucleophilic attack of benzoquinones by lithiated acetylide anions and subsequent reduction. The desilylation of these compounds afforded the terminal alkynes $HC \equiv CC_6H_4C \equiv CC_6H_4R$ (6-10). Furthermore, the extended "three-ring" 1,4ethynylbenzene) bis(phenyl derivatives $Me_3SiC = CC_6H_4C = CC_6H_4C = CSiMe_3,$ 11 and $Me_3SiC = CC_6H_4C = CC_6(OMe)_2(H)_2C = C_6H_4C = CSiMe_3$, 13 and the terminal alkyne $HC = CC_6H_4C = CC_6(OMe)_2(H)_2C = C_6H_4C = CH$, (14) have also been prepared. These compounds were fully spectroscopically characterised and in the case of 14 the molecular structure analysis is discussed.

Chapter 3 discusses the synthesis of the gold(I) oligo-phenylene ethynylene complexes The complexes were prepared by treating the ligands precursors 1-5 with AuCl(PL₃) (L = Ph or Cy) in the presence of NaOMe to afford complexes Au(C=CC₆H₄C=CC₆H₄R)PPh₃ [R = Me (15), OMe (16), CO₂Me (17), NO₂ (18) and

Х

CN (19) and Au(C=CC₆H₄C=CC₆H₄R)PCy₃ [R = Me (20), OMe (21) and NO₂ (22)]. The "three-ring" complexes {Au(PPh₃)}₂(μ -C=CC₆H₄C=CC₆H₄C=C₆H₄C=C), 23 and {Au(PPh₃)}₂(μ -C=CC₆H₄C=CC₆(OMe)₂H₂C=C₆H₄C=C), 24 were also prepared. These complexes were spectroscopically characterised and molecular structural analyses reveal intermolecular interactions between the phenylene ethynylene portion of the molecules in the solid state, but not aurophilic interactions.

Chapter 4 examines the synthesis of half-sandwich $Ru(L_2)Cp'$ [L = PPh₃, Cp' = Cp; L₂ = dppe, $Cp' = Cp^*$) acetylide complexes derived from simple phenyl, tolan and oligo(phenylene ethynylene) based acetylenes. The electrochemical properties of these complexes have been explored, as have some of the molecular structural details.

Chapter 5 describes the synthesis of some cluster complexes. The gold acetylide complexes Au(C=CC₆H₄C=CC₆H₄R)(PPh₃) react readily with Ru₃(CO)₁₀(μ -dppm) to afford phenylene ethynylene derivatives Ru₃(μ -AuPPh₃)(μ -C₂C₆H₄C=CC₆H₄-R)(μ dppm)(CO)₇ (**38-42**) in which the conjugated organic moiety is "end-capped" by the cluster and an R group that is either electron donating or withdrawing (R = Me, OMe, CO₂Me, NO₂, CN). The clusters **38-42** are linked to the hydrido clusters Ru₃(μ -H)(μ -C₂C₆H₄C=CC₆H₄R)(CO)₇ (**36** and **37**) through the well-known isolobal relationship between H and Au(PR₃). In addition, the bis-cluster {Ru₃(μ dppm)(CO)₇}₂{(μ -AuPPh₃)}₂(μ -C₂C₆H₄C=CC₆H₄C=CC₆H₄C₂) (**43**) has also been prepared. All the clusters reported in this chapter were crystallographically determined. Structural, spectroscopic, photophysical and electrochemical studies were conducted and have revealed little electronic interaction between the remote substituent and the organometallic end-caps.

Chapter 6 explores the novel, preparative scale stoichiometric transmetallation reactions involving the simple Au(C=CR)(PPh₃) (R = Ph or C₆H₄Me) complexes. These gold(I) complexes have been treated with several inorganic and organometallic compounds MXL_n [M = metal, L_n = supporting ligands, X = halide], to afforded the corresponding metal-acetylide complexes M(C=CR)L_n, with

XI

representative examples featuring metals from Groups 8-11. The acetylide products were fully characterised by usual spectroscopic methods including the molecular structural analysis.

Chapter 7 concludes the general summary of the thesis and discusses briefly the findings achieved in each chapter and the vital role of oligo-phenyelene ethynylenes ligands in the construction of numerous organometallic complexes which show interesting and promising properties for the molecular wires development. In addition, further future work is also proposed on other systems that feature this ligands.

I an these weeks part of programmed to be an an and the second second second second second second second second Total Dr. Manter and Dr. Research second in D.D. Dr. Dreveges and an angle of the second second second second s for a company me in the arches from an best second of the during the during the second second second second second of many Party A manufactor your press of Dr. Jacob Contingently Research Frank, Mark Mark