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ABSTRACT 

To evaluate the oral protein delivery potential of pH-responsive bacterial cellulose-

based hydrogels, a model protein drug was efficiently loaded into the hydrogels and 

the release profile was investigated in a simulated gastric fluid (SGF) and a simulated 

intestinal fluid (SIF). In this study, we will propose a mathematical approach to 

evaluating the performance of the hydrogels in the simulated gastrointestinal fluids. 

We start by using the power law to determine the type of the release in each fluid. 

Then, the swelling behaviour of the hydrogel will be studied and the least squares 

method will be developed to find a suitable mathematical function to represent the 

growth. Mathematical models for the release will be developed and solved to be used 

to find the concentration of the protein at a given time. The mathematical procedures 

for diffusion coefficient determination in SIF and SGF will be concluded in an 

algorithm at the end of this paper. 

 

Keywords: Controlled drug delivery, swelling, hydrogel, effective diffusion 

coefficient. 

 

1. Introduction 

Peppas’s power law has been extensively used for studying the release 

mechanism of drug delivery. Despite the simplicity of the method, it has been 

proven to successfully fit various drug release data (Siepmann and Peppas, 

2001). However, the method is only suitable to fit experimental data for a 

fractional release rate of less than 0.6 and the information gained from the 

method is limited to the type of the release mechanism. The parameter that 
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could characterize the developed drug delivery device is not explicitly stated 

in the method. The exponent n and the prefactor k in equation (1) are both 

dependent on dosage form geometry, the relative importance of relaxation 

and diffusion, and structural factors governing diffusion and relaxation rates 

(Siepmann and Siepmann, 2012).  

 

Mathematical models for diffusion-controlled drug release have been 

developed in various studies (Doumenc et al., 2001, Lu et al., 1998). The 

analytical solutions for the diffusion-controlled drug release models for 

regular geometries (Wang and Xia, 2009, Wang et al., 2009, Mohd-Mahali et 

al., 2011) in some ideal conditions have been derived. Numerical solutions, 

such as finite difference, finite volume and many more methods, have been 

used for more general geometries and many complicated models (Mohd-

Mahali et al., 2012 and 2014). Most of the mathematical solutions have been 

tested using laboratory data and the usefulness has been shown in the 

respective papers. Although the numerical methods are able to solve a more 

flexible model, the huge computational time consumed for the simulation is 

sometimes not worth it. The diffusion-controlled model with a simplified 

geometry that has been analytically solved proved to be comparable with the 

numerical solution of the same model with a real three-dimensional 

geometry.  

 

While the analytical solutions for diffusion-controlled drug delivery in 

various conditions are available, the analytical solution for drug delivery 

involving swelling effect is as yet restricted. Due to the model complexity, 

many researchers turn to numerical methods for such drug delivery 

(Siepmann et al., 1999). Different mathematical theories have been proposed 

in developing models for drug deliveries involving swelling devices 

(Siepmann and Siepmann, 2008, Bierbrauer, 2005). 

 

In the meantime, swelling is one of the important characteristics for 

hydrogel devices. In the recent research by Ahmad et al. (2014), the in vitro 

controlled release of protein was investigated in SGF and SIF. Assuming that 

the release is diffusion-controlled after the fractional release reaches 0.6, the 

effective diffusion coefficients for the hydrogel devices have been estimated.  

 

In the present research, we propose a mathematical algorithm that can be 

used to fit all protein release profiles from the same hydrogel devices in two 

different pH fluids. The algorithm combines the mathematical solutions for 

diffusion-controlled (Wang and Lou, 2009) and swelling-controlled 

(Bierbrauer, 2005) drug deliveries. The mathematical approach to determine 

the swelling behavior of the devices is also proposed in this work. 
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2. Problem Formulation 

The Release Experiments 

The studied bacterial cellulose-based hydrogels were first loaded with the 

model protein. Then, in order to measure the protein release from the loaded 

hydrogel disks, the disks were first immersed in 25 mL of SGF for 2 hour and 

then transferred to SIF until maximum release. At fixed intervals, the 

concentration of protein in the external fluid was measured. The observations 

showed that the hydrogels underwent a small amount of swelling in SGF and 

rapid swelling in SIF. 

 
The Mathematical Model 

In this section, we will introduce two different models to represent the protein 

release in SGF and SIF. In practice, the power law is usually used to 

determine the type of the release, i.e., whether it is diffusion-controlled or 

swelling-controlled. In the power law, the fractional drug release is 

represented by the following equation 

 

nt kt
M

M


  

(1) 

  
where 𝑀𝑡 is the amount of protein released until sampling time t , 𝑀∞ is the 

total amount of protein released, k is the geometric constant characteristic of 

the drug delivery system, and n is the release exponent, indicating the release 

kinetic mechanism. Table 1 shows the release kinetic mechanism based on 

the value of n for the cylindrical drug device as concluded in Siepmann and 

Siepmann (2012). 

 
TABLE 1: The Release Mechanism for Cylindrical Device Indicated by the Value of 𝑛 in the Power Law 

 
n Release Kinetic Mechanism 

𝑛 = 0.45 Fickian diffusion 

0.45 < 𝑛 < 0.89 Anomalous transport; combination of 

swelling-controlled and diffusion 

𝑛 = 0.89 Polymer swelling 

 
Thus, before deciding the appropriate mathematical model for the release 

profiles in SGF and SIF, the power law is used to calculate the release 

exponent. However, this law is only applicable for fractional release profiles 
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less than 0.6. It is expected for the pH-responsive bacterial-based cellulose 

hydrogel that the swelling effect will only occur for release in SIF. 

 

The Diffusion Model 

If the value of n shows the release mechanism is Fickian diffusion, the 

mathematical model can be written as  

 
𝜕𝐶(𝑥, 𝑡)

𝜕𝑡
= 𝐷∇2𝐶(𝑥, 𝑡), 𝑥 ∈ Ω𝑐 , 𝑡 > 0, 

(2a) 

𝜕𝐶(𝑥𝑐 , 𝑡)

𝜕𝑥
= 0, 𝑡 > 0 

(2b) 

𝐶(𝑥, 0) = {

𝑀0

𝑉𝑑

0

,
𝑥 ∈ Ω𝑑

𝑥 ∈ Ω𝑐\Ω𝑑
 

(2c) 

 

where 𝐶(𝑥, 𝑡) is the concentration of the protein, 𝐷 is a constant diffusion 

coefficient, Ω𝑐  represents the whole region of the container containing the 

simulated gastrointestinal fluids and the hydrogel device and Ω𝑑  represents 

the region for the hydrogel device only. 

 

 

 
Figure 1: The 2D geometry of a disc device with radius 𝑟𝑑 in a cylindrical container with radius 𝑟𝑐. 

 

In two-dimensions, the simplified geometry of a hydrogel disc being position 

in a SGF/SIF full container is depicted in Figure 1. The device is assumed to 

be located at the centre of the container full with fluid. Based on this 

simplified geometry, the model can be rewritten in a cylindrical coordinate as 

suggested by Wang et al. (2009) 

 
𝜕𝐶(𝑟,𝑡)

𝜕𝑡
= 𝐷 (

𝜕2𝐶(𝑟,𝑡)

𝜕𝑟2 +
1

𝑟

𝜕𝐶(𝑟,𝑡)

𝜕𝑟
) , 0 < 𝑟 < 𝑟𝑐,  𝑡 > 0, (3a) 

𝜕𝐶(𝑟𝑐,𝑡)

𝜕𝑥
= 0,  𝑡 > 0, (3b) 

𝐶(𝑟, 0) = {
𝑀0

𝑉𝑑

0
,  

0 < 𝑟 < 𝑟𝑑

𝑟𝑑 < 𝑟 < 𝑟𝑐
 

(3c) 

 

Ω𝑐 

r𝑑 
𝑟𝑑 

r𝑑
Ω

r𝑐 

Ω𝑑  
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where 𝑟𝑑  is the radius of the hydrogel disc and 𝑟𝑐  is the radius of the 

cylindrical coordinate, considering both have the same height. The diffusion 

equation in this system had been solved using the separation of variable 

method and the formula for the total protein release until time t was derived 

as 

 

 
 
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(4)

 

 

where 

 
2

c cV r h  is the container volume, 
2

d dV r h  is the device volume (the height, h of the container and the device 

are assumed to be the same), 

c

d

r

r
  is the ratio of the radius, 

0J  is the zeroth order Bessel function, 

1J  is the first order Bessel function and 

n  are the roots satisfying 0 1'( ) 0 ( )n nJ J   . 

 

The fractional protein released is then obtained by dividing the formula for 

tM  with the initial drug loading, 0M as follows 
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(5) 

 

This formula has been used by Ahmad et al. (2014) to fit the experimental 

data of protein release from a swollen hydrogel disc in SIF for release beyond

0

0.6tM

M
 . The swelling effect had been neglected at that phase based on the 

assumption that the hydrogel disc had reach its fully swollen state, thus the 

release mechanism is assumed to be solely by diffusion. In the present 

research, we will use this formula when only limited swelling occurs, as it 

happened when the hydrogel disc was placed in SGF. However, for the 

release experiment in SIF which showed rapid swelling of the hydrogel, we 
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will consider the release mechanism to be a combination of diffusion and 

swelling mechanisms. 

 

The Swelling Model  

In this section, a mathematical model for protein release from the hydrogel 

disc in SIF will be developed. The release mechanism is believed to be 

swelling-controlled. Swelling-controlled in this sense means that although the 

swelling step is of importance, the diffusion still significantly affects the 

release rate. The drug diffuses out of a device that swells as fluid is absorbed. 

The advection-diffusion equation for a growing domain may be used to 

represent such a release mechanism (Bierbrauer, 2005). If we consider that 

the diffusion coefficient is constant, the equation is written as 

 

 CuCD
t

C




 2  
(6) 

 

where u is the growth velocity of the region. By only considering the region 

within the device and assuming the concentration is uniform at the boundary 

(due to stirring), the model can be written as follows 

 

   0  t),(   x,),x(,x),x(
),x( 2 




ttutCtCD

t
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d  

(7a) 

),()),(( tCttC d 
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(7b) 

,1)0,( xC
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(7c) 

 

where x  denotes the point in space which has coordinate  zyx ,,  if in three 

dimensions, ( )d t  is the region for the swelling hydrogel device with 

( )d t  as the moving boundary. This model is rather complicated to solve 

analytically. We can however simplify the model by only considering one-

dimensional space and applying a sink condition to the boundary. The model 

is now reduced to the model proposed by Bierbrauer (2005) 
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,1)0,( xC ),0(0 Xx 
 

(8d) 

 

where (0)X L  is the original length of the device region before it starts 

swelling, ( )X t  is the moving front of the region, 
u

C
x




 is the dilution term 

due to local volume change and 
C

u
x




 is the advection of elemental volumes 

moving with the flow. For the current disc device, we denote x =0 as the 

centre of the device, (0)X L is the original radius of the device and ( )X t  is 

the surface of the device that been in contact with SIF. The one-dimensional 

model had been solved in Bierbrauer (2005) for concentration as 

 

 

 

 
 

2

2

0

2 1
( )

2

0

1 2 14
( , ) cos .

2 1 ( ) 2 ( )

tnn
D X d

n

n xL
C x t e

n X t X t


 



 
     

 



   
  

  
  

(9) 

 

Thus, the total mass release formula can be gained by subtracting the 

integration of the initial concentration over the original region with the 

integration of the concentration at time t over the current region 
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The fractional protein release is gained by dividing the total mass release (10) 

with the integration of the initial concentration as follows 
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which then can be written as 
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The Growing Boundary 

The solution from the previous section requires information for the function 

of the growing boundary, )(tX . The growing boundary could follow various 

types of function depending on the device material properties such as linear 

function, exponential function, logistic function and many more. In the 

current work, it is known that the hydrogel disc will swell up to a certain size. 

Therefore, the logistic function seems to be the most appropriate function to 

be considered. The function is in the following form 
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where
lim ( ) lim ( )

(0)

t t
X t X t

m
X L

   and r is the growth factor that speeds up or 

slows down the growth to its final size, mL . In order to choose the right r for 

our hydrogel disc, the measurements of the radius at every time interval need 

to be taken. Then, the least squares method can be used to determine the 

parameter.  
 

 

By having a logistic function to represent the growth of the hydrogel, the 

fractional protein release formula (12) can be further reduced to 
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(13) 

 
  

3. Determination of the Effective Diffusion Coefficient 

The laboratory data for fractional protein release from the hydrogel 

discs are denoted as 

000
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for protein release in SGF where Gt  denotes the end time point in the release 

experiment in SGF and 
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for protein release in SIF where tK denotes the final time of the experiment 

and 
e

tG
MMM  00

~

 

is the value considered as the initial drug loading for release in SIF. Since the 

hydrogel acts differently in each fluid, it is important to determine the 

effective diffusion coefficients for the hydrogel devices separately so as to 

have a clear picture of the device characteristics. Effective diffusion 

coefficient in this research refers to a constant approximation of the real 

diffusion coefficient which in general can be a function of space, time and 

much more. The following algorithm list the steps for this estimation. The 

computation for the release in SGF and SIF is propose to be done separately 

using the following index: 
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 Algorithm (perform separately for release at time Gk tt   and Gk tt  ) 

1. Find the optimal n by minimizing the following least squares function 
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2. If 45.0n  calculate the fractional protein release using formula (5) 
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else 

 Find the growth factor r by minimizing the following least squares 

function 
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 calculate the fractional protein release using formula (13) 
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3. Find the optimal D by minimizing the following least squares function 
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4. Conclusions 

The protein release experiments from a PH-responsive bacterial 

cellulose-based hydrogel have been done in SIF and SGF (Ahmad, 2014). It 

is important to determine the effective diffusion coefficients of the developed 

devices in both fluids in order to predict the behaviour of the devices in the 

gastrointestinal track. In this study, we proposed an algorithm to determine 

the parameters. The algorithm is a combination of an analytical solution of 

diffusion-controlled drug delivery from a disc device (Wang and Lou, 2009) 

and a one-dimensional analytical solution from a swelling-controlled drug 

delivery device (Bierbrauer, 2005).  
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