

Pengarang	Wei St		No. F	Panggilan
Judul Fat	ty seid.		ter	7 16
Tarikh	Waktu Pemulangan	Nomb Ahli		Tanda tangan
17/7	4-30/15	VKU	045	l
15/06/06	lloopin	Ule 103	334	h.
28/2/0+	2.15 pg.	03	04	X
5 3 107	7. pm	UK 128	75	M

1100030774

Phoustakaan Kolej Universiti Saina Class Fektralaci Molavsia (KUSTEN

Fatty acids composition of enzymatically transesterified cod liver oil / soybean oil blends by immobilized rhizomucor miehei lipase / Tham Wei Shin.

KOLEJ UNIVERSITI SAINS & TEKNOLOGI MALAYSIA 21030 KUALA TERENGGANU		
]	1000307	74
8		
		-
		Lihat sebelah

HAK MILIK PERPUSTAKAAN KUSTEM

FATTY ACIDS COMPOSITION OF ENZYMATICALLY TRANSESTERIFIED COD LIVER OIL/SOYBEAN OIL BLENDS BY IMMOBILIZED *Rhizomucor miehei* LIPASE

By

Tham Wei Shin

Research Report submitted in partial fulfilment of the requirements for the degree of Bachelor of Science (Biological Sciences)

Department of Biological Sciences Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2004

DEPARTMENT OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE AND TECHNOLOGY KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

APPROVAL AND CERTIFICATION FORM RESEARCH PROJECT I AND II

I certify that the research report entitled: Fatty Acids Composition of Enzymatically Transesterified Cod liver Oil/ Soybean Oil Blends by Immobilized *Rhizomucor miehei* Lipase by THAM WEI SHIN Matric No. UK 5371 has been read and all corrections recommended by the examiners have been done. This research report is submitted to the Department of Biological Sciences in partial fulfillment of the requirements for the degree of Bachelor of Science Biology, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysisa.

Approved by:

Supervisor

Name: HAZLINA AHAMAD ZAKERI Pensyarah Jabatan Seins Biologi IFatutti Seins dan Teknologi IKolej Universiti Sains dan Teknologi Malaysia (KUSTEM) IMengabang Telipot 21030 Kuala Terengganu, Terengganu Darul Iman.

Date

Department Head of Biological Sciences

Name: PROF. DR. CHAN ENG HENG Ketua Jabatan Sains Biologi Stamp Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malavoja (KUSTEM) 21030 Kuala Terengganu.

i4 · 3 · 2004

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisor, Cik Hazlina Ahamad Zakeri from the Department of Biological Science, Kolej Universiti Sains dan Teknologi Malaysia for her endurance in assisting me throughout the completion of my final year project. Thank you very much for your advice and kind assistance. Truly, this project would not be success without the patience and guidance from you. I also wish to convey my appreciation to Cik Norazlina Abdul Aziz and Cik Ku Naiza Ku Nordin, the science officers of the department of Biological Sciences and her assistant, who had extended my knowledge with the information regarding the usage of Gas Chromatography (GC).

My heartiest gratitude and a big thank you goes especially to my family and my boy friend, Andy Ng Chie Aun for their moral support when I face any problems in the progress of my works. Thank you for your patience and understanding. Also to my project partner, Chew Meng Li who always kept me company throughout the completion of my project. Thank you very much.

Lastly, I would like to dedicate my appreciation to all my best friends and coursemates who had comfort me during my sad time in this project. Thanks for your concern very much. Thank you.

ii

TABLE OF CONTENTS

1

Acknowledgement	ii	
Table of Contents	iii	X
List of Tables	v	
List of Figures	vi	
List of Abbreviations	vii	
List of Appendices	viii	
Abstract	ix	
Abstrak	x	

1.0 Introduction and Objectives

2.0 Literature Review

 2.1 Fatty Acids 2.1.1. Definition of Fatty acids 2.1.2. Dietary Sources of Polyunsaturated Fatty Acids (PUFAs) 2.1.3. Nutritional and Health Benefits of PUFAs 2.1.4. Fatty Acid Analysis and Determination 	3 5 6 8
2.2 Fats and Oils 2.2.1. Cod liver oil 2.2.2. Soybean oil	11 13
2.3 Lipase2.3.1. Definition of lipase2.3.2. Lipase in organic solvent and transesterification	19 21

3.0 Methodology

3.1 Materials	29
3.2 Transesterification Reaction	29
3.3 Removal of Free Fatty Acid (FFA) fr	om Transesterified Oils 30
3.4 Determination of Fatty Acid Compos	sition by Gas Chromatography 31

4.0 Results and Discussions

4.1 Fatty Acids Analysis of	f Soybean Oil (SBO), Cod Liver Oil (CLO) ar	۱d
CLO:SBO (1:1) Blend	Before Transesteification	32
4.2 Fatty Acids Composition	on of CLO: SBO (1:1) Before and After	
Transesterification		36
4.3 Fatty Acids Composition	on of Different Blending Ratio of CLO: SBO	40

5.0 Conclusions and Recommendations	47
References	49
Appendices	56
Curriculum Vitae	63

Peroustakaan Kolei Universiti Sains Dan Teknologi Malavsia (KUSTE

LIST OF TABLES

Table	Title	Page
2.1	Fatty acid composition of commercial cod liver oil	12
2.2	Fatty acid profile of soybean oil	14
2.3	Fatty acid composition of soybean oil before and after transesterification with various acyl donors by Mucor miehei Lipase(IM60)	17
4.1	Fatty acids composition of soybean oil (SBO), cod liver Oil (CLO) and SBO: CLO (1:1) blend before Transesterification	34 on
4.2	Fatty acids of cod liver oil: soybean oil (1:1) blend before and after transesterificaiton with Lipozyme IM60 at 60°C and 200 rpm for 6 hours	38
4.3	Fatty acids composition of cod liver oil: soybean oil (2:3) blend before and after transesterificaiton with Lipozyme IM60 at 60°C and 200 rpm for 6 hours	41
4.4	Fatty acids composition of cod liver oil: soybean (3:2) blend before and after transesterificaiton with Lipozyme IM60 at 60°C and 200 rpm for 6 hours	42

LIST OF FIGURES

4

Figure	Title	Page
2.1	Metabolism of n-6 and n-3 PUFAs	4
2.2	Segmentation of the industrial enzyme market	24
4.1	GC chromatograms of CLO, SBO and CLO: SBO (1:1) blend before transesterification	33
4.2	GC chromatograms of cod liver oil: soybean oil (1:1) before and after transesterification with Lipozyme IM60 at 60°C and 200rpm for 6 hours	37
4.3	GC chromatograms of cod liver oil: soybean oil (2:3) before and after transesterification with Lipozyme IM60 at 60°C and 200 rpm for 6 hours	43
4.4	GC chromatograms of cod liver oil: soybean oil (3:2) before and after transesterification with Lipozyme IM60 at 60°C and 200 rpm for 6 hours	44
4.5	Fatty acids composition of CLO: SBO blends after transesterification with Lipozyme IM60 at 60°C and 200 rpm for 6 hours	45

LIST OF ABBREVIATIONS

ALA	= α-Linolenic acid
ARA/AA	= Arachidonic acid
C16:0	= Palmitic acid
C18:0	= Stearic acid
C18:1	= Oleic acid
C18:2	= Linoleic acid
C18:3	= Linolenic acid
C20:5n3	= EPA
C20:6n3	= DHA
CLO	= Cod liver oil
DHA	= Docosahexaenoic acid
EPA	= Eicosapentaenoic acid
FAME	= Fatty acid methyl ester
FFA	= Free fatty acid
GC	= Gas chromatogrphy
GC-FID	= Gas chromatography- flame ionization detector
LA	= Linoleic acid
LC-PUFA	= Long-chain polyunsaturated fatty acid
n-3 PUFA	= Omega-3 polyunsaturated fatty acid
n-6 PUFA	= Omega-6 polyunsaturated fatty acid
PUFA	= Polyunsaturated fatty acid
SBO	= Soybean oil
ST	= Structure triglyceride

LIST OF APPENDICES

Appendix	Title	Page
1	Example of unsuccessful FAME conversion (Fatty acid undetectable by GC)	56
2	The percentage of free fatty acid (FFA) removed	57
3	Photo of materials: soybean oil and cod liver oil	58
4	Photo of orbital shaker	59
5	Photo of separatory funnel filled with sample	60
6	Photo of vortex machine	61
7	Photo of FAME injection into Gas Chromatography (GC)	62

ABSTRACT

In an effort to improve the functionality and nutritional qualities of soybean oil, the enzymatic transesterification of cod liver oil-soybean oil (CLO-SBO) blends with different ratios (1:1, 2:3 and 3:2) in water-saturated hexane was investigated. The enzyme used was 1, 3-specific lipase from *Rhizomucor miehei*. Results indicated that SBO was rich with linoleic acid while CLO was abundant with omega-3 polyunsaturated fatty acids (n-3 PUFAs). Transesterification between cod liver oil and soybean oil did occur. Transesterification did not much alter the fatty acid composition in SBO: CLO (1:`1), the significant incorporated fatty acid was only DHA compared with the control. Transesterification did occur in parallel with hydrolysis, or % of free fatty acids (FFA) removed. FFA for CLO: SBO (1:1), (2:3) and (3:2) were 2.5%, 2.6% and 2.6%, respectively. Both three ratios of transesterified blends reduced the saturated fatty acid composition compared with the control. Only CLO: SBO (3:2) showed the obvious result in incorporation of n-3 PUFA from CLO into SBO. Thus, CLO: SBO (3:2) blend should be the most appropriate ratio to be used in the transesterification to yield high percentage of n-3 PUFA in SBO.

ix

ABSTRAK

Dalam sumbangan mempertingkatkan kualiti nutrisi dan fungsi bagi minyak kacang soya, kajian terhadap transesterifikasi dengan penggunaan enzim antara campuran minyak hati ikan kod (MHIK) dengan minyak kacang soya (MKS) telah dijalankan. Campuran antara kedua-dua minyak ini dibuat mengikut nisbah 1:1, 2:3 dan 3:2 masing-masing dalam heksana-tepu-air. Enzim yang digunakan adalah lipase 1,3-spesifik daripada Rhizomucor miehei. Keputusan yang didapati menunjukkan bahawa MKS mengandungi asid linoleik dengan banyak sementara kebanyakkan asid lemak daripada MHIK ialah asid lemak omega-3. Selain itu, transesterifikasi antara MHIK dengan MKS telah berlaku. Transesterifikasi tidak banyak mengubah komposis asid lemak dalam campuran MHIK dan MKS (1:1), kesan pergabungan asid lemak yang signifikan hanya pada DHA berbanding dengan kawalan. Transesterifikasi berlaku serentak dengan hidrolisis atau peratus penyingkiran asid lemak bebas (%AMB). AMB bagi MHIK : MKS (1:1), (2:3) dan (3:2) masing-masing ialah 2.5%, 2.6% dan 2.6%. Ketiga-tiga campuran MHIK: MKS menghasilkan kandungan asid lemak tepu yang menurun. Pergabungan asid lemak omega-3 hanya dapat menunjukkan keputusan yang jelas dalam MHIK: MKS nisbah 3:2. Dengan ini, campuran 3:2 MHIK: MKS adalah paling sesuai digunakan dalam transesterifikasi untuk mempertingkatkan peratus asid lemak omega-3 dalam MKS.

х