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Introduction
The chemostat is a laboratory apparatus used 
to study the competition between different 
populations of microorganisms and has the 
advantage that the mathematics is tractable and 
the parameters are readily measurable. Its place 
in theoretical ecology is well documented in the 
surveys of Waltman et al. (1980) and Wolkowicz 
& Lu (1992). Moreover, the chemostat model is 
the threshold for many variations (food chain, food 
web etc.) that yield more realistic biological and 
mathematical problems (Smith, 1982; Li, 1998; 
Li & Kuang, 2000; Grivet, 2001; El-Owaidy & 
Moniem, 2003; Sarah, 2008; Mada et al., 2012; 
Suwicha & Kornkanok, 2012; Mada et al., 2013).

The dynamics of predator, prey and 
substrate interaction has become a ubiquitous 
tool for studying a number of industrial fields 
such as waste treatment bioreactors. Over the 
years, researchers have come to appreciate that 
the study of predation could apply to studies of 
many natural ecosystems (Jost et al., 1973; May, 
1972; Tsuchiya et al., 1972). In the microbial 
ecology field, the dynamics of predator-prey 
interaction have also received a great deal of 
attention since they are the building elements of 
food chains and food webs. Early formulation 
of many simple two species models had been 
thoroughly explored (Smith & Waltman, 1995). 
After that, the discoveries expanded to include 
higher trophic levels (El-Owaidy & Moniem, 
2003; Li & Kuang, 2000; Zhu et al., 2002; 
Nasrin & Rana, 2011).

Most of the models in chemostat assume 
that the yield coefficient is a constant. The 
stability of simple food web model consisting 
of one predator and two preys with a growth 
limiting substrate had been theoretically 
investigated by Butler & Wolkowicz (1983). Li 
& Kuang (2000) considered a simple food chain 
in a chemostat with one predator and one prey, 
where predator feeds exclusively on the prey 
and the prey consumes the nutrient. El-Owaidy 
& Moniem (2003) also discussed a simple food 
chain with the extension that the predator feeds 
exclusively on the prey and the nutrient, and the 
prey consumes the nutrient in the chemostat. 
These studies (Butler & Wolkowicz, 1983; 
El-Owaidy & Moniem, 2003; Li & Kuang, 
2000) had limited to the case with constant 
yield coefficients. But the accumulation of 
the experimental data suggests that a constant 
yield fails to explain the observed oscillatory 
behavior in the chemostat. Crooke & Tanner 
(1982) suggested a linear function instead of the 
constant for the yield coefficient and declared a 
limit cycle may exists in his model. Pilyugin & 
Waltman (2003) constructed a chemostat with 
variable yield and studied the multiple limit 
cycles in the model. In the model the functional 
response functions were in the Monod type, 
and the yield coefficients were assumed linear 
functions of the concentration of nutrient. The 
stability of the solutions was obtained. Huang 
& Zhu (2003) generalized the yield function 
from linear to quadratic, cubic etc. and study the 
stability of the solutions, existence of the limit 
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cycles, the Hopf bifurcation and the positive 
invariant set for their system. Taking these 
ideas into account we are going to analyze the 
dynamics of a predator prey interaction with 
variable yield for prey population and constant 
yield for predator population. This model is an 
approximation to the realistic behavior of food 
chain in continuous culture where each organism 
is considered to be indifferent trophic levels 
such as primary producers, primary consumers, 
secondary consumers, and experimentally in lab 
by considering bacteria as prey, a protozoan as 
predator and glucose as the limiting nutrient.

The Model 
We shall consider the following model in the 
chemostat by a system of differential equations

     (1)

with s(0) = s0 > 0, x(0) = x0 > 0, y (0) = y0 > 0 .

In the system (1), s(t) denotes the nutrient 
concentration, x(t)  the concentration of the 
prey population and y(t) the concentration of 
the predator population. s0 denotes the input 
concentration of nutrient, D is the washout rate,  
mi the maximal growth rates, ki the Michaelis-
Menton constants and γi, i = 1,2, the yield 
coefficients. This is usually called the Monod 
model or the model with Michaelis-Menton 
dynamics. The system (1) with the constant yield 
coefficients was studied by (Li & Kuang, 2000). 
Here we will investigate (1) with γi = A + Bs 
(A, B are positive constants) and  which implies 
that the production of the microbial biomasses 
is sensitive to the concentration of the nutrient 
in the vessel.

Performing the standard scaling to the 
chemostat, let 

(2)

and then drop the bars and replacing τ by t, the 
system (1) becomes

    

   (3)

The parameters have been scaled by the 
operating environment of the food chain, which 
are determined by s0 and D. The variables are 
non-dimensional and the discussion is in  = 
{(s,x,y): 0 ≤ s < 1, x ≥ 0, y ≥ 0}.

Theoretical Results
Equilibrium Points and their Stability
The equilibrium points (in the form ≡ E(s,x,y)) of 
the system (3) will be denoted E1 = (1,0,0), E2 = 

(λs,(A + Bs0 λs) (1 – λs),0), EC = , 

where λs and λx are respectively unique solutions of 

and is defined as the unique solution of

The values of λs and λx represent the 
breakeven concentration of nutrient and prey 
respectively. Note that, prey free with predator 
steady state does not exist. The points  E1, E2 and 
EC will be considered as the equilibrium points 
if all of their components are nonnegative.

We will now discuss the existence of the 
steady states. The washout steady state E1 = 
(1,0,0), always exists. E2 is a equilibrium point 
provided  0 < λs < 1 and

Finally for EC to exists, must be 
positive or . 

Note that  is decreasing  
in s ∈ [0,1] with F(0) = 1 > 0 and 

if and only if

In this case where  for all x > 0, we regard 
λx = +∞. Therefore E2 exists if and only if  λs< 1, 
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Finally when the interior steady state,  EC  exists, 
the eigenvalues of J(EC) satisfy r3 + a1r

2 + a2r + 
a3 = 0, where

and

The Routh-Hurwitz criterion says that EC 
will be locally asymptotically stable if and only 
if a1 > 0, a2 > 0 and a1 a2 > a3.

We can summarize the above results in the 
following theorems.

Theorem 1. If λs > 1, then only E1 exists 
and  E1 is locally asymptotically stable. If λs < 
1,  and λx > (A + Bs0 λs)(1 – λs), then only 
E1 and E2 exist, E1 is unstable and E2 is locally 
asymptotically stable. If λs < 1 and λx > (A + 
Bs0 λs)(1 – λs), then E1, E2 and EC exist, and E1 
and  E2 are unstable. EC  is locally asymptotically 
stable if  and a1 > 0, a2 > 0 and a1 a2 > a3.

Global Stability and Hopf Bifurcation Analysis
In the previous section, we showed that if only 
E1 exists, then E1 is asymptotically stable, if E1 
and E2 exist, then E1 is unstable and E2 is locally 
asymptotically stable. In this section, we will 
show that E1 and E2 are globally asymptotically 
stable if exist. Hopf bifurcation analysis will be 
discussed of the system (3) in the solution plane 
y = 0.

Theorem 2. (i) If λs > 1, the equilibrium 
point E1 is globally asymptotically stable in ; 
(ii) If , λs < 1,   and λx > (A + Bs0 λs)
(1 – λs) the equilibrium point E2 is globally 
asymptotically stable, too.

and EC exists if and only if λs < 1 and λx < (A + 
Bs0 λs)(1 – λs).

Let  It is easy to see that

(i)  If 0 ≤ mi ≤ 1, i = 1,2, then 
 
and  

limt→+∞x(t) = 0 and limt→+∞y(t) = 0,

(ii)  If λs ≥ 1, then  < 0 and limt→+∞x(t) = 0,

(iii) If λx ≥ 1, then  < 0 and limt→+∞y(t) = 0.

Note that, if λs ≥ 1, the prey microorganism in 
the chemostat extinct, as so does the predator if 
λx ≥ 1. Thus in order to avoid the microorganisms 
vanishing, we need to make certain arrangement 
between the growth rates mi and the Michaelis-
Menton constant ki before the experiments or the 
bio-reactor starts.

Let 

In the next step we will investigate the local 
stability of these steady states by finding the 
eigenvalues of the associated Jacobian matrices. 
The Jacobian matrix of (3) takes the form

At E1, the eigenvalues of J(E1) are all negative if 
or, equivalently, λs > 1.

When E2 exists, the eigenvalues of J(E2) satisfy 
the equation
(r – a1)(r

2 – b1r + c1) = 0, where

When  then b1 > 0, and therefore by 
Routh-Hurwitz criteria, the roots of r2 – b1r + c1= 0
have negative real parts. The stability of E2 is 
determined by the sign of a1. Thus E2 is stable if
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Proof. Let

We first prove that Θ is positively invariant 
set of (3). Consider the face,  s = 0 and by 
equation (3), = 1 > 0. Thus any trajectory 
in {(s,x,y): s < 0, x > 0, y > 0} will go through s 
= 0 into  , but the reverse is not true. 

For the face M = s +  x + y – l = 0, (0 < l < +∞),

Since both x and y are bounded and all the 
parameters are positive, if l is 
sufficiently larger. That is any trajectory in  will 
cross M = s +  x + y – l = 0 into Θ. Moreover, because 
both x = 0, y = 0 are the solutions of equation (3), 
Θ is a positively invariant set of equation (3). In 
other words, any trajectory initiating in  will go 
to Θ when t→+∞. Therefore, both E1 and E2 are 
globally asymptotically stable.

For E2, in the solution plane y = 0, the system (3) 
is reduced to

      
   (4)                       

We would like to point out that (4) is a special 
case of the following system (Huang, 1990)

      
                   (5)

(6)

The following theorem is proved in (Huang, 
1990).

Theorem 3: Assume g(1) > 1,  if p > 0, then 
 is stable; if p < 0, it is unstable and there 

exists at least one limit cycle in (3) surrounding 
the equilibrium . 

Then, we have,

Theorem 4: System (4) has two equilibrium 
points M1(1,0) and M2(λs, (1 – λs)(A + Bs0 

λs)). In which M1 always exists and is stable 
whenever m1 < k1 + 1. Again M2 is stable if  
> R1 and unstable if  < R1. In the case when M2 
is unstable, there is at least one limit cycle in 
equation (4) surrounding M2.

Theorem 5: System (4) undergoes a Hopf 
bifurcation at .

Proof: Let be the Jacobian of (4) at 
M2. The corresponding characteristic equation is

 r2 + b1r +c1 = 0  (7)

the function trJ(μ) is increasing at μ = R1. Notice that

The sign of the real parts of the roots for 
(7) have been changed from positive to negative. 
That means the phase structure of M2(λs, (1 – λs)
(A + Bs0 λs)) changes from stable to unstable at 
R2 as μ increases. Thus, equation (4) undergoes 
a Hopf bifurcation at  = R1 by the definition 
(Zhang, 1987).

Numerical Simulation
The numerical experiments performed on the 
system (3) using experimental data confirm our 
theoretical findings. The model we considered 
exhibits a sequence of different stages of global 
behavior as various parameters change. The 
figures were constructed by proper choice of 
the kinetic parameters so that all the interesting 
behaviors of the system are observed. At each 
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stage, conditions have become sufficiently 
favorable for a new population to survive. We 
choose the basic parameters of the model (3) to 
be k1 = 0.3, k2 = 0.5, A = 0.3, B = 0.45, s0

 = 0.2. 
The initial condition (s0, x0, y0) = (0.6, 0.4, 0.7) is 
used to generate solution curves and trajectories 
in Figures 1-2.  Now we see how the parameters 
affect the dynamics of (3) if s0 is fixed. Assume 
that mi(i = 1,2) are small enough so that  λs > 
1, then all populations will be washed out (E1 
is stable) in the chemostat (Figure 1a). As mi 
is gradually increased, eventually there is a 
bifurcation when λs < 1,  < R1 and λx > (A + 
Bs0 λs)(1 – λs) hold.  In this case,  E1 loses its 
stability and the new bifurcated steady state E2 is 
asymptotically stable (Figure 1b). This interprets 
that only the prey population will survive. As E2 
becomes unstable, a locallyasymptotically stable 
interior steady state bifurcates from it. Figure 1c, 
shows a case in which m1 = 8.2 and m2 = 6.1, and 
our simulation work suggests that EC is a global 
attractor if it is locally asymptotically stable. As 

certain parameters increase or decrease further 
away, EC loses its stability and oscillatory 
solutions appear. These oscillatory solutions 
(see Figures 2a and 2c) appear to be the results 
of Hopf bifurcations. Figure 2a shows a case in 
which m1 = 3.2, m2 = 4.5, k1 = 0.2, k2 = 0.25, A = 
0.3, B = 0.5, s0  = 0.2  and the system (3) possesses 
a periodic solutions. Figure 2b indicates that 
perturbing m2 (while changing m2 = 4.5 to m2 
= 4.1 and keeping other parameters in Figure 
2a fixed) leads to a bifurcation. This seems to 
destroy the periodic solutions and possibly leads 
to the global stability of EC. Therefore, varying 
the values of maximal growth rates may affect 
the dynamics of (3) in a very significant way.

Furthermore, Figure 3 shows the dynamics 
of the system (4) which is the reduced form of 
the sytem (3) in the solution plane y = 0. For m1 
= 3.25, k1 = 0.2, A = 0.0189179, B = 2, s0  = 0.4,  
we have R1 = 0.00945896. Figures 3a-3b contain 
the solution curves and phase structure of M2 of 

Figure 1: (a) m1 = 1.2, m2 = 1.1, k1 = 0.3, k2 = 0.5, A = 0.3, B = 0.45, s0  = 0.2. The solution curves tend to E1, 
(b) m1 = 2.2 and other parameter values are as given in (a). The solution curves tend to the predator-free 
equilibrium point E2, (c) m1 = 8.2, m2 = 6.1, and other parameter values are as given in (a). The solution 
approaches a positive equilibrium point EC.

Figure 2: (a) m1 = 3.2, m2 = 4.5, k1 = 0.2, k2 = 0.25, A = 0.3, B = 0.5, s0  = 0.2. The solution appears to approach 
a periodic solution, (b) m2 = 4.1 and other parameter values are as given in (a). The solution oscillates but 
eventually approaches positive equilibrium point, (c) m1 = 5, m2 = 6, and other parameter values are as given in 
(a). The solution oscillates and seems to approach a periodic solution.
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the system (4), resulting the system undergoes 
a Hopf bifurcation at  = R1. The two plots in 
figures 3c-3d (while changing A = 0.0189179 to 
A = 0.0089179 and keeping other parameters in 
Figure 3a fixed) have  < R1 and the system (4) 
is unstable through limit cycle oscillation. The 
two plots in figures 3e-3f (while changing  A = 
0.0189179 to A = 0.0209179 and keeping other 
parameters in Figure 3a fixed) have  > R1and 
all plotted trajectories tend to M2, resulting in a 
stable situation.

Discussion
In this paper, we considered a simple food 
chain in chemostat with variable yield for prey 
population and constant yield for predator 
population. In this model, the prey consumes the 
nutrient and the predator consumes the prey but 
the predator does not consume the nutrient. We 
assume that the functional response functions 
are in Michaelis-Menton type. In this study 
we established sufficient conditions for the 
existence and local stability of the equilibria by 
using Routh-Hurwitz criterion for system (3).
We found that the washout equilibrium point 

is a global attractor if it is the only steady state 
(this happens when λs > 1). This confirms the 
intuition that all the populations cannot persist 
if the growth rates of the prey and predator are 
relatively small and close to one. When E1 and  
E2 are the only equilibrium points, we found that 
E1 is unstable and E2 is locally asymptotically 
stable. The global stability of E2 implies that 
the washout of the predator in the chemostat 
does not depend on the initial density levels of 
prey and predator. Therefore, the principle of 
competitive exclusion has been well established 
and confirmed. That is, when two, and only 
two, species compete for a limiting substrate, 
one must be eliminated, as seen in Figure 1b. 
We also showed that when EC exists and is 
locally asymptotically stable, then the prey and 
predator coexist in the sense that the system 
is uniformly persistent and the conservation 
principle is circumvented. In this case, a switch 
of the stability of EC may occur. Finally, it has 
been analytically and numerically shown that 
in certain regions of the parameter space, the 
model with variable yield leads to oscillatory 
coexistence of the population in chemostat and 

Figure 3: (a) m1 = 3.25, k1 = 0.2, A = 0.0189179, B = 2, s0  = 0.4, (s0, x0)=(0.4,0.5). The solution curves of the 
system (4) when  = R1, (b) The system (4) undergoes a Hopf bifurcation at   = R1, (c)  The solution curves 
of system (4) when  < R1, (d) A plot of trajectories of the system (4) when  < R1, (e) The solution curves of 
system (4) when  > R1, (f) A plot of trajectories of the system (4) when   > R1.
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a local Hopf bifurcation is possible. Therefore, 
this population dynamics permits a limit cycle 
behavior.
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