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Introduction
The current technological advance has made it 
possible for humans to disturb the environmental 
balance in nature that may cause immense 
damages, such as species extinction or starvation. 
Therefore, understanding the behaviour of 
the interaction between the species may help 
biologists and other related parties to prevent 
those events from happening.

 The real interaction of prey-predator in nature 
is complex and comprises both interspecies and 
external environmental factors. Therefore, several 
simplifications are usually assumed so that a basic 
model can be constructed and then developed or 
modified to approach the real system. 

 One of the simplest dynamical models to 
describe the interaction between two interacting 
species, namely one prey and one predator, is the 
classical Lotka-Volterra (Chauvet et al., 2002) 
equation which can be stated as
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 (1)

where x is a prey, y is a predator, the predator 
y preys on x, a1 is the prey growth rate in the 
absence of the predators, b1 is the capture rate 
of prey per predator, b2 is the rate at which each 
predator converts captured prey into predator 
births and a2 is the constant rate at which death 
occurs in the absence of prey. They showed that 
ditrophic food chains (i.e. prey-predator systems) 
permanently oscillate for any initial condition if 
the prey growth rate is constant and the predator 
functional response is linear.

 In this paper, we completely characterise the 
qualitative behaviour of a linear three-species food 
chain where the dynamics are given by classic 
(nonlogistic) Lotka-Volterra-type equations. We 
study a more basic nonlogistic system that is the 
direct generalisation of the classic Lotka-Volterra 
equations.
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Abstract: In this paper, we study an ecological model with a tritrophic food chain with a classical 
Lotka-Volterra functional response. There are three equilibrium points of the system. In the parameter 
space, there are passages from instability to stability, which are called Hopf bifurcation points. For 
the equilibrium point, it is possible to find bifurcation points analytically and to prove that the system 
has periodic solutions around these points. Furthermore, the dynamical behaviours of this model 
are investigated. It has been found that the extinction of the predator depends on the prey-predator 
parameter in the equation. The dynamical behaviour is found to be very sensitive to the parameter 
values and the initial condition as well as the parameters of the practical life. Computer simulations 
are carried out to explain the analytical findings.  

KEYWORDS: food chain model, modified Lotka-Volterra model, Hopf bifurcation



Model System
The classical food chain models with only two 
trophic levels are shown to be insufficient to 
produce realistic dynamics (Chauvet et al., 
2002; Hsu et al., 2003; Freedman and Waltman, 
1977; Hastings and Powell, 1991; Klebanoff and 
Hastings, 1994; Mada et al., 2011). Therefore, 
in this paper, by modifying the classical Lotka-
Volterra model, we analyse and simulate the 
dynamics of a three-species food chain interaction. 
With non-dimensionalisation, the system of three-
species food chain can be written as

 (2)

where x, y, and z denote the non-dimensional 
population density of the prey, predator, and top 
predator respectively. The predator y preys on x 
and the predator z preys on y. Furthermore a1, a2, 
a3, b1, b2, c1, and c2 are the intrinsic growth rate 
of the prey, the death rate of the predator, the 
death rate of the top predator, predation rate of the 
predator, the conversion rate, predation rate of the 
top predator, and the conversion rate respectively.

Equilibrium Point Analysis
According to Hilborn (1994) and May (2001), 
the equilibrium points of (2) denoted by , are the 
zeros of its nonlinear algebraic system which can 
be written as

 (3)

By considering the positivity of the parameters and 
the unknowns, we have two positive equilibrium 
points given by E0 (0,0,0), and E1 (x1, y1,0) with 

x1 = a2 / b2, and y1 = a1 / b1 

and one negative equilibrium point E2 (0, y2, z2) 
with

y2 = a3 / c2, and z2 = –a2 / c1.

Stability of Equilibrium Points
The dynamical behaviour of equilibrium points 
can be studied by computing the eigenvalues of 
the jacobian matrix J of system (2) where

 (4)

 At most, there exists two non-negative 
equilibrium points for system (2). The existence 
and local stability conditions of these equilibrium 
points are as follows.

1. The Jacobian matrix (4) at the equilibrium 
point E0 (0, 0, 0), is

 (5)

 The eigenvalues of the Jacobian matrix (5) 
are λ1 = a1,  λ2 = –a2, and λ3 = –a3. Hence, the 
equilibrium point E0 is a saddle point.

2. The Jacobian matrix (4) at the equilibrium 
point E1 (x1, y1,0), is

 (6)

 The eigenvalues of the Jacobian matrix (6) 
are

 (7)

E1 (x1, y1,0) is locally stable if 

                       a3 b1 > a1 c2.                           (8)

Hopf Bifurcation Point
When we are interested to study periodic or quasi-
periodic behaviour of a dynamical system, we 
need to consider the Hopf bifurcation point. The 
dynamical system generally (Hilborn, 1994; May, 
2001 ; Mada et al., 2011) can be written as 
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 (9)

where

 v  = (x, y, z), = (a1, a2, a3, b1, b2, c1, c2)     (10)

According to Hilborn (1994) and May (2001) for 
the system (2) which can be written in the form 
(9-10), if an ordered pair (v0, μ0) satisfied the 
conditions 

(i)  F(v0, μ0) = 0,

(ii) J(v, μ) has two complex conjugate eigenvalues 

λ1,2 = a(v, μ) ± ib(v, μ),

  around (v0, μ0),

(iii)  a(v0, μ0) = 0, ∇a(v0, μ0) ≠ 0, b(v0, μ0) ≠ 0,

(iv)  the third eigenvalues λ3(v0, μ0) ≠ 0,

then (v0, μ0) is called a Hopf bifurcation point.

 For the system (2), the equilibrium points 
E0 (0, 0, 0), and E1 (x1, y1,0), satisfy the condition 
F(v0, μ0) = 0, and for the equilibrium point E1 (x1, 
y1,0) we have two complex conjugate eigenvalues 
(7) with the real part of the eigenvalues being 
zero. 

The last conditionis satisfied if  

                     a3 b1 ≠ a1 c2.                           (11)

The equation (8) and (11) are satisfied if a3 is 
chosen not as

 (12)

 Hence, E1 is stable for a3 < a30 and unstable 
for a3 > a30. The point (v0, μ0) which corresponds 

to a3 = a30, is a Hopf bifurcation point. This Hopf 
bifurcation states sufficient condition for the 
existence of periodic solutions. As one parameter 
is varied, the dynamics of the system change from 
a stable spiral to a centre and then to unstable 
spiral (see Table 1). 

Numerical Simulation
Analytical studies always remain incomplete 
without numerical verification of the results. In 
this section, we present numerical simulation to 
illustrate the results obtained in previous sections. 
The numerical experiments are designed to show 
the dynamical behaviour of the system in three 
main different sets of parameters and initial 
conditions : I. The case a3 < a30  II. The case 
a3 = a30  III. The case a3 > a30. The coordinates 
of equilibrium points and the corresponding 
eigenvalues can be found in Table 1. For showing 
the dynamics of the system (2) change,  the 
parameter set {a1, a2, b1, b2, c1, c2}= {0.5, 0.5, 
0.5, 0.5, 0.5, 0.5} given as a fixed parameters 
and a3 as a varied parameters. The calculation 
for the parameter set given Hopf bifurcation 
point  a30 = 0.5 as a control parameter, equal to 
analysis result (12).

I. The case a3 < a30

 For the case a3 < a30  ( see Table 1) two 
eigenvalues for E1 is pure imaginary initially-
spiral stability corresponding with centre 
manifold in xy plane and one positive real 
eigenvalue corresponding with unstable one-
dimensional invariant curve in z axes. Hence 
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Table 1. Numerical experiment of stability equilibrium point.



the equilibrium point E1 is a locally unstable 
spiral source and E0 are saddle points with 
real eigenvalues having opposite sign. In 
this case, the prey x and top predator z can 
survive, growing periodically unstable. On 
the other hand, predator y persists and has 
populations that vary periodically stable. The 
solutions for this case are shown in Figure 1.

II. The case a3 = a30

 For the case a3 = a30 the equilibrium E1 
has three eigenvalues with zero real part 
corresponding with stable centre point in 
xy plane (see Table 1). In this case, prey x, 
predator y and top predator z persist and has 
populations that vary periodically over time 
with a common period as shown in Figure 2. 

Figure 1: The solution for  with a3 = 0.4 and t = 80 for different initial condition.
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III. The case a3 > a30

 For the case a3 > a30 (see Table 1) two 
eigenvalues for E1 are pure imaginary 
initially-spiral stability corresponding with 

centre manifold in xy plane and one negative 
real eigenvalue corresponding with stable 
one-dimensional invariant curve in z axes. 
Hence the equilibrium point E1 is locally 
stable spiral sink and E0 is a saddle point 

Figure 2: The solution for  with a3 = 0.5 and t = 80 for different initial condition.
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Figure 3: The solution for  with a3 = 0.6 and t = 80 for different initial conditions.

with real eigenvalues having opposite sign. 
In this case, top predator dies. On the other 
hand, prey x and predator y persist and has 
populations that vary periodically over time 
with a common period. The solutions are 
plotted in Figure 3.

 Persistence of top species z in (2) depends on 
the parameters a1, a3, b1, and c2. In particular, if, 

then species z decrease over time to die, while if, 
then species z survives. On the other hand, species 
prey x and middle predator y can persist for all 
conditions with stable asymptotically. 

Conclusions
In this paper, a modified ecological model with a 
tritrophic food chain of a classical Lotka-Volterra 
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linear functional response are studied. Three-
species food chain model are analysed and possible 
dynamical behaviour of this system is investigated 
at equilibrium points. It has been shown that 
the solutions possess Hopf bifurcations, as one 
parameter is varied, the dynamics of the system 
change from a stable to a centre to unstable. Both 
analytically and numerically, simulation shows 
that in certain regions of the parameter space, 
the model sensitively depends on the parameter 
values and initial condition. 
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