GOMPINION BETWEEN LEE AND KNAM ALBORITHM ARREST DIE SELD DETENDEN FRANC DIE NOTARE

CONTRACT TO THE TERMS OF THE

... FAGRITM OF SQ ENGELERIN TROPESSLEAT

| 1777 | 1778 | 1777 | 0.00 | 1.00 | 0.00 |

•

1100034570

LP 3 FST 3 2005

1100034570

Comparison between lee and kuan algorithm for oil spill detection from sar images / Amirah Mustafa.

PERPUSTAKAAN KOLEJ UNIVERSITI SAINS & TEKNOLOGI MALAYSIA 21030 KUALA TERENGGANU

	21030 Kt	JALA TERE	NGGANU	
	11	0003	4570	
			- 1	
			- i	
			_	
34			<u> </u>	
1				
			1	

Lihat sebelah

HAK MILIK PERPUSTAKAAN KUSTEM

COMPARISON BETWEEN LEE AND KUAN ALGORITHM FOR OIL SPILL DETECTION FROM SAR IMAGES

Ву

Amirah Binti Hj. Mustafa

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

> Department of Marine Science Faculty of Science and Technology 2005

This project report should be cited as:

Amirah, M., 2005. Comparison between Lee and Kuan Algorithm for Oil spill Detection from SAR Images. Final Year Project Report, Bachelor of Marine Science, Faculty of Science and Technology, University College Science and Technology Malaysia (KUSTEM), Terengganu. 60 p.

No part of this report may be reproduced by any mechanical, photographic or electronic process or in the form of photography recording, nor may it be stored in a retrieval system, transmitted or otherwise copied for public or private use, without written permission from author and supervisor of the project.

DEPARTMENT OF MARINE SCIENCE FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY MALAYSIA

RESEARCH PROJECT FINAL DRAF APPROVAL AND VALIDATION FROM I AND II

I certify that the report of this final year project entitled as:

Comparison between Lee and Kuan Algorithm for Oil Spill Detection from SAR Images by Amirah Binti Mustafa, Matric No. UK 6483 has been read and all the alteration and correction recommended by examiners have been done. This final draft submitted to Department of Marine Science has been accepted as fulfillment of the requirement for Bachelor of Science (Marine Science) under the Faculty of Science and Technology, University College Science and Technology

Approved by:

Main Supervisor

Name: Dr Maged Mohmood Marghany

DR. MAGED MOHMOUD MARGHANY

Peneyeren

Jahren Perikanan dan Seire Semudera

Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia

21030 Mengabang Telipet Kuala Terengganu

Head of Marine Science Department

DR. AHMAD SHAMSUDDIN B. AHMAD

Ketua

Jabatan Sains Samudera Fakulti Sains dan Teknologi

Kolej Universiti Sains Jan Teknologi Malaysia 21030 Kuala Terengganu Date:

Date: 9/4/05

ACKNOWLEDGEMENT

Alhamdulillah, praise to Allah for His blessing which enabled me to finish this project. I would like to take this opportunity to express my sincere gratitude and appreciation to those who had helped me to make this project running smoothly.

Firstly, I wish to thank my supervisor Dr. Maged Marghany Mahmood for his guidance, suggestion and encouragement completion of my study.

Not to forget the Science Officer at Informatics Lab in INOS, En. Sufian B. Idris, Science Officer at FST, En. Azahari Muda and Pn. Nora Binti Ibrahim, Lab Assistant at Remote Sensing Lab and En Helmi from Malaysian Meteorological Center. A lot of thank for your valuable help.

Special thanks go to my lovely friends, Haslina, Nurulaini and Ismanura, Dila, Jue, Yatie, Azey and Eija and my Marine Science outstanding buddies and others who directly or indirectly involved.

Especially to my understanding parents, Hj. Mustafa Bin Ismail and Hjh. Zaharah Binti Ibrahim, my elder sister Nurulhuda thanks for your support, understanding and concern during the period I had done this project.

TABLE OF CONTENTS

			PA	AGE
APP	ROVAL FO	RM		
ACK	NOWLEDG	GEMENT		ii
TAB	LE OF CON	TENTS		iii
LIST	OF TABLE	ES		vi
LIST	OF FIGUR	ES		vii
LIST	LIST OF PLATES			viii
LIST	OF ABBRI	EVIATIONS / SYMBOLS		ix
LIST	OF APPEN	NDICES		x
ABS	TRACT			xi
ABS	TRAK			xii
CHA	APTER 1	INTRODUCTION		1
1.1	OBJECTI	VES		5
CHA	APTER 2	LITERATURE REVIEW		6
2.1	Effects of	Oil spill in marine ecosystem		6
2.2	Sparkle an	d Noise Reduction		7
2.3	Unsupervi	sed Classification		10

CHA	PTER 3 METHODOLOGY	11
3.1	Study Area	11
3.2	SAR Image Data	12
3.3	Image Processing	12
3.4	Detection of Oil Spill	14
3.5	Verification Using Direct Analysis	15
	3.5.1 Lee Filter	15
	3.5.2 Kuan Filter	18
СНА	PTER 4 RESULT	20
4.1	Climate Information	21
4.2	Image From Radar	21
4.3	Pre-Prosesing	22
4.4	Adaptive Filter	
	4.4.1 Image from Lee algorithm at oil slick area	23
	4.4.2 Image from Kuan algorithm at oil slick area	26
	4.4.3 Image from low wind speed area	29
	4.4.4 Image near land	31
СНА	PTER 5 DISCUSSION	34
5.1	Unsupervised	34
5.2	Adaptive Filter	35
	5.2.1 Oil Slick Area	35
	5.2.2 Low Wind Speed Area	39

	5.2.3 Land Area	41
CHAI	PTER 6 CONCLUSION AND RECOMMENDATIONS	45
6.1	Conclusion	45
6.2	Recommendations	46
REFE	ERENCES	47
APPE	ENDICES	49
VITA	AE	60

LIST OF TABLES

TABLE		PAGE
4.1	Record hourly mean surface wind	21
5.0	Data from Lee image at oil slick area	36
5.1	Data from Kuan image at oil slick area	36
5.2	Data from Lee image at low wind speed area	39
5.3	Data from Kuan image at low wind speed area	39
5.4	Data from Lee image at land area	42
5.5	Data from Kuan image at land area	42

LIST OF FIGURES

FIGURE		PAGE	
1.0	The beam modes are characterized by a specific beam resolution angle and profile.	3	
2.0	Calculation of median and mean filters for 3 x 3 windows	8	
2.1	Result of median and mean filtering for step edge and double pulse	9	
3.0	Map of Study Area at Malacca Strait near Banting and Sepang	12	
3.1	Oil spill detection and classification algorithm for SAR image	14	
4.0	Graph hourly wind speed on 20 December	21	
4.1	Graph hourly mean surface direction on 20 December	21	
5.0	Bar chart for Lee algorithm at oil slick area	36	
5.1	Bar chart for Kuan algorithm at oil slick area	37	
5.2	Histogram for Lee algorithm with window 7x7- oil slick	38	
5.3	Histogram for Kuan algorithm with window 11x11- oil slick	38	
5.4	Bar chart for Lee algorithm at low wind speed area	40	
5.5	Bar chart for Kuan algorithm at low wind speed area	40	
5.6	Histogram for Lee algorithm with window 7x7- low wind speed	41	
5.7	Histogram for Kuan algorithm with window 11x11- low wind speed	41	
5.8	Bar chart for Lee algorithm at land area	42	
5.9	Bar chart for Kuan algorithm at land area	43	
5.10	Histogram for Lee algorithm with window 7x7- land	43	
5.11	Histogram for Kuan algorithm with window 11x11- land	44	

LIST OF PLATES

PLATE		PAGE
4.0	Raw image	23
4.1	Geometric image	23
4.2	Lee image with linear enhancement by using window 3x3	24
4.3	Lee image with linear enhancement by using window 5x5	25
4.4	Lee image with linear enhancement by using window 7x7	25
4.5	Lee image with linear enhancement by using window 9x9	26
4.6	Lee image with linear enhancement by using window 11x11	26
4.7	Kuan image with root enhancement by using window 3x3	27
4.8	Kuan image with root enhancement by using window 5x5	28
4.9	Kuan image with root enhancement by using window 7x7	28
4.10	Kuan image with root enhancement by using window 9x9	29
4.11	Kuan image with root enhancement by using window 11x11	29
4.12	Lee image with linear enhancement by using window 7x7	30
4.13	Kuan image with root enhancement by using window 11x11	31
4.14	Lee image with adaptive enhancement by using window 7x7	32
4.15	Kuan image with root enhancement by using window 11x11	32
5.0	Unsupervised image	35

LIST OF ABBREVIATIONS

APC Antenna Pattern Correction

GHz Gigahertz

HH Horizontal-horizontal

m/s Meter per second

Degree

PACE Picture Analysis, Correction and Enhancement

RMS Root Mean Square

SAR Synthetic Aperture Radar

LIST OF APPENDICES

APPENDIX		PAGE	
1	Lee Image - low wind speed area (look-alike)	49	
2	Kuan Image - low wind speed area (look-alike)	54	
3	Climate Information	59	

ABSTRACT

An important and serious cause of marine pollution at sea surface is oil spill pollution. Oil spill usually occur at main ship traffic routes, near to platforms or in mouth of rivers or estuaries. The application of RADARSAT satellites are being used to routinely monitor ocean oil pollution. Their main advantages are independence of the sun light. That mean its can be used at day and night. However, they will present speckle and noise. To reduce these speckle and noise, adaptive filter was used. This study mainly concerned on comparison between Lee and Kuan Algorithm for oil spill detection from SAR images. Lee algorithm was used to determine the linearity of oil movements, while Kuan algorithm was used to enhance ships. This study shows that different algorithm was given different output. Window 7x7 was the best filter for Lee algorithm and 11x11 for Kuan algorithm. Image classification was used to get information about oil spill thickness and area of spillage. Sometime, not all dark slicks were oil slick. It can be a look-alike that cause by natural environment or low wind speed. Mean value of backscatter at oil slick area was 34.4 + 0.5. Sea condition at this area is calm and wind speed were around 6 m/s while mean direction surface were around 50° from North.

ABSTRAK

Tumpahan minyak merupakan satu pencemaran serius terutama di laut. Biasanya terjadi di laluan utama kapal, berhampiran pelantar minyak atau berdekatan muara sungai. Aplikasi Radarsat satelit sangat berguna untuk pemantauan pencemaran minyak yang berlaku di laut. Kebaikan utama ialah ianya tidak memerlukan cahaya matahari untuk berfungsi dan boleh digunakan pada waktu malam. Selain itu, ianya juga menghasilkan tompokan dan gangguan. Untuk mengurangkan gangguan ini, 'adaptive filter' digunakan. Tujuan utama kajian ini dijalankan ialah untuk membandingkan penggunaan Lee algoritma dengan Kuan algoritma dalam mengesan tumpahan minyak dengan menggunakan SAR imej. Lee algoritma didapati dapat mengesan tumpahan minyak secara linear manakala Kuan algoritma dapat mengesan kehadiran kapal. Penggunaan algoritma yang berbeza akan menghasilkan output yang berbeza. Tetingkap 7x7 susuai digunakan untuk Lee algorism manakala tetingkap 11x11 sesuai untuk Kuan algoritma. Pengkelasan imej dibuat untuk mendapatkan nilai ketebalan dan kawasan penyebaran tumpahan minyak. Kadangkala kawasan gelap merupakan kawasan 'look-alike'. lanya mungkin disebabkan oleh aktiviti semulajadi atau kawasan tiupan angin yang lemah. Nilai mean bagi kawasan tumpahan minyak ialah 34.4 + 0.5 dengan kadar tiupan angin ialah 6 m/s ke arah 50° utara.