TARCET STRENGTH AND SCHOOL SIZE ASSESSMENT OF SCADS USING HYDROACOUSTIC

MAMAN HERMAWAN

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA 1998

PDF processed with CutePDF evaluation edition www.CutePDF.com

c/n:2210

1100011646

Perpusrakaan See Universiti Sains Dan Teknologi Malavsia (KUSTEM)

CN 2 ...

1100011646 Target strength and school size assessment of scads using hydroacoustic / Maman Hermawan.

 21030 KUALA	TERENGGANU	

SH 157.85 ·F49 H4 1998

PAR MILIK Productamaan sultamah nur zamhrah umt

TESIS

TARGET STRENGTH AND SCHOOL SIZE ASSESSMENT OF SCADS USING HYDROACOUSTIC

By

MAMAN HERMAWAN

Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Applied Science and Technology Universiti Putra Malaysia

NOVEMBER 1998

nen

1100011646

ACKNOWLEDGEMENTS

My thanks to Allah, the Almighty, for giving me life without which this thesis will never be carried out. Thank to Allah who has given me an opportunity to contribute this knowledge to other people.

First and foremost, I would like to express my most sincere gratitude and deep appreciation to the Chairman of my Supervisory Committee, Dr. Khalid Bin Samo for his encouragement and his invaluable contribution, inputs and careful supervision of my Master's Program. Without his constant guidance and encouragement this thesis will never be completed. I also would like to extend my gratitude and deep appreciation to the other members of my supervisory committee, Professor Dr. Hj. .Mohd. Azmi Bin Ambak and Mr. Mohd. Zaidi Zakaria for their, meaningful comments and constructive ideas and suggestions during the period of candidature.

I would like to acknowledge the Universiti Putra Malaysia Terengganu for awarding me a research assistantship during the tenure of my study as a Research Assistant and continued as Graduate Assistant under IRPA project 51031 which was kindly awarded to me during the tenure of my candidature as Master of Science student. I express my deep thanks to all the staff of Faculty of Applied Science and Technology, UPM Terengganu for their hospitality and for their enthusiastic acceptance of me as part of the community. I also appreciate to assistance of Dean of the Faculty of Applied Science and Technology, and the Dean of Graduate School. I would also like to extend heartfelt thanks to Dr. Siti Aisah Abdullah for editing the thesis thoroughly, Mr. Zainudin Bin Abdul Wahab, Mr. Mohd. Tarmizi Bin Khalid and Mr. Subarjo Merehojono for their assistance in solution of computer problems. I am also indebted to Mr. Manaf Mat Diah, Mr. Mohd. Fazil and crewmembers of Unipertama III for their invaluable assistance and their hospitality throughout my sampling periods. Acknowledgements are also dedicated to all members of Postgraduate Students for their moral support.

I am also grateful to the Sekolah Tinggi Perikanan (Fisheries University) Ministry of Agriculture of Indonesia for granting permission to pursue this Master's degree program.

Finally, these acknowledgements are dedicated to my Parents, my wife, Dra. Raden Roro Dervy Diana, my sons, Rizky Agung Pratama (Agung), Sandy Agung Ramadhan (Dindy), My twin boys Indrawan Dona Kumara (Indra) and Andreawan Doni Purnama (Andre), for their strong moral support, patience and understanding in my absence.

TABLE OF CONTENTS

		Page
ACKN	NOWLEDGEMENTS	iii
LIST	OF TABLES	vii
LIST	OF FIGURES	x
LIST	OF PLATES	xii
ABST	RACT	xiii
ABST	RAK	xvi
СНАР	TER	
[INTRODUCTION	. 1
	Background of the Study	
I	LITERATURE REVIEW	. 5
	Conventional Technique for Fish School Detection Application of Acoustics in Fisheries Research Conventional Echo Sounder Scientific Echo Sounder The Development of Scientific Echo Sounder Echo Formation Theory	6 7 8 9 12
	Fish Target Strength Target Strength at Different Aspect Angle Size Dependence of Fish Target Strength Volume Back Scattering Strength of Fish School Echo Integration Function	15 17 19

III	FISH TARGET STRENGTH MEASUREMENTS IN	22
	A CONTROLLED TANK	23
	Introduction Materials and Methods Equipment and Specifications. Experimental Set-up Tank Preparation and Transducer Installation System Calibration Using Standard Target Ball Fish Samples and Biological Characteristic Fish Target Strength Measurement	23 24 24 28 28 29 31 37
	Results Biological Data of Fish Samples Calibration Results of Standard Target Ball Different Aspect Target Strength and Fish Length Relationship Target Strength Regression and Equation Average Target Strength and Insonifying Aspect Angle	39 39 43 45 52 54
	Discussion	56
IV	APPLICATION OF SIDE ASPECT TARGET STRENGTH	
IV	ON SCHOOLING SIZE ASSESSMENT	65
	Introduction Materials and Methods Location of the Study Equipment Installation on R/V UNIPERTAMA III In-situ Calibration Acoustic Data Acquisition Acoustic Data Analysis Catch Data Identification and Calculation	65 66 67 69 70 71 73 75
	Results Fish Quantity Estimation True Catch Data	77 77 80
	Discussion	84
v	SUMMARY AND CONCLUSION	88

Requirements for Further Study	
OGRAPHY	
E	
vii	

LIST OF TABLES

Table		Page
1.	Target Strength (TS) of Standard Sphere Ball (~36 mm/200kHz)	30
2.	The Average Size of Round scad, <i>Decapterus maruadsi</i> Based on Total Length used for TS Measurement	34
3.	The Average Size of Ox-eye scad, <i>Selar boops</i> Based on Total Length used for TS Measurement	35
4.	The Average Size of Yellow-banded scad, <i>Selaroides</i> <i>leptolepis</i> Based on Total Length used for TS Measurement.	36
5.	Standard Length-Weight Relationship of Three Species of Scads	43
6.	Calibration Results of Standard Target Ball in a Controlled Tank	44
7.	Summary of Fish Target strength Distribution at Different Aspects	46
8.	The Equation of Linear Regression Line of the Dorsal Aspect Target Strength to Length Relationship of Scads	53
9.	The Equation of Linear Regression Line of the Side Aspect Target Strength to Length Relationship of Scads	53
10.	Echo Sounder Settings of the DT6000 System Used in the Study	71
11.	<i>In situ</i> Calibration Results in the Waters Around Pulau Bidong and Pulau Kapas	77
12.	Target Strength of Schooling Scads Measured by Split beam Echo Sounder BioSonic DT6000	79

13.	Geographical Positions and Average Fish Length (L) and Fish Weight (W) of Purse Seine Operations in the waters Around P. Kapas	81
14.	Fish Samples of Purse Seines Catch and Composition	82
15.	Calculated Target Strength at Different Aspect Angle of Round scad (<i>Decapterus maruadsi</i> Temminck & Schlegel)	106
16.	Calculated Side Aspect Target Strength of Round scad (Individual and Average)	108
17.	Calculated Target Strength at Different Aspect Angle of Ox-eye scad (Selar boops Valenciennes)	109
18.	Calculated Side Aspect Target Strength of Ox-eye scad (Individual and Average)	111
19.	Calculated Target Strength at Different Aspect Angle of Yellow-banded scad (Selaroides leptolepis Valenciennes)	112
20.	Calculated Side Aspect Target Strength of Yellow-banded	
	scad (Individual and Average)	114
		114
	scad (Individual and Average)	114
	scad (Individual and Average)	114
	scad (Individual and Average)	114
	scad (Individual and Average)	114
	scad (Individual and Average)	

ix

LIST OF FIGURES

Figure		Page
1.	Illustration of the Sonar Parameter in Forming the SONAR Equation	13
2.	Schematic Diagram Showing the Arrangement of Instruments for Measuring Fish Target Strength in a Controlled Tank	38
3.	Length (TL, FL & SL)-Weight Relationship (In W=In a + b ln L) of Round scad, <i>Decapterus maruadsi</i>	40
4.	Length (TL, FL & SL)-Weight Relationship (W= aL ^b) of Round scad, <i>Decapterus maruadsi</i>	40
5.	Length (TL, FL & SL)-Weight Relationship (In W=In a + b In L) of Ox-eye scad, Selar hoops	41
6.	Length (TL, FL & SL)-Weight Relationship (W= aL ^b) of Ox-eye scad, <i>Selar boops</i>	41
7.	Length (TL, FL & SL)-Weight Relationship (In W=In a + b In L) of Yellow-banded scad, <i>Selaroides leptolepis</i>	42
8.	Length (TL, FL & SL)-Weight Relationship (W= aL ^b) of Yellow-banded scad, <i>Selaroides leptolepis</i>	42
9.	Summary of Calibration Results in a Controlled Tank	45
10.	Dorsal Aspect TS to Length Relationship of Round scad	47
11.	Side Aspect TS to Length Relationship of Round scad	48
12.	Dorsal Aspect TS to Length Relationship of Ox-eye scad	49

х

13.	Side Aspect TS to Length Relationship of Ox-eye scad	50
14.	Dorsal Aspect TS to Length Relationship of Yellow-banded scad	51
15.	Side Aspect TS to Length Relationship of Yellow-banded scad	51
16.	Average Target Strength to Insonifying Aspect Angle Relationship of Round scad	55
17.	Average Target Strength to Insonifying Aspect Angle Relationship of Ox-eye scad	55
18.	Average Target Strength to Insonifying Aspect Angle Relationship of Yellow-banded scad	56
19.	Map Showing the Station of Purse Seine Operation Around Pulau Kapas	68
20.	Illustration of Vessel Positioned for Collecting Acoustic Data	73
21.	The Diagram of the Method for Estimating Fish Schools Size	76
22.	Volume Back Scattering Strength (SV) to Quantity Estimated Relationship of Fish Schools	83
23.	Volume Back Scattering Strength (SV) to Actual Catch Relationship of Fish Schools	83
24.	Quantity Estimated to Actual Catch Relationship of Fish Schools	83

LIST OF PLATES

Plate		Page
1.	Round scad, Decapterus maruadsi	31
2.	Ox-eye scad, Selar boops	32
3.	Yellow-banded scad, Selaroides leptolepis	32
4.	The Transducer Arrangements for the <i>In situ</i> Data Acquisition	70
5.	BioSonic Split Beam Transducer DT6000	115
6.	BioSonic DT6000 System	115
7.	Experimental Tank for Target strength Measurement	116
8.	Fishing Boat, Purse Seiner	116
9.	Illustration of Placing the Standard Ball on the Axis of Transducer	117
10.	Research Vessel "R/V. Unipertama III	117
11	Fish Aggregating Light "api unjam"	118

Firsh physical characteristics such as total length. fork length, standard rength, and weight were recorded in order to study relationship of TS to fish size. The semples rates of Round octed. On eye sead and Yellow-canded sead ranged from 11,40 to 20 M cm. 160 to 2007 cm and 7.0 to 15.6 cm (standard impub).

xii

Abstract of thesis submitted to the Senate of University Putra Malaysia in fulfillment of the requirements for the degree of Master of Science.

TARGET STRENGTH AND SCHOOL SIZE ASSESSMENT OF SCADS USING HYDROACOUSTIC

By

MAMAN HERMAWAN

NOVEMBER 1998

Chairman: Khalid Samo, Ph.D

Faculty : Faculty of Applied Science and Technology

The study has been conducted with two phases. The first phase involving laboratory experiment on fish target strength measurements of three commercially important pelagic fish species of the scads namely Round scad (*Decapterus maruadsi*), Ox-eye scad (*Selar boops*) and Yellow-banded scad (*selaroides leptolepis*). The second phase include both *in situ* side aspect target strength and fish schools estimation attracted around fish aggregating light.

Fish physical characteristics such as total length, fork length, standard length, and weight were recorded in order to study relationship of TS to fish size. The samples sizes of Round scad, Ox-eye scad and Yellow-banded scad ranged from 11.40 to 20.50 cm, 10.0 to 20.7 cm and 7.0 to 15.6 cm (standard length), respectively.

The data for each angle of insonification at 0°, 30° (side aspect), 60° (in between dorsal and side aspect), 90° (dorsal aspect), 120° (in between dorsal and broad side aspect), 150° and 180° (broad side aspect) were recorded by running the data acquisition software.

Six hundred and sixteen target strength experiments were performed in the controlled tank (4.0 x 2.0 x 1.4 m) by using a scientific digital acoustic system (BioSonic DT6000) equipped with a 200 kHZ digital split beam transducer.

Results of the average side and dorsal aspects target strength of Round scad, measured in the controlled tank was observed to be nearly similar. The average of side aspect TS was -41.4 \pm 2.3 dB and dorsal aspect TS was -42.5 \pm 2.4 dB. While for Ox-eye scad there was small variation with side aspect which was -42.3 \pm 3.5 dB being stronger than dorsal aspect, -43.2 \pm 3.7 dB. However the side aspect target strength of Yellow-banded scad showed larger variations compared to the average target strength characteristic of Round scad with the value of -45.4 \pm 3.0 dB and -49.8 \pm 2.1dB for side and dorsal aspect, respectively. Results of this study showed that the average all aspects target strength of the three fish species of scad increases as fish length increases.

The target strength characteristics of the three species when expressed in term of target strength equation (TS = a log L – b), showed that the constant 'a' value vary between 15 to 36. While, the 'b' is - 86.99 to - 68.44 and tends to be

species specific. This study showed that Ox-eye Scad gave lower 'b' constant than Yellow-banded Scad.

The second phase of the study have been done with the purpose to apply side aspect target strength for quantifying the size of fish schools gathered around and bellow fish aggregating light by comparing them with the actual catch. The *in situ* side aspect target strength values was found varied from -38.1 to -47.5 dB with the average of -44.7 \pm 3.3 dB. From the seven attempts the target strength was computed to be -2.4 dB lower than that found under laboratory conditions. However, volume back scattering strength varied from -43.8 to -51.2 dB with the average of -47.9 \pm 3.1 dB. It was found that the average schooling density ranged between 0.19 to 3.18 fish/m². The acoustic estimate of fish quantity ranged from 28.6 to 497.3 kg with the actual catch ranged from 26.4 to 418.1 kg. The results of analysis on the true catch showed that Ox-eye scad was the dominant species (80% of the true catch).

Cui-oui finikal ikao yang dikaji seperti panjang penda, penjang sabang anjang plawai dan beratadalah direkodkan untuk mendapatkan hubungan astan 15 terbadap suiz ikao, Panjang plawar sampai itan adarah berjulat diantera († 40 20.50 cm, 10.02 - 20.7 dan 7.0 - 15.6 cm maning-musing bagi ikan Selayang alawa dan Selar Lanang