


1100038672 Percustakaan Kolei Universiti Sains Dan Teknologi Malavsia (KUSTEA) EN VA

1100038672

Distribution of aliphatic and atomatic hydrocarnons in surface water of Kertih river, Terengganu.

LP 4 F.1 23 2005

DISTRIBUTION OF ALIPHATIC AND AROMATIC HYDROCARBONS IN SURFACE WATER OF KERTIH RIVER, TERENGGANU.

By

Chai Yin Woan

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Analytical and Environmental Chemistry)

Department of Chemical Sciences Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2005

1100038672

JABATAN SAINS KIMIA FAKULTI SAINS DAN TEKNOLOGI KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk:

Distribution of Aliphatic and Aromatic Hydrocarbons in Surface Water of Kertih River, Terengganu oleh Chai Yin Woan, No. Matrik UK 6751 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Kimia sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains (Kimia Analisis Dan Persekitaran), Fakulti Sains dan Teknologi, Kolej Universiti Sains dan Teknologi Malaysia.

Disahkan oleh:

Penyelia Utanaa, MADYA DR. MOHAMAD KAMIL B. ABDUL RASHID Nama: Prof. Madya Dr. Mohamad Kamil B. Abdul Rashid Cop Rasmi: Kolej Universiti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia (KUSTEM) 21030 Kuala Terengganu.

23.6.2005 Tarikh: ...

Penyelia Bersama Jabetan Sains Kimia Nama: Dr. Habsah Mohanyaki Sains dan Teknologi Cop Rasmi: Kolej Universiti Sains dan Teknologi Melaysia 21030 Kuala Terengganu.

Ketua Jabatan Sains Kimia Nama: Prof. Madya Dr. Ku Halim Ku Bulat Cop Rasmi: **PROF. MADYA DR. KU HALIM KU BULAT**

Ketua Jabatan Sains Kimia Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia 21030 Kuala Terengganu. Tel: 09-6683257 Tarikh:....

fune los Tarikh:

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Dr. Prof Madya Dr. Mohamed Kamil B. Abdul Rashid for giving and sharing him ideas and suggestions to guide me in this project. I'm very appreciative of all the support you've given me. My special thanks also to my co-supervisor Dr. Habsah Mohamad and Dr Ismat Ali who give me guidance and support during this project.

I also would like to express my thanks to the lab assistants of Chemistry and Oceanography Department, En. Ruzeman, En. Maswadi, En. Sulaiman, En. Muzaffeq, En. Kamari, En. Kamarun and En. Raja for their kind help and assistance. Besides, thanks to Kak Nori who always guide and teach me in using GC-FID.

I would like to thank all the masters' student, Abang Aziim, Kak Hasra, Benny, Zhao Choon, Kim Yew and Hock Seng for their guidance and in improving my project.

To my beloved parents and brothers, I am very grateful for their faithful support and encouragement. Last but not least, I also wish to acknowledge my friends, Neo Poh Poh, Kok Siaw Hun, Khong Fong Chee, Shirley Yeoh, Alex Chew, Ong Yik Seng, Yao Hon Lim, Tay See Yeng and all my other friends who have given me support and advice from the beginning until end of the project.

Thanks.

TABLE OF CONTENTS

				Page	
ТАВ	TABLE OF CONTENTSiii				
LIST	OF T A	BLES		vi	
LIST	OF FI	GURES	\$	vii	
LIST	OF Al	PPENDI	CES	xi	
LIST	OF AI	BBREV	IATIONS	xii	
ABS	TRAC ⁷	Γ		xiv	
ABS	TRAK			XV	
1.0	INT	RODUC	TION	1	
	1.1	Backg	round of Study	1	
	1.2	Signif	icance of Study	3	
	1.3	Object	tives of Study	3	
2.0	LITE	CRATUI	RE REVIEW	- 4	
	2.1	Hydro	carbons	4	
		2.1.1	Aliphatic Hydrocarbons	6	
			2.1.1a Saturated Aliphatic Hydrocarbons	6	
			2.1.1b Unsaturated Aliphatic Hydrocarbons	8	
		2.1.2	Aromatic Hydrocarbons	10	

	2.2	Sources of Hydrocarbons Entering the River	
		2.2.1 Natural Sources	12
		2.2.1a Terrestrial Biological System	12
		2.2.1b Forest Fires	13
		2.2.2 Anthropogenic Sources	14
		2.2.2a Industrial Effluent	14
		2.2.2b Runoff	15
	2.3	PAH in Water	16
	2.4	Instrumentation	19
3.0	MET	HODOLOGY	22
	3.1	Research Location Study	22
	3.2	Cleaning of Glassware	28
		3.2.1 Chemicals and Reagents	28
	3.3	Sampling Technique	29
	3.4	Water Sample Analysis	30
	3.5	Desulphurization	31
		3.5.1 Copper Treatment	31
	3.6	Sample Fractionation	32
		3.6.1 Alumina and Silica Gel Column	32
	3.7	Gas Chromatography Analysis (GC-FID)	33
		3.7.1 Identification and Quantification	34

	3.8	Standard	34
	3.9	Formula of recovery standard	36
4.0	RESU	LTS AND DISCUSSION	40
	4.1	Aliphatic hydrocarbon in surface water	40
	4.2	Aromatic hydrocarbon in surface water	58
	4.3	Unresolved complex mixture	76
	4.4	Relationship between physical and chemical parameter in Surface water	80
		4.4.1 The changing of salinity in surface water among three samplings	80
		4.4.2 Relationship between pH and salinity among three samplings	82
		4.4.3 Relationship between pH and salinity for three samplings	84
5.0	CONC	CLUSION AND SUGGESTIONS	85
	5.1	Conclusions	85
	5.2	Suggestion	87
REFE	RENC	ES	88
APPENDIX 93			93
CURRICULUM VITAE 108			

LIST OF TABLES

Table		Page
2.1	Physical properties of Alkanes	7
2.2	Physical properties of Alkenes	9
2.3	Structures of Aromatic Hydrocarbons	11
2.4	Physical and Chemical Properties of PAHs	18
3.1	Coordinate of study area	23
3.2	Internal Standard for each hydrocarbon component	35
3.3	External standards for Aliphatic Hydrocarbons	37
3.4	External standards for Aromatic Hydrocarbons	38
4.1	Concentration of total aliphatic hydrocarbon had been identified	41
4.2	CPI value during three sampling periods	53
4.3	Average concentration of AH compounds for 8 stations	55
4.4	Studies of TAH in surface water in Malaysia	57
4.5	Concentration of identified PAH for three time of sampling	58
4.6	The average concentration of PAHs during three samplings	71
4.7	Average concentration of identified PAHs compounds	73
4.8	Studies of PAHs in surface water in Malaysia and others countries	75
4.9	Concentration of UCM of each station	76
4.10	Studies of UCM in the water and sediment of World River	79

LIST OF FIGURES

Figur	Figures	
2.1	General classification of Hydrocarbons	5
3.1	Sampling station in study area	22
3.2	Picture of Station 1 (S1; Fishing village)	24
3.3	Picture of Station 2 (S2; near to discharge outlet)	24
3.4	Picture of Station 3 (S3; near to mangrove area)	25
3.5	Picture of Station 4 (S4; near to mangrove area)	25
3.6	Picture of Station 5 (S5; near to dumping site)	26
3.7	Picture of Station 6 (S6; near to mangrove area)	26
3.8	Picture of Station 7 (S7; near to discharge outlet)	27
3.9	Picture of Station 8 (S8; near to Kertih airport)	27
3.10	Process Analyzes Hydrocarbons	36
4.1	Concentration of total aliphatic hydrocarbons (TAHs) had been identified	41
4.2	Distribution of total identified AHs in surface water during July 2004	42
4.3	Distribution of total identified AHs in surface water during Sept 2004	42
4.4	Distribution of total identified AHs in surface water during Dec 2004	42
4.5a 4.5b	Concentration of identified AH compounds at S1 during 3 times of sampling. Chromatogram of AH compounds at S1 during 3 rd sampling.	45 45

4.6a	Concentration of identified AH compounds at S2 during 3 times of sampling.	46
4.6b	Chromatogram of AH compounds at S2 during 2 nd sampling.	46
4.7a	Concentration of identified AH compounds at S3 during 3 times of sampling.	47
4.7b	Chromatogram of AH compounds at S3 during 3 rd sampling.	47
4.8a	Concentration of identified AH compounds at S4 during 3 times of sampling.	48
4.8b	Chromatogram of AH compounds at S4 during 3 rd sampling	48
4.9a	Concentration of identified AH compounds at S5 during 3 times of sampling.	49
4.9b	Chromatogram of AH compounds at S5 during 1 st sampling	49
4.10a	Concentration of identified AH compounds at S6 during 3 times of sampling.	50
4.10b	Chromatogram of AH compounds at S6 during 3 rd sampling	50
4.11a	Concentration of identified AH compounds at S7 during 3 times of sampling.	51
4.11b	Chromatogram of AH compounds at S7 during 3 rd sampling	51
4.12a	Concentration of identified AH compounds at S8 during 3 times of sampling.	52
4.12b	Chromatogram of AH compounds at S8 during 3 rd sampling	52
4.13	Average concentrations of AH compounds for 8 stations.	55
4.14	Distribution of total identified PAH in surface water during July 2004.	59
4.15	Distribution of total identified PAH in surface water during Sept 2004.	59
4.16	Distribution of total identified PAH in surface water during Dec 2004	59
4.17	Total concentration of identified PAH	60

4.18a	Concentration of identified PAH compounds at S1 during 3 times of sampling.	63
4.18b	Chromatogram of PAH compounds at S1 during 3 rd sampling	63
4.19a	Concentration of identified PAH compounds at S2 during 3 times of Sampling	64
4.19b	Chromatogram of PAH compounds at S2 during 3 rd sampling	64
4.20a	Concentration of identified PAH compounds at S3 during 3 times of sampling.	65
4.20b	Chromatogram of PAH compounds at S3 during 3 rd sampling	65
4.21a	Concentration of identified PAH compounds at S4 during 3 times of sampling.	66
4.21b	Chromatogram of PAH compounds at S4 during 3 rd sampling	66
4.22a	Concentration of identified PAH compounds at S5 during 3 times of sampling.	67
4.22b	Chromatogram of PAH compounds at S5 during 3 rd sampling	67
4.23a	Concentration of identified PAH compounds at S6 during 3 times of sampling.	68
4.23b	Chromatogram of PAH compounds at S6 during 3 rd sampling	68
4.24a	Concentration of identified PAH compounds at S7 during 3 times of sampling.	69
4.24b	Chromatogram of PAH compounds at S7 during 3 rd sampling	69
4.25a	Concentration of identified PAH compounds at S8 during 3 times of sampling.	70
4.25b	Chromatogram of PAH compounds at S8 during 3 rd sampling	70
4.26	The average concentration of PAHs for three samplings.	71
4.27	Total concentration of UCM of each station during second sampling which carried out on 20 September 2004.	77

4.28	Chromatogram of GC-FID showed presence of UCM in detection aliphatic species in sample of station 3.	77
4.29	Graph and surfer plot of salinity surface water during 9 July 2004	80
4.30	Graph and surfer plot of salinity surface water during 20 Sept 2004	80
4.31	Graph and surfer plot of salinity surface water during 25 Dec 2004	80
4.32	Changing of salinity and pH with depth among sampling sites during the sampling trips.	81
4.33	Relationship between pH and salinity in surface water during 9 July 2004.	82
4.34	Relationship between pH and salinity in surface water during 20 Sept 2004	82
4.35	Relationship between pH and salinity in surface water during 25 Dec 2004.	83
4.36	Relationship between pH and salinity for three samplings	84

LIST OF APPENDICES

Appendix		Page
I	External Standard for Aliphatic Hydrocarbons (AHs)	93
II	Chromatogram of AH external standard	94
III	External Standard for Aromatic Hydrocarbons (PAHs)	95
IV	Chromatogram of PAH external standard	96
V	Concentrations of identified AHs during 1 st sampling (9 July 2004)	97
VI	Concentrations of identified AHs during 2 nd sampling (20 September 2004)	98
VII	Concentrations of identified AHs during 3 rd sampling (25 December 2004)	99
VIII	Concentrations of identified PAHs during 1 st sampling (9 July 2004)	100
IX	Concentrations of identified PAHs during 2 nd sampling (20 September 2004)	101
Х	Concentrations of identified PAHs during 3 rd sampling (25 December 2004)	102
XI	Recovery of AHs and PAHs samples during three sampling times	103
XII	Two-factor ANOVA without Replication for AHs	104
XIII	Two-factor ANOVA without Replication for PAHs	105
XIV	Pictures (solvent extraction, alumina & silica gel column, rotary evaporator and ultrasonic)	106
XV	Picture of GC-FID	107

LIST OF ABBREVIATIONS

%	Percentage
⁰ C	Degree Celsius
μ	micro
g	gram
L	liter
sec	second
AH	Aliphatic hydrocarbon
Amt	Amount
CPI	Carbon Preference Index
DCM	Dichloromethane
dil	dilution
DOE	Department of Environmental
GC	Gas Chromatography
GC-FID	Gas Chromatography Flame Ionization Detector
GC-MS	Gas Chromatography Mass Spectrometry
HC1	Hydrochloric acid
inj	injection
IS	internal standard
MWQM	Manual Water Quality Monitoring
Na_2SO_4	Anhydrous sodium sulphate
PAHs	Polycyclic Aromatic Hydrocarbons

RF	Response Factor
std	Standard
ТАН	Total Aliphatic Hydrocarbon
UCM	Unresolved complex index
Vol	Volume

ABSTRACT

This study was done to determine the distribution of hydrocarbons (aliphatic and aromatic) in the surface water of Kertih River, Kemaman, Terengganu. This present study showed that the total identified aliphatic hydrocarbons in surface water varied from 12.85 to 301.03 µg/L for the three sampling times. The first sampling, July 2004 showed a concentration total identified aliphatic hydrocarbons ranged from 26.12 to 132.24 µg/L, second sampling period, September 2004 with ranged of 18.40 to $301.03 \ \mu g/L$ and the third sampling, December 2004 was between 12.85 to 39.29 µg/L. The concentrations of PAHs in water samples from Kertih River were observed between a ranged of 2.64 to 32.19 μ g/L for the three periods of sampling. During the first sampling period, July 2004, the identified PAHs had showed the concentration range from 7.39 to 21.77 µg/L, second sampling period with range of between 11.65 to 32.19 µg/L and the last sampling period showed range concentrations between 2.64 to 10.67 µg/L. Among three samplings, it's presented the identified aliphatic hydrocarbon compounds ranging from C_{21} to C_{32} except second sampling. PAHs in the Kertih River were 54%, showing the high molecular weight PAHs were abundant in the water samples. The main source of hydrocarbon occurrence in Kertih River may from petrochemical industries and anthropogenic sources and this evidence is supported by the CPI values, presence of UCM during the second sampling period and indication of certain species.

Taburan Hidrokarbon (Alifatik & Aromatik) Di Permukaan Air Sugai Kertih, Kemaman, Terengganu.

ABSTRAK

Kajian ini adalah untuk menentukan taburan hidrokarbon (alifatik dan aromatik) dalam permukaan air di Sungai Kertih, Kemaman, Terengganu. Kajian ini telah menunjukkan jumlah kepekatan hidrokarbon alifatik yang dikenalpasti adalah berjulat 12.85 hingga 301.03 µg/L dalam ketiga-tiga persampelan. Persampelan pertama, Julai 2004 telah menunjukkan jumlah kepekatan hidrokarbon alifatik yang dikenalpasti adalah berjulat 26.12 hingga 132.24 µg/L, persampelan kedua pada September berjulat 18.40 hingga 301.03 µg/L dan persampelan ketiga pada December 2004 adalah berjulat 12.85 hingga 39.29 µg/L. Pada persampelan pertama, julat jumlah kepekatan hidrokarbon aromatik yang dikenalpasti adalah di antara 7.39 hingga 21.77 μg/L, manakala ia berjulat 11.65 hingga 32.19 μg/L bagi persampelan kedua dan persampelan terakhir adalah berjulat 2.64 hingga 10.67 µg/L. Ketiga-tiga persampelan telah menunjukkan kewujudan spesies hidrokarbon alifatik dari C₂₁ hingga C₃₂ yang dikenalpasti kecuali persampelan kedua. PAHs yang berjisim berat molekul yang tinggi sebanyak 54 % menunjuk kewujudan di dalam Sungai Kertih. Sumber utama hidrokarbon adalah mungkin berpunca dari kilang petrokimia dan sumber antropogenik dan ini disokong dengan nilai CPI, kewujudan UCM pada persampelan kedua serta kewujudan spesies yang tertentu.