


PDF processed with CutePDF evaluation edition www.CutePDF.com

PERPUSTAKAAN UNIVERSITI PUTRA MALAYSIA TERENGGANI)

24520 24520 rsill Toronon westernautra

9

JES- 06

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU

 21030 KUALA I	ERENGOANU	-
 		-
 		-
		_
	l ihot ca	

> HAK MILIK PERPUSTAKAAN KUSTEM

HYDROACOUSTIC ASSESSMENT OF PELAGIC FISH AROUND BIDONG ISLAND, TERENGGANU, MALAYSIA

MUSSE GABOBE HASSAN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

1999

HYDROACOUSTIC ASSESSMENT OF PELAGIC FISH AROUND BIDONG ISLAND, TERENGGANU, MALAYSIA

By

MUSSE GABOBE HASSAN

Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Applied Science and Technology, Universiti Putra Malaysia

FEBRUARY 1999

1000398510

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST

Biers he to Allah (S.W.), the Almighty who had created me and then gave ne such an opportunity to conduct a research and to complete its report as my inster degree programme.

Numerous people are thanked for maxing this mentioned for their regular motivation

DEDICATION

THIS WORK IS DEDICATED TO MY PARENTS, BROTHERS AND SISTERS AND ALSO TO SOMALI PEOPLE IN PARTICULAR THOSE WHO ARE SUFFERING DUE TO HARDSHIPS AND DIFFICULTIES.

ind comments during my study period. Similar thanks are due to Mr. Mohd. Zaid

Oreat acknowledgements and gratitude go to Asaoc. Prof. Dr. Hj. Hond, Zaki Din Mood, Said, the Deputy Rector of Universiti Putra Małaysła, Assoc, Prof. Dr. Neur Azhur Mohd, Shazili, the Dean of Graduate School of Universiti Putra Matavsia, Assoc. Prof. Dr. Paizah Shaharem, Assoc, Prof. Dr. Hassan Daud Mr. Aizum Zainel Abidin and Mr. Essa Daim who have helped and guided me one way or an other. I am also grateful to Mr. Davd Harisson for existing this thesis. Likewise, I would like to show my appreciation to Mr. Razarudin Bin Braham for

I would also like to acknowledge to Universiti Potts Maleyse for the Research Assistantship under IRPA, which I was temperatily employed during my condiciatore as a Master of Science stildent. Especial arknowledgements are to the more of the Faculty of Applied Science and Technology for their assistance.

ACKNOWLEDGEMENT

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

Bless be to Allah (S.W.), the Almighty who had created me and then gave me such an opportunity to conduct a research and to complete its report as my master degree programme.

Numerous people are thanked for making this thesis becomes completed. In short, the following particulars have to be mentioned for their regular motivation through my tenature of study period.

First and foremost, ever lasting gratitude goes to the chairman of the supervisory committee, Dr. Khalid Bin Hj. Samo whose constant supervision, valuable guidance and encouragement during my study will ever be remembered. Similarly, I would like to extend my sincerest gratitude and completely wholehearted acknowledgements to the members of the committee, namely Prof. Dr. Hj. Mohd. Azmi Bin Ambak and Dr. Hj. Sakri Bin Ibrahim for their advice and comments during my study period. Similar thanks are due to Mr. Mohd. Zaidi Bin Zakaria.

Great acknowledgements and gratitude go to Assoc. Prof. Dr. Hj. Mohd. Zaki Bin Mohd. Said, the Deputy Rector of Universiti Putra Malaysia, Assoc. Prof. Dr. Noor Azhar Mohd. Shazili, the Dean of Graduate School of Universiti Putra Malaysia, Assoc. Prof. Dr. Faizah Shaharom, Assoc. Prof. Dr. Hassan Daud, Mr. Aizam Zainal Abidin and Mr. Essa Daim who have helped and guided me one way or an other. I am also grateful to Mr. Daud Harisson for editing this thesis. Likewise, I would like to show my appreciation to Mr. Razarudin Bin Ibrahim for translating the abstract into Malay language.

I would also like to acknowledge to Universiti Putra Malaysia for the Research Assistantship under IRPA, which I was temporarily employed during my candidature as a Master of Science student. Especial acknowledgments are to the staffs of the Faculty of Applied Science and Technology for their assistance. I wish to express my appreciation to Mr. Manaf, Mr. Yakop, Mr. Ayub and the crewmembers of UPERTAMA III who have helped me during my data collection.

In addition, my moral satisfaction and appreciation go to Dr. T. Sasakura (Furuno Co.), Mr. Ismail Taupik, Mr. Raja Bidin R. Hassan and Mr. Fujiwara of the Department of Fisheries Kuala Terengganu and SEAFDEC Kuala Terengganu for their contribution to this thesis.

Last but not least, I wish to express my ultimate gratitude to all postgraduate members for their assistance and sympathy during my study period which I can not express a piece of writings.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS	• • • • • •
LIST OF FIGURES	
LIST OF TABLES	
LIST OF PLATES	
GLOSSARY	
ABSTRACT	
ABSTRAK	
CHAPTER	
I INTRODUCTION Background of the Research Statement of the Problems The Objective of the Study	
II LITERATURE REVIEW	
Advances in the Application of Fisheries Acoustics Split Beam Echo Sounder Target Strength (TS) Target Strength Measurement Methods Target Strength Measurement of Dead Fish In situ Target Strength Target Strength Size Dependence Target Strength Dependence on Swim bladder	· · · · · · ·
Echo Abundance to Fish Abundance	

v

1

I	11 EXPERIMENTS ON FISH TARGET STRENGTH	32
	Introduction Materials and Methods System Components Data Acquisition and Data Analysis System Arrangement for TS Measurements System Calibration Using the Standard Target Ball Biological Data of Fish Tested	32 33 33 34 35 37 37
	Results TS Distribution on Dorsal-aspect of the Fish Examined. Regression of Length and Weight of the Sampled Fish	38 38 45
	Discussion	50
Г	V EXPERIMENTS FOR THE ESTIMATION OF BIOMASS	56
	IntroductionStudy Area Materials and MethodsSystem Arrangements The <i>in situ</i> System CalibrationSurvey DesignApproaches for Data AcquisitionData Analysis Determination of the Volume Back scattering StrengthSystematic Approaches for Estimating the Biomass	56 58 60 61 62 64 65 67 67 70
	Results Single Fish TS and SV Fish Abundance at Bidong Island The Fish Distribution in the Study Area	74 74 76 79
	Discussion	80
٧	SUMMARY AND CONCULSION. Summary Conclusion.	84 84 86
	Recommendation for future studies	87
	BIBLIOGRAPHY	88
	APPENDICES	101
	VITAE	111

LIST OF FIGURES

Figu	re There Strength weight Relation of Anderman From the Samples Caught by Local Parts Scherberg	Page
1:	Trends of the Landings of Marine Fish Captured by Purse Seine in the East Coast of Peninsular Malaysia, 1987-1995	6
2:	Trends of the Landings of Some of the Most Commercially Important Pelagic Fish Species In Malaysia, 1985-1995	6
3:	A Model of Equilibrated Stock "The Basic Background of Stock Assessment" To Be Adopted.	8
4:	Phase Difference Technique of Split Beam Transducer Enables Determination of Target Location within the Beam	16
5:	Transducer Transmitting Acoustic Waves where Incident Pulses Interact with a Target and Scattering Generates Spherical Wave with some Incident Pulses Pass	19
6:	Basic SONAR Parameters and Formation of SONAR Equation	21
7:	Target Strength Measurement Apparatus on Dead Fish	23
8:	Block Diagram Illustrating the Application of Two Transducers Mounted in a Tank for	24
	Target Strength Measurements	24
9:	Schematic Diagram for Measuring Target Strength In Controlled Laboratory	36
10:	Target Strength-length Relation of <i>Rastrelliger kanagurta</i> Showing $TS = 20 \text{ Log } TL - 67.5 \text{ From Samples}$	49
	Caught by Purse Seine Fisheries	40
11:	Target Strength-weight Relation of Rastrelliger kanagurtaFrom Samples Caught by Purse Seine Fisheries	40

12:	Target Strength-length Relation of <i>Atule mate</i> Showing TS = 24 Log TL - 72.4 from Samples	
	Caught by Purse Seine Fisheries	4
13:	Target Strength-weight Relation of Atule mate From the Samples Caught by Local Purse seine Fisheries	41
14:	Target Strength-length Relation of <i>Thunnus tonggol</i> Showing TS = 20 Log TL - 68.9 From Samples Caught by Purse Seine Fisheries	42
15:	Target Strength-weight Relation of <i>Thunnus tonggol</i> From the Samples Caught by Local Purse seine Fisheries	42
16:	Frequency Distribution of Target Strength (TS) For Rastrelliger kanagurta	43
17:	Frequency Distribution of Target Strength (TS) For Atule mate	43
18:	Frequency Distribution of Target Strength (TS) For <i>Thunnus tonggol</i>	44
19:	Comparison of the Target Strength Relationship of the Three Pelagic Fish Rastrelliger kanagurta, Atule mate and Thunnus tonggol from the	
	Samples Caught by Purse Seine Fisheries	45
20:	Length-weight Relationship of <i>Rastrelliger kanagurta</i> Range between 13 to 25 cm (A = Normal Curve, B = Log Curve)	47
21:	Length-weight Relationship of Atule mate Range between 13 to 28 cm	10
	(A = Normal Curve, B = Log Curve)	48
22:	Length-weight Relationship of <i>Thunnus tonggol</i> Range between 28 to 52 cm (A = Normal Curve, B = Log Curve)	49
23:	Study Area in which Acoustic Data For in situ	
	TS and Stock Assessment was collected	60

24:	Transducer Mounted on RV UNIPERTAMA III Using Especially Designed Frame with a Calibration Standard Target Ball Suspended below the Transducer	
	Within the Main Beam	62
25:	The Transect of the Survey during Acoustic Data Acquisition at Bidong Island. The Arrow Indicates the Cruise Track of the Boat	65
26:	Volume of Sampled Strata during Successive Acquisitions as the Survey Vessel Proceeds along The Transects Showing the Average Surface Area	46
	Sampled by the Echo Integrator	66
27:	An Analytical Approach for Solving Elementary Statistical Sampling Interval (ESSR) Along the Cruice Treals When the Inter transacteneoing (Dt)	
	Along the Cruise Track When the Inter-transectspacing (Dt) Equals to One Elementary Sampling Distance Unit (ESDU)	71
28:	A Systematic Diagram Indicating Interrelation	
	Between Biological and Acoustic Data Leading to Abundance Estimation	73
29:	The <i>in situ</i> Target Strength (TS) Distribution of the Two Surveys with Their Mean TS (dB) of Fish in Each ESSR	76
30:	The Volume Back Scattering Strength (SV) Distribution of the Two Surveys with Their Mean SV (dB) of Fish in Each ESSR	76
31:	Graphical Representation of Fish Concentrations	
	Along the Transects	79
		79
	Along the Transects	

LIST OF TABLES

Table		Page
1:	Characteristics of the Fish Specimens Measured for the Target Strength Experiment in the Controlled Environment.	38
2:	Length-weight Relationship of the Three Pelagic Species Caught From Bidong Island Tested during Experiments	46
3:	Target Strength Results from this Study Compared With Various Results Assuming Length Dependence is TS = (m log L + b.)	53
4:	Selected Fish Length and Estimated Equivalent Dorsal Aspect Target Strengths Using The Formula Devised by Love	54
5:	Echo sounder Settings during Operation To collect Acoustic Data	63
6:	The Summary of the Estimated Fish Abundance At Bidong Island Based on Elementary Statistical Sampling Rectangle	78
7:	Target Strength (TS) of Tungsten Steel Ball (36 mm) Diameter Results from BioSonics 200 kHz System	101
8:	Estimated Target Strength (dB) of <i>Rastrelliger kanagurta</i> and its Relationship to Fish length and Weight	102
9:	Estimated Target Strength (dB) of <i>Atule mate</i> And its Relationship to Fish length and Weight	103
10:	Estimated Target Strength (dB) of <i>Thunnus tonggol</i> And its Relationship to Fish length and Weight	104
11:	Summary of Statistical Regression of the Sample Fish Tested under Controlled Test Condition	105
12:	In situ TS (dB) and SV (dB) Analysis for Conversion to Fish Biomass	106

LIST OF PLATES

Plat			Page
1:	Calibration S	phere Being Suspended in the Axis Transducer	107
2:		eing Mounted in the Test Tank	107
۷.			107
3:	Rastrelliger k	anagurta Tested for Target Strength	108
4:		ested for Target Strength	108
5:	Thunnus tong	gol Tested for Target Strength	109
6:	Operating the	System During Data Collection	109
7:	Computer Ser Visual Analyz	een Displays Activated zer Program	110
8.	A Photo of Bi	idong Island	110
	k scattering		
		dimensions and acoustic wavelength, exp	
		logarithmia form (symbol Dit unit dit)	

GLOSSARY

Absorption Coefficient: The coefficient ∝, stating the power loss due to absorption (symbol ∝)

Absorption Loss : A temperature and frequency dependent power loss due to acoustic wave, linear with distance (symbol ∝r: unit dB) : Region of maximum response, normally perpendicular to Acoustic Axis the face of the transducer. Acoustic Calibration : Measuring the performance of an acoustic system to a specified standard (unit dB). Acoustic Intensity : Amount of acoustic power though unit area. Reference is plane wave intensity having a rms pressure equal to 1µPa (one micro Pascal) (symbol I: unit dB/1µPa). Acoustics : The theory of acoustic waves and propagation. Amplifier : The device, which increases signal size. Amplitude : Size of a signal. : Reduction of acoustic power due to spherical spreading Attenuation and absorption of the wave (unit dB/km). : Amount of acoustic power scattered by a target into the Back scattering direction of the transmitting transducer. : Full included angle between the half-power points Beam angle (symbol 0; unit degrees). Beam pattern : Two-dimentional pattern showing the relative response of beam. Calibration : Measuring or adjusting the performance of a system to a specified standard. Decibel : Logarithmic ratio used to express relative levels of acoustic or electrical signals (unit: dB). Digital : Having the circuit state off or on. Directivity index : Concentrating power of a transducer related to dimensions and acoustic wavelength, expressed in logarithmic form (symbol DI: unit dB).

Directivity pattern	: Diagram of the concentrating power of transducer in
	terms of beam angle and relative amplitude of the lobes.
Echo level	: An acoustic intensity at the receiving transducer (symbol:
	EL ; unit dB).
Echo sounder	: System comprising acoustic transmitter, echo receiver
	and display.
Echo trace	: Mark on a record caused by an echo.
Echo	: An acoustic wave reflected from a target.
Echogram	: Record of a sequence of echoes.
Fish abundance	: The amount of fish in a population.
Fish detection	: Location of fish by acoustic means.
Fish target Strength	: Ratio of the acoustic intensity I_r reflected from a fish and
	measured 1 m away, to the incident acoustic intensity I_i , 10
	log Ir / Ii dB (symbol: TS; unit dB).
Frequency	: Number of complete cycles of an electrical or acoustic
	wave to pass a given point in one second (symbol: f; unit
	Hz).
Gain	: Amount by which the amplitude (size) of a signal is
	increased (unit dB).
Incident intensity	: Acoustic intensity falling on a target.
Insonify	: To illuminate by means of acoustic waves.
Interface	: The matching unit between one instrument and another.
Interference	: An unwanted signals or malfunctions
Near field	: The distance within which transducer measurements
	should not be made.
Noise level	: Number of decibel by which noise is above or below a
	given reference.
Oscilloscope	: An instrument for viewing and measuring oscillations or
	signals.
Ping	: A name for the transmitted acoustic pulse.
Pre-amplifier	: Boosts signals before the main amplifier.

xiii

Pulse duration	: The time for which a pulse continues (symbol: $\boldsymbol{\tau}$; unit
	ms).
Pulse length	: The distance a pulse extends (unit meters).
Pulse rate	: Number of pulses in a given time.
Range	: Distance to a target (symbol: r; unit m)
Receiving voltage resp	oonse: Number of dB relative to 1 Volt for a given acoustic
	pressure at the transducer face (symbol: VR; unit dB/V).
Reverberation	: The sum of all scattered acoustic energy.
Root mean square	: The square root of the average sum of all squared values
	of a waveform (symbol: rms).
Sensitivity	: Degree of response of an acoustic or electrical signal.
Sonar equation	: The equalities from which the performance of an acoustic
	system can be calculated (unit in dB).
Source level	: Ratio of acoustic intensity on the axis of a source at 1m,
	to a plane wave of rms pressure $l\mu Pa$ (symbol: SL; unit
	dB/IµPa /m).
Standard target	: A target processing known target strength, used for the
	calculation of an acoustic system (unit dB).
Target strength	: Ratio of the echo intensity at 1 m from a target to the
	incident intensity (symbol: TS; unit dB).
Transducer	: Device for conversion of acoustic energy into electrical
	energy and vice-verse.
Transmission loss	: Sum of absorption loss and geometric loss (symbol: TL ;
	unit dB).
Transmitter	: Unit, which produces electrical power at the required
	frequency.
Wave length	: Distance between the crest or troughs of a sinewave
	(symbol: λ ; unit m).

xiv

Abstract of Thesis Submitted to the Senate of Universiti Putra Malaysia in Fulfillment of the Requirement of the Degree Master of Science

HYDROACOUSTIC ASSESSMENT OF PELAGIC FISH AROUND BIDONG ISLAND, TERENGGANU, MALAYSIA

By

MUSSE GABOBE HASSAN

FEBRUARY 1999

Chairman: Khalid Bin Samo, Ph.DFaculty: Faculty of Applied Science and Technology

The first phase of this study investigates the average dorsal aspect (side) target strength of three commercially important fish species, namely *Rastrelliger kanagurta*, *Atule mate* and *Thunnus tonggol*, which are mostly captured by commercial fishermen in waters around Bidong Island. Target strength experiments were carried out in a controlled tank at Universiti Putra Malaysia Terengganu by using a digital transducer split beam echo sounder at 200 kHz.

Fish size for this experiment varied from 13.6 to 24.5 cm total length (avg. 18.8 cm) for *Rastrelliger kanagurta*, 13.8 to 27.5 cm (avg. 20.0 cm) for *Atule mate* and 28.5 to 52.0 cm (avg. 39.6 cm) for *Thunnus tonggol*. Significant differences (α = 0.05) were observed between fish total length and weight of all species tested.

The average dorsal aspect target strength results of *Rastrelliger kanagurta* of 18.8 cm (92.5 g.), *Atule mate* of 20.0 cm (109 g.) and *Thunnus tonggol* of 39.6 cm (981 g.) were found to be - 42.0 dB, - 42.0 dB and - 37.0 dB respectively.

The average dorsal aspect target strengths for *Rastrelliger kanagurta*, *Atule mate* and *Thunnus tonggol* showed linear relationship with length. Determination coefficients, (r^2) for target strength and total length of these species were observed to be 0.88, 0.78 and 0.80 respectively. The significant differences ($\alpha = 0.05$) were observed between fish target strength and total length.

The general target strength and length equations for *Rastrelliger kanagurta*, *Atule mate* and *Thunnus tonggol* are presented as follows:

Rastrelliger kanagurta	(Avg. $TL = 18.8$ cm): TS (dB) = 20 log $TL - 67.5$
Atule mate	(Avg. $TL = 20.0$ cm): TS (dB) = 24 log $TL - 72.4$
Thunnus tonggol	(Avg. $TL = 39.6$ cm): TS (dB) = 20 log $TL - 68.9$

The second phase, by using the results obtained from the controlled tank as a scaling factor, attempts to estimate the fish population in small area near Bidong Island were performed. The surveys were carried out in July and August in 1997 using the same equipments but were fitted on board UNIPERTAMA III.

The survey area was subdivided into 22 Elementary Statistical Sampling Rectangle (ESSR) along the acoustic track. A total of 790 independent single fish images were extracted along the track. Calculations were performed using the average *in situ* target strength of the individual fish detected along the survey track. The total fish population in the study area was estimated to be 380 tones with an average density of 6.3 tones/km². The average *in situ* target strength determined during the acoustic surveys was -43.9 dB where the average volume back scattering strength observed was -64.1 dB. The results of *in situ* target strength of individual fish match well with the target strength measurements made in tank conditions. This thesis critically discusses the concept and implications of fish target strength and its application in acoustic stock assessment for fisheries management.

Fasa pertama dalam kajian ini atalah untuk mengkaji purata kempayaan memuntul uspek dorsa (bahagian dorsal) bagi 3 spesies ikan komeraial yang penting iaita Rasmelliker kanaganta, Atale mate dan Thaomus tonggol di mana tanya mempakan spesies yang biasa ditangkap oleh nelayan di sekitar perairan Putas Bidong. Eksperimen keupnyaan memantul telah dijalani an di dalam tangki kawalan di Universiti Putra Malaysia Terenggana dengan menggunakan echo

Salz ikan yang digunakan dalam eksperimen ini betukuran di amara 13.6 hingga 24.5 am panjang (purata 18.8 sm) bagi Restrelliger konogarta, 13.8 hingga 27.5 am (purata 20.0 sm) basi Atale mote dan 25.5 hingga 52.0 am (purata 39.6