
EFFECTS OF PHENANTHRENE ON Isochrysis galbana

# HING LEE SLANG

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA 1999

PDF processed with CutePDF evaluation edition <a href="http://www.CutePDF.com">www.CutePDF.com</a>

PERPUSTAKAAN



1000401770 Effects of phenanthrene on isochrysis galbana / Hing Lee Siang.

0.2. 13/5/2000

4611 orsiti in teliaa

785 - 2211

| KOLEJ UNIVERSITI:SAINS & TEKNOLOGI MALAYS<br>21030 KUALA TERENGGANU |  |  |       |   |  |
|---------------------------------------------------------------------|--|--|-------|---|--|
|                                                                     |  |  | 10100 |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       | _ |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       | _ |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       | - |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |
|                                                                     |  |  |       |   |  |

034 91.8 • 04 149 -

ch: 2211

HAK MILIK PERPUSTAKAAN KUSTEM

TESIS

## EFFECTS OF PHENANTHRENE ON Isochrysis galbana

the frequencies and time. They without his supervisors and encouragement,

HING LEE SIANG

by

assistants for their hindness, technical assistance and co-operation when I was

Thesis submitted in fulfillment of the requirements for the degree of Master of Science in the Faculty of Applied Science and Technology Universiti Putra Malaysia

December 1999

1000401770

#### ACKNOWLEDGEMENTS

First of all, I would like to extend my greatest appreciation to Prof. Dr. Law Ah Theem, chairman of the supervisory committee for his invaluable guidance, patience, generosity and time. Truly without his supervision and encouragement, this project might not have been completed successfully.

Nezlin Ruzieh ba. Md. Said and not forgetting to all my Post-Graduate friend:

I am also indebted to the committee members, Assoc. Prof. Dr. Noor Azhar b. Mohamad Shazili and Dr. Mohd. Kamil b. Abdul Rashid for their constant encouragement, constructive comments and thorough reviews of my work throughout my study period. My sincere thanks and gratitude to Dr. Siti Aishah Abdullah for editing the manuscripts.

My appreciation also goes to Pn. Kartini Mohamad and all laboratory assistants for their kindness, technical assistance and co-operation when I was conducting this research project.

I would also like to express my sincere thanks to the School of Post-Graduate Studies Universiti Putra Malaysia for providing scholarship through the Scheme PASCA. I am also grateful to the Ministry of Science, Technology and Environment of Malaysia for funding this project through the scheme of Intensified Research In Priority Area (IRPA, 01-02-04-0223). My deepest gratitude goes to my Dad, Mom, Brothers, Sisters, and Sister-inlaw for their encouragement, moral support and most importantly to me is your endless love and care through my years in Universiti Putra Malaysia.

Last but not least, I would like to express my heartfelt thanks to Hii Yii Siang, Ong Pei Thing, Juanita Joseph, Aishah bt. Yusoff, Der Fong Peng, See Yee Lerk, Nazlin Ruziah bt. Md. Said and not forgetting to all my Post-Graduate friends who have tolerated my craziness and helped in whatever way in completing this project. I love you all!!

## TABLE OF CONTENTS

|      |        |                                                   | PAGE |
|------|--------|---------------------------------------------------|------|
| ACK  | NOWL   | EDGEMENT                                          | ii   |
| CON  | TENTS  |                                                   | iv   |
| LIST | OF TA  | BLES                                              | vii  |
| LIST | OF FIC | JURES                                             | viii |
| LIST | OF PL. | ATES                                              | x    |
| LIST | OF AP  | PENDICES                                          | xi   |
| ABSI | FRACT  |                                                   | xiii |
| ABSI | ſRAK   |                                                   | xv   |
| CHAI | PTER   |                                                   |      |
| I    | Introd | luction                                           | 16   |
| II   | Litera | ture Review                                       |      |
|      | -      | Oil Composition and Properties                    | 5    |
|      | -      | Source of Pollution                               | 7    |
|      | -      | Fate of Pollution                                 | 10   |
|      | -      | Consequences of Oil Pollution                     |      |
|      |        | - Effects of Hydrocarbons on Primary Productivity | 17   |
|      |        | - Bioaccumulation of Petroleum Hydrocarbon        | 21   |
|      |        | - Toxicity of Petroleum Hydrocarbon to Marine     |      |
|      |        | Organisms                                         | 22   |
|      | -      | Chemistry of Phenanthrene                         | 22   |
|      | -      | Degradation of Phenanthrene                       | 24   |

# PERPUSTAKAAN UNUZERSITI PUTRA MALAYSIA TERENGGANU

| -      | Biodegradation Rate of Phenanthrene                   | 26 |
|--------|-------------------------------------------------------|----|
| -      | The Toxicity of Phenanthrene to Organisms             | 27 |
| -      | Isochrysis galbana                                    | 27 |
| -      | Algae Growth in Liquid Culture                        | 28 |
| -      | Effects of Temperature on Algae Growth                | 31 |
| -      | Effects of Light on Algae Growth                      | 31 |
| -      | Effects of Nutrient on Algae Growth                   | 32 |
|        | Batch Culture                                         | 32 |
| -      | Continuous Culture                                    | 33 |
| -      | Algae Bioassays                                       | 33 |
| Metho  | odology                                               |    |
| -Discu | Strain Maintenance                                    | 36 |
| -Conci | Culture Medium Preparation                            | 37 |
| ATOR   | Cell Suspension Preparation                           | 39 |
| NDICE  | Specific Growth Rate, $\mu$ and Mean Doubling Time, G |    |
|        | Determination                                         | 39 |
| -      | Phenanthrene Standard Solution                        | 40 |
| -      | Optimum Wave Length for Phenanthrene In n-hexane      | 41 |
| -      | Standard Curve for Phenanthrene                       | 41 |
| -      | Phenanthrene Analysis                                 | 42 |
| -      | Batch Cultures                                        |    |
|        | - Isochrysis galbana Growth Curve Study               | 42 |
|        | - Toxicity Test of Phenanthrene                       | 43 |

Ш

|      |        | - The Effect of pH on the Toxicity of Phenanthrene | 44  |
|------|--------|----------------------------------------------------|-----|
|      | -      | The Impact of Phenanthrene on Isochrysis galbana   |     |
|      |        | Primary Productivity                               | 44  |
|      | -      | Continuous Culture: Turbidostat                    | 46  |
|      |        | - Theory and Application                           | 46  |
|      |        | - Continuous Culture Apparatus                     | 48  |
|      |        | - The Toxicity of Phenanthrene on                  |     |
|      |        | Isochrysis galbana                                 | 50  |
|      |        | - Scanning Electron Microscope                     | 50  |
|      | ble 7  | Data Analysis                                      | 50  |
| IV   | Resul  | ts                                                 | 53  |
| v    | Discu  | ssion                                              | 80  |
| VI   | Concl  | lusion                                             | 94  |
| LITE | RATUR  | RE CITED                                           | 96  |
| APPI | ENDICE | S                                                  | 106 |

## LIST OF TABLES

#### PAGE

| Table 1:  | Typical fractionation of a crude oil                                             | 71 |
|-----------|----------------------------------------------------------------------------------|----|
| Table 2:  | Composition of reference oils and 10% water soluble<br>Fractions                 | 8  |
| Table 3:  | Hydrocarbons levels in seawater                                                  | 11 |
| Table 4:  | Hydrocarbons levels in marine sediments                                          | 12 |
| Table 5:  | Solubilities of various hydrocarbons in distilled water<br>and sea water at 25°C | 23 |
| Table 6:  | Biodegradation of phenanthrene in water and sediment                             | 26 |
| Table 7:  | The toxicity of phenanthrene to organisms                                        | 27 |
| Table 8:  | Composition of Conway media                                                      | 38 |
| Table 9:  | Rates of adding various nutrient solution for final culture medium               | 38 |
| Table 12: | Phenanthrene residue in the growth reactor of continuous culture                 | 76 |

| LIST OF I  | IGURES                                                                                                           | rAG |
|------------|------------------------------------------------------------------------------------------------------------------|-----|
|            | Effect of pH on locchrysis galbana expose in S mg/1                                                              | 62  |
| Figure 1:  | The structure of some hydrocarbons                                                                               | 6   |
| Figure 2:  | Diagrammatic summary of the fate of petroleum<br>Discharged to an aquatic area                                   | 14  |
| Figure 3:  | The bacterial mineralization of phenanthrene                                                                     | 25  |
| Figure 4:  | Morphology of Isochrysis galbana                                                                                 | 28  |
| Figure 5:  | Idealized normal growth cycle for a microalgae population in a batch culture                                     | 29  |
| Figure 6:  | The schematic representative for the components of continuous culture                                            | 49  |
| Figure 7:  | Optimum wavelength of phenanthrene in n-hexane                                                                   | 54  |
| Figure 8:  | Standard curve for phenanthrene analysis at optimum wavelength 248 nm                                            | 54  |
| Figure 9:  | Daily variation of pH and salinity                                                                               | 56  |
| Figure 10: | Growth of <i>Isochrysis galbana</i> in medium without pH Adjustment and in constant pH 8.1                       | 56  |
| Figure 11: | Standard growth curve for <i>Isochrysis galbana</i> at 28°C, 30 ppt, pH 8.1 and 45 µmol quanta m <sup>2</sup> /s | 57  |
| Figure 12: | Effect of phenanthrene on <i>Isochrysis galbana</i> growth (First run)                                           | 58  |
| Figure 13: | Effect of phenanthrene on <i>Isochrysis galbana</i> growth (Second run)                                          | 58  |
| Figure 14: | Estimation of 14 days $IC_{50}$ value by using probit analysis and line of best fit                              | 60  |
| Figure 15: | Phenanthrene residue in culture flask during 15 days exposure                                                    | 60  |
| Figure 16: | Effect of pH on <i>Isochrysis galbana</i> expose in 5 mg/l<br>Phenanthrene (First run)                           | 62  |

### PAGE

| Figure 17: | Effect of pH on <i>Isochrysis galbana</i> expose in 5 mg/l<br>Phenanthrene (Second run)                              | 62 |
|------------|----------------------------------------------------------------------------------------------------------------------|----|
| Figure 18: | The relationship between photosynthesis rate and cell number (First run)                                             | 64 |
| Figure 19: | The relationship between photosynthesis rate and cell number (Second run)                                            | 65 |
| Figure 20: | The relationship between respiration rate and cell<br>number (First run)                                             | 66 |
| Figure 21: | The relationship between respiration rate and cell<br>number (Second run)                                            | 67 |
| Figure 22: | Net photosynthetic rate of <i>Isochrysis galbana</i> exposed to different concentration of phenanthrene (First run)  | 68 |
| Figure 23: | Net photosynthetic rate of <i>Isochrysis galbana</i> exposed to different concentration of phenanthrene (Second run) | 68 |
| Figure 24: | Effect of ethanol and acetone on <i>Isochrysis galbana</i> at steady state                                           | 70 |
| Figure 25: | Effect of acetone and phenanthrene on <i>Isochrysis galbana</i> at steady state (First run)                          | 71 |
| Figure 26: | Effect of phenanthrene on <i>Isochrysis galbana</i> at steady state (Second run)                                     | 72 |
| Figure 27: | Effect of phenanthrene on <i>Isochrysis galbana</i> at steady state (Third run)                                      | 73 |
| Figure 28: | Effect of phenanthrene on <i>Isochrysis galbana</i> at steady state (Fourth run)                                     | 74 |
| Figure 29: | Comparison of phenanthrene residue based on laboratory analysis and calculation from Equation 4                      | 91 |

•

### LIST OF APPENDICES

### PAGE

| Appendix I:    | Optimum wavelength for phenanthrene absorption<br>in n-hexane<br>Standard curve for phenanthrene analysis at optimum<br>wavelength (248 nm)                                                                                                                | 106 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix II:   | Relationship between <i>Isochrysis galbana</i> cells population and optical density at 600 nm                                                                                                                                                              | 107 |
| Appendix III:  | <ul> <li>Batch culture study:</li> <li>The variation of pH and salinity in control</li> <li>The cell population of <i>lsochrysis galbana</i> in flask without pH adjustment</li> <li>The growth of <i>lsochrysis galbana</i> in constant pH 8.1</li> </ul> | 108 |
| Appendix IV:   | Batch culture study:<br>Isochrysis galbana growth curve study                                                                                                                                                                                              | 110 |
| Appendix V:    | The effect of different concentrations of phenanthrene<br>on the growth of <i>Isochrysis galbana</i>                                                                                                                                                       | 111 |
| Appendix VI:   | Data analysis: IC <sub>50</sub> determination                                                                                                                                                                                                              | 113 |
| Appendix VII:  | Effect of pH on the growth of <i>Isochrysis galbana</i> exposed to 5 mg/l phenanthrene                                                                                                                                                                     | 114 |
| Appendix VIII: | Primary productivity – relationship between cell population, dissolved oxygen and incubation time                                                                                                                                                          | 116 |
| Appendix IX:   | Effect of phenanthrene on <i>Isochrysis galbana</i> productivity                                                                                                                                                                                           | 118 |
| Appendix X:    | Continuous culture – effect of solvent on<br>Isochrysis galbana growth                                                                                                                                                                                     | 119 |
| Appendix XI:   | Effect of phenanthrene on <i>Isochrysis galbana</i> at steady state                                                                                                                                                                                        | 120 |
| Appendix XII:  | Statistic analysis for the growth of <i>Isochrysis galbana</i> in control and 1 mg/l phenanthrene (First run)                                                                                                                                              | 124 |
| Appendix XIII: | Statistic analysis for the growth of <i>Isochrysis galbana</i> in different phenanthrene concentration (First run)                                                                                                                                         | 125 |

# PAGE

|                | Statistic analysis for the growth of <i>Isochrysis galbana</i> in different phenanthrene concentration (Second run)                             | 126 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Appendix XV:   | Statistic analysis for the growth of <i>Isochrysis galbana</i><br>in 5 mg/l phenanthrene at different pH (First run)                            | 127 |
| Appendix XVI:  | Statistic analysis for the growth of <i>Isochrysis galbana</i> in 5 mg/l phenanthrene at different pH (Second run)                              | 128 |
|                | Statistic analysis for photosynthetic rate of <i>Isochrysis</i><br>galbana exposed to different concentration of<br>phenanthrene (First run)    | 129 |
| Appendix XVIII | : Statistic analysis for photosynthetic rate of <i>Isochrysis</i><br>galbana exposed to different concentration of<br>phenanthrene (Second run) | 130 |
| Appendix XIX:  | Statistic analysis for photosynthetic rate of <i>Isochrysis</i> galbana in control and 1 mg/l phenanthrene (First run)                          | 131 |
| Appendix XX:   | Statistic analysis for photosynthetic rate of <i>Isochrysis</i> galbana in control and 1 mg/l phenanthrene (Second run)                         | 132 |

#### LIST OF PLATES PAGE

| Plate 1:  | The continuous culture apparatus                                                                                              | 49 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------|----|
| 1 late 1. | The continuous curture apparatus                                                                                              | 49 |
| Plate 2:  | Scanning Electron Microscope (SEM) of <i>Isochrysis</i><br>galbana in control experiment<br>(a-single cell; b-group of cells) | 77 |
| Plate 3:  | Scanning Electron Microscope (SEM) of <i>Isochrysis</i><br>galbana treated in phenanthrene solution                           | 78 |

(a-single cell; b-group of cells)

The effects of phenathrene on *incohrons solhare* were carried out using batch column and continuous culture techniques. The growth tests were conducted in enriched sea water at 28.0  $\pm$  1.0 °C, pH of 8.1  $\pm$  0.5, salinity 30  $\pm$  2 ppt and under continuous light illumination of 45unol quanta/m<sup>2</sup>/s. For batch esture, growth was estimated by morease in cell number with time. Extent of growth inhibition was influenced by concentration of phenominens and duration of exposure. These threas concentration of 5 mg/l and 7 mg/l tempotarily ishibited the growth of only and leibal affect was observed for concentrations higher than 7 mg/l. The 10 and indicates galberat relative to control) determined by batch culture technique was backing galberat relative to control) determined by batch culture technique was Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfillment of the requirements for the degree of Master Science.

#### EFFECTS OF PHENANTHRENE ON Isochrysis galbana GROWTH

# HING LEE SIANG

By

November 1999

Chairman: Professor Dr. Law Ah Theem

Faculty : Applied Science and Technology

The effects of phenanthrene on *Isochrysis galbana* were carried out using batch culture and continuous culture techniques. The growth tests were conducted in enriched sea water at  $28.0 \pm 1.0$  °C, pH of  $8.1 \pm 0.5$ , salinity  $30 \pm 2$  ppt and under continuous light illumination of  $45\mu$ mol quanta/m<sup>2</sup>/s. For batch culture, growth was estimated by increase in cell number with time. Extent of growth inhibition was influenced by concentration of phenanthrene and duration of exposure. Phenanthrene concentration of 5 mg/l and 7 mg/l temporarily inhibited the growth of cells and lethal effect was observed for concentrations higher than 7 mg/l. The IC<sub>50</sub> value (the concentration of phenanthrene that causes 50% inhibition in growth of *Isochrysis galbana* relative to control) determined by batch culture technique was 3.58 mg/l.

pH was also observed to influence the toxicity of phenanthrene. At pH 7.5, the lag period was shortened and at pH 8.5 the lag period was prolonged compared to *Isochrysis galbana* exposed to pH 8.1. The productivity of *Isochrysis galbana* decreased with increment of phenanthrene concentrations. At concentration of 1 mg/l, the photosynthetic rate of *Isochrysis galbana* was not significantly affected compared to 5 mg/l and 7 mg/l phenanthrene where the photosynthetic rate was greatly reduced compared to control.

The spiking continuous culture technique was used to estimate the NOEC (No Observed Effect Concentration) and LOEC (Lowest Observed Effect Concentration) values of phenanthrene on the inhibition of *Isochrysis galbana* growth. This method is based on the assumption that the culture at steady state (dilution rate equal to the growth rate) is relatively fragile and more responsive to mild perturbations and subtle influences. In this study, the NOEC value i.e., the concentrations of phenanthrene which had no effect on the steady state was 2.65 mg/l and the LOEC value which is the lowest concentrations of phenanthrene observed to have influenced the steady state was 2.70 mg/l phenanthrene. As such, the recommended safety level of phenanthrene for protecting *Isochrysis galbana* in marine environment is 26.5  $\mu$ g/l.

xiv