Isolation of growth hormone gene from the Malaysian mahseer, Tor tambroides

Nor Haini Abd Rashid¹, Shahreza Md Sheriff^{1,2*}, Muhd Danish Daniel Abdullah^{1,2}, Nur Asma Ariffin^{1,2}, Tun Nurul Aimi Mat Jaafar^{1,2} and Abol Munafi Ambok Bolong^{1,2}

¹School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu ²Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu

Received 7th January 2015 / Accepted 9th May 2015

Abstract. A study was done to clone a cDNA of the Malaysian mahseer (*Tor tambroides*) growth hormone (GH) gene. In this study, an RT-PCR technique was used to isolate the GH gene using RNA extracted from brain tissue of *T. tambroides*. The fragment obtained was purified and cloned into pGEM-T easy cloning vector. The GH cDNA of *T. tambroides* consists of 1,189 nucleotides (nt) excluding the poly (A) tail, with a 36 nt untranslated region (UTR) at the 5' region and a 520 nt UTR at the 3' region. The GH cDNA contains an ORF of 633 nt and encodes for a polypeptide of 210 amino acids (aa), including a signal peptide of 22 aa. Comparison of the *T. tambroides* GH gene with other teleost GH genes indicated that it has the highest similarity with *C. carpio* GH type 1 (GHI) with which it share 99% and 98% homology in terms of amino acid and nucleotide sequences, respectively. Molecular characterization of the *T. tambroides* GH gene showed it exhibits typical GH features similar with other teleost GH genes. Therefore, the GH sequence of *T. tambroides* was successfully isolated and the sequence added to the GenBank database (JF428142). This is the first report of the isolation of a GH gene. This could lead to the use of molecular approaches to better understanding the growth of *T. tambroides* and give an insight into the molecular aspects of its growth performance in aquaculture.

Keywords: cDNA, Growth hormone, Indigenous species, Tor tambroides

INTRODUCTION

Growth hormone (GH) is one of the most important hormones involved in growth processes especially for promotion and maintenance of somatic growth in vertebrates (Yowe and Epping, 1999). Besides regulating growth, it also regulates other physiological functions in fish including metabolism, immune response, reproduction and osmoregulation (Cavari et al., 1993; Filby and Tyler, 2007; Sakamoto et al., 1997; Yada, 2007). Due to this, GH cDNA has been isolated and characterized from different orders and families of many fish species including Cypriniformes (Agellon et al., 1988; Anathy et al., 2001; Chang et al., 1992; Filby and Tyler, 2007; Inoue et al., 2003; Saito et al., 1988; Venkatesh and Brenner, 1997). GH, which is a single chain polypeptide secreted in the anterior pituitary portion of the fish brain, has been studied extensively in understanding the structure-function relationships, evolution and regulation of gene expression. However, understanding of the GH gene in indigenous Malaysian fish species is still limited and has not been extensively explored.

Malaysian mahseer, also known as kelah, is one Malaysian indigenous species, a freshwater fish which is very valuable for consumption and commands a good price in the market (Nguyen *et al.*, 2006). This fish has been successfully propagated and efforts are underway to commercialize production of this species, also reared for conservation purposes. Nevertheless, study of the GH gene which affects growth of this fish is still limited. Moreover, previous studies have shown that the coding region of GH gene sequences are less similar among teleosts species than between terrestrial species. The size of the GH gene varies among species (Law et al., 1996; Marins et al., 2003). Although the GH gene has been isolated from many different fish species, there is no information on GH gene sequence in T. tambroides and whether the sequence is similar or not with other GH genes is still unknown. The study of growth hormone in this fish is very important in providing additional information in terms of molecular development, and so the goal of this study was to isolate and characterize the GH gene fragment from T. tambroides.

^{*} Author for correspondence: Shahreza Md. Sheriff,

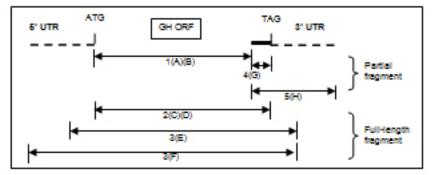
Institute of Tropical Aquaculture, Universiti Malaysia Terengganu 21300 Kuala Terengganu, Terengganu.

Tel.: 0192867794, Email - shahreza@umt.edu.my.

MATERIALS AND METHODS

In this study, five sense and five antisense primers based on the cypriniformes and *Cyprinus carpio* GH gene sequence (JF428142) were designed using Primer Premier 5 software (Table 1). In order to isolate the partial and full-length coding sequences of the *Tor tambroides* GH gene sequences, these primers were used to amplify 5 different target regions: from start codon to highly conserved region (CFKKDMHKVETYL); coding sequence from start to stop codon; 5' to 3' untranslated region (UTR); highly conserved

Table 1. The sequences of forward and reverse primers used in isolating the GH gene.


Primer name	Primer sequence (5'-3')
TGHS1	ATGGCTAGAGCATTAGTGCTATTGT
TGHS2	ATGGCTAGAGCATTAGTGCTATTG
TGHA1	GTAAGTTTCGACCTTGTGCATGT
TGHA2	CTGAGGTAAGTTTCGACCTTGTG
TGHA3	CTACAGGGTGCAGTTGGAATCC
CGHS1	AAGCCTGCAAGAGTTTGTCTACC
CGHS2	AACTAAGCCTGCAAGAGTTTGTCTAC
CGHS3	GGCTTGCTTTAAGAAGGACAT
CGHA1	TGGATGCAATTTAAAACTTTAATAGAG
CGHA2	TGTTACAGGCATTGACTAACAATACA
S=sense; A=	=antisense

region to stop codon; and 3' UTR (Figure 1). The primer pairs TGHS1 and TGHA1 (A) and THGS2 and TGHA2 (B) which are composed of 23 to 25–mer oligos were used in RT-PCR to generate 582 and 587 bp partial fragments, respectively, from ATG to highly conserved region, 100 bp from the stop codon. The combinations of TGHS1, TGHS2 and TGHA3 (C) (D) and CGHS1, CGHS2 with CGHA2 (E) (F) which are composed of 22 to 26-mer oligos, generated 633, 701 and 705 bp full-length GH sequences, respectively. Meanwhile, the combination of specific CGHS3 with TGHA3 (G) and CGHSA1 (H) primers which are composed of 21-26-mer oligos, generated 127 and 586 bp partial GH fragments from the target fish, respectively (Table 2). The GH gene fragment of *T. tambroides* was

Table 2: Primer combinations and resulting product sizes.

Primer combination	Primer code	Target size (bp)		
TGHS1 + TGHA1	(A)	582		
TGHS2 + TGHA2	(B)	587		
TGHS1 + TGHA3	(C)	633		
TGHS2 + TGHA3	(D)	633		
CGHS1 + CGHA2	(E)	701		
CGHS2 + CGHA2	(F)	705		
CGHS3 + TGHA3	(G)	127		
CGHA2 + CGHA1	(H)	586		

isolated with the One-Step PCR method using a commercially BioScriptTM One-Step RT-PCR Kit (Bioline, USA) following the manufacturer's protocol. A 25µl reaction, consisting of 1x one-step RT-PCR buffer, 1µl one-step enzyme mix, 50 pmol of upstream primer, 50 pmol of downstream primer, 3µg of total RNA, 10µl RNase inhibitor, 5% Dimethyl sulfoxide (DMSO), was prepared and mixed into 0.2 ml PCR tube. DEPC-treated water was added to make up to 25µl. The mixtures were mixed by tapping and spun briefly for 5 seconds. The PCR samples were then put into the thermal cycler (MJ PTC200, USA) and reverse transcribed at 42°C for the initial reverse-transcription step and 95°C to denature the RT enzyme and activate DNA polymerase. After that, 35 cycles of amplification was performed which

Figure 1. The amplification strategy of the *Tor tambroides* **growth hormone (GH) gene**. Arrows indicate the amplified sequences. The stippled line indicates a short region of highly conserved sequence

consisted of denaturation at °C for 30 seconds, annealing at 58 to 62°C for 30 seconds and extension at 72°C for 30 seconds, followed by final extension at 72°C 10 minutes.

The resulting PCR fragment was purified using a commercially available Wizard[®] SV gel and PCR clean-up system by Promega, and later cloned into pGEM-T Easy cloning vector (Promega, USA). The positive clones were sequenced and analyzed. The sequence was imported into BLAST (NCBI) in order to identify the similarity of the sequence, in terms of their E-value and query coverage, with other GH gene sequences in the Genbank database (http://www.ncbi.nlm.nih.gov). Later, the nucleotide and protein sequences obtained were compared with other teleost GH gene sequences from the Genbank database.

Multiple alignments from 36 nucleotide sequences of GH ORF were conducted using the ClustalX program and were used in phylogenetic analysis, carried out using PAUP* version 4.0 b10 (Swafford, 2000) with Maximum Likelihood and Neighbor Joining algorithms in order to estimate the phylogeny.

For Maximum Likelihood analysis, a hierarchiral likelihood ratio test (hLRT) was performed using Modeltest version 3.7 (Posada and Crandall, 1998) to determine the best model of evolution with an α value of 0.01. The best fit evolutionary model selected for the sequence data set was the Kimura 2 Parameter model with Gamma distribution (K80 + G) and estimated base frequencies of A= 0.25, C= 0.25, G= 0.25, T= 0.25; Base=equal Nst=2; a Ti/tv (transition/ transversion) rate of 1.8089; a G (gamma) distribution shape of 0.7729 and zero proportion of invariable sites. The K80+ G model and maximum likelihood parameters were then used to reconstruct the maximum likelihood tree using PAUP*. Neighbor-Joining trees were constructed from dissimilarity values computed using the same maximum likelihood settings. Data were resampled using 1000 bootstrap replicates (P>0.001) to determine the confidence limits of tree topology using a heuristic search with a tree bisection-reconnection (TBR) branch swapping algorithm. In this analysis, Bos taurus was used as an outgroup (Accession number: NM180996).

RESULTS AND DISCUSSION

The sequences of cDNAs were determined using different amplification products covering the entire GH cDNAs from *Tor tambroides*. Sequence results showed that the GH encoding cDNA of Malaysian mahseer, *T. tambroides* was 1,189 nucleotides long, with a 36 nt untranslated region (UTR) at the 5' terminus and a 520 nt UTR at the 3' terminus. The GH cDNA contains a 633 nt ORF starting at the first ATG codon and ending with a TAG stop codon. The analysis of the predicted amino acids encoded by *T. tambroides* GH CDNA indicated that

the sequence encodes for a protein of 210 aa. The primary structure of *T. tambroides* GH polypeptides deduced from the ORF contains a putative 22 aa signal peptide with a signal peptide cleavage site at Ser_{23} and 188 aa of the mature peptides (Figure 2). Since the first 22 aa residues from the N-terminus are highly hydrophobic (77%) and have a high degree of homology to the signal peptide of other fish GHs, this 22 aa residues might comprise the signal peptide

The N-terminus aa residue of the mature T. tambroides GH is serine. This mature protein start aa can vary among species. For example, the mature GH of bluefin tuna and red seabream start with glutamine (Momoto et al., 1988; Sato et al., 1988). On the other hand, the first aa residue of the mature eel GH is valine (Saito et al., 1988) and other species like chum salmon, coho salmon and rainbow trout GH start with isoleusine (Agellon et al., 1988; Gonzalez-Villasenor et al., 1988; Sekine et al., 1985). The present study has shown that the signal peptide of T. tambroides was the same as observed in the GHs of carp and salmonid which are cleaved upon hormone secretion (Koren et al., 1989; Meire et al., 2006). However, this signal peptide was 4-5 amino acids shorter than the mammalian GH genes (26 aa in rat and human; 27 aa in bovine GH), and 3 to 5 residues longer than signal peptides of eel and seabream, respectively. Koren et al. (1989) stated that the sequence of the signal peptide is more divergent among species than that of the mature GH polypeptides.

Tor GH shares structural features which are also conserved in carp, chicken and human GH sequences (Figure 3). The four cysteine residues (Cys $_{71,}$ Cys $_{183,}$ Cys200 and $\text{Cys}_{\scriptscriptstyle 208})$ in this fish are located in similar positions in almost all GH polypeptides including fish, human, bovine and porcine GHs. Cysteine residues which are capable of forming two disulphide bonds, were assumed to contribute to the tertiary structure of the hormone molecule. This is supported by previous studies on human and bovine (Carlacci et al., 1991; Somer et al., 1994). Since these residues are located at nearly identical locations in all GHs, it is expected that these residues play an essential role in structural integrity and in maintaining the biologically active form of GH. Nevertheless, the extra cysteine residue (Cys₁₄₅ or Cys₁₂₃ from the mature polypeotides) in T. tambroides and common carp are also found in the GHs of other carps such as in goldfish and milkfish (Chang et al., 1992; De Jesus et al., 2002; Law et al., 1996). The number of unpaired Cys residues affects the proper refolding due to the formation of oligomers (Law et al., 1996). The extra Cys residue in carp was first suspected to be the cause of the low yield of properly refolded recombinant GH (Fine et al., 1993). For instance, it has been found that the extra Cys is not involved in improper refolding of recombinant carp GH because mutating this Cys to Ala did not improve the yield of monomeric GH, suggesting that this extra Cys is located in the hydrophobic core of the hormone (Fine et al., 1993b). Therefore, it is possible that the cysteine residue in will be similar to carp GHs.

-36	AACTAAGCCTGCAAGAGTTTGTCTACCCTGAGCGAA					
1	M A R A L V L L S V V L V S L 15					
1	ATG GCT AGA GCA TTA GTG CTG TTG TCG GTG GTG CTG GTT AGT TTG 45					
	1					
16	L V N Q G R A S D N Q R L F N 30					
46	TTG GTG AAC CAG GGG AGA GCA TCT GAT AAC CAG CGG CTC TTC AAT 90					
31	NAVIRVQHLHQLAAK 45					
91	ARC GCA GTC ATT CGT GTG CAR CAC CTG CAC CAG CTG GCC GCA ANA 135	ł				
46	MINDFEDSLLPEERR 60					
136	ATG ATT AAC GAC TTT GAG GAC AGC CTG TTG CCT GAG GAG CGC AGA 180	I				
61	QLSKIFPLSFCNSDY 75					
181	CAG CTG AGT ANN ATC TTC CCN TTG TCT TTC TGC ANT TCT GAC TAC 225	6				
76	IEAPTGKDETQKSSM 90					
226	ATT GAG GCG CCC ACT GGA ANA GAT GAN ACA CAG ANG AGC TCT ATG 270	1				
91	LKLLRISFRLIES <u>W</u> E 105	6				
271	TTG ANG CTC CTT CGC ATC TCT TTC CGC CTC ATT GAG TCT TGG GAG 315	6				
106	F P S Q T L S G T V S N S L T 120	i				
316	TTC CCC AGC CAG ACC CTG AGT GGA ACC GTC TCA AAC AGC CTG ACC 360	l				

121	۷	s	π	2	ы	٩	I	π	Ξ	ĸ	L	*	Ð	L	ĸ	135
361	STC	666	ACC	000	AAC	CAG	ATC	АСТ	GAG	***	CTG	900	GAC	115	***	405
138	м	s	I	5	v	L	I	ĸ	x	€	L	۵	s	٩	P	150
406	ATG	sec	ATC	AGT	GTG	CTC	ATC	225	9CA	TGT	CIC	GAT	GGT	-	CCA	450
151	s	ж	D	•	ы	۵	5	L	P	L	2	r	z	D	•	165
451	***	ATS	GAT	GAT	AAC	GAT	100	cre	CCA	cre	ccr		GAG	GAC	77C	495
165	r	L	π	N	s	z	ы	ы	L	8	z	5	r	8	L	180
495	TAC	115	ACC	ATS	sse	GAG	***	***	стс	AGA	GAG	AGC	***	CGI	CTS	540
181	L	*	c	r	ĸ	ĸ	۵	м	8	ĸ	۷	z	T	r	L	195
541	CIG	SCI	TSC	m	ANG	335	GAC	AIG	CAC	ANG	SIC	5 44	ACC	TAC	CIG	585
195	R	v	*	N	∊	R	R	5	L	Ð	5	N	C) 1	L	210
556	AGG	GTT	SCA	***	TSC	X65	AGA	TCC	CTG	GAT	TCC	***	TSC	ACC	CTG	630
631	TAG	AGG		GAT	TAT	scra	GIC	AATG	C 161		CTTO	(The	-	IC TAR	GAC	655
65 9	CAR			ACT	10011	225		TATC	aren:	6101	TAT	TAT	SCAG	AAT:	GICA	745
749	200	user	TIGGO	TAG	20010	101	110		con	10013	TAT	TAA	ACCT	ATC	ACCA	805
809	CTA	11610	1111	TTC	11010	ATT	(CCC)	AATG	TCA		т.ш	GCT	511 C			865
569	GTA	LAGG)	and de	TCT		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1111	CAC AC	-	ISCT 8	190	ATA		LA TAT	ATTT	925
92 9																
95 9															TATT	
1049	CTC		ici e	cic	me	CIAI	TAX	GIT		TIG	ATC					1105
11 09																1153

Figure 2. Nucleotide sequence of the Malaysian mahseer, *Tor tambroides* growth hormone cDNA sequence and the deduced amino acid sequence of the hormone (JF428142). The arrow indicates the possible site for signal peptide cleavage (amino acid 1-22). The mature hormone runs from amino acids 23 to 210, and the cysteine residues are circled. The tryptophan residues are underlined, and potential N-glycosylation sites (amino acids 155-157 and 207-209) are indicated with boxes.

					601	
_						5
Chicken	MARGENTERL					
Design of the	NATGSRIS-L	PROPERTY	NUCLOSSATET	IPLSRLFINA	NERVERTED	YARDOOF AND
TOP	NARALV					
Carp	MARALW	10/03/04/04/04/04	VEQGERASD		ATENGUIRE	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Con		• •				
			602		005	
		_				120
Chicken	TTIPEDORTT	NR-NSQAATC	TSETIPAPIS	KDDAQQKSDN	100.001000	OPARTEM DE
Denter	ATTRACTOR	FLONPOISLC	TSESIPTPSN	REFIGURENT	100000000000000000000000000000000000000	Operation (Capital Capital Cap
TOF	SLIPHERROL	SKITPLS-TC	NSDYTEAPTS	KORTOKSSKI	NLLRISSRLI	15011795(11)
Carp	SLIPPERRUL	SKITPLS-TC	NSDY INAPTO	KORTOKSSIC	STATISTICS.	15011795010
Con			• •			
			004			
						180
Chicken	SILVE DODLARS	GISER-VEEK	INDIAL CIQA	LARGELEDRSP		1000040040
Personal Automatical Social Soci Social Social Soci	REVERSION	GASDSHIVEDL	INDIAL CITY	LINGRIADISSIP	REGISED	115305-01855
Tor	SCIVENELTY	GIPNO-ITEX	LADLANGISV	LINACLOGOP	NECCENCISLAL	PERMIT
Carp	SGIVSNSLITV	GREENQ-ITEX	LADLANGISV	LINGCIDEOP	NECONDELPL	PERCENTION
Con						
			005			
					220	
Chicken	NEDALIASING	LISCHMUM	STREET STATUTES	CREESSICT	I	
Sec. 1	NUDALLASING	MAXCHER DOD	EVELITLEIVO	CR5V-EGSCG	T	
Tor	-INDLESSE	LUACTERING	EVELULEVAN	CRRSLDSNCT	L	
Carp	-SINGRASIS	TACTOR	NAME AND ADDRESS OF	CODST.DSNCT		

Figure 3. Comparison of deduced amino acid sequences in growth hormone (GH) genes from *Tor*, carp, chicken and human. Dashes indicate gaps which were introduced into the sequences to maximize homologies. Identical amino acids are indicated by asterisks. GD1- GD5 indicate the highly conserved domain of GH as defined by Watahiki *et al.* (1989). Consensus amino acids are shown.

Other than that, there are two Asn-Xaa-Thr/Ser motifs in the T. tambroides GH aa sequence (Asn₁₅₅, Asn₂₀₇) which are potential sites for N-linked glycosylation (Lemaire et al., 1994; Marins et al., 2003). Two similar sequences have also been observed in the GH sequences of carp, giant catfish, salmon and tilapia, while only one was found in those of chicken, yellowtail, tuna, flounder, eel and sole (Pendon et al., 1994). However, none was found in mammals. Furthermore, a single tryptophan residue (Trp_{104}) was found in T. tambroides similar to that observed in carp, chicken and human GH aa sequences. This residue has been reported by Marins et al. (2003) in marine silverside fish, Odenthesthes argentinensis as one of the characteristics of GH. This also has been reported in mullet, Mugil platanus and halfbeak, Hemiramphus brasiliensis (Meire et al., 2006). Although this residue was not reported in most studies, it can be seen that it is conserved among the teleost GHs. Tryptophan is usually buried in hydrophobic protein cores and may involved in stacking interactions with other aromatic side chains.

In this study, the comparison with other GHs and their homologous domains has shown that the GH cDNA of *T. tambroides* shares the five main conserved domains (GD1, GD2, GD3, GD4 and GD5) located at the same location not only with common carp, human and chicken, but also with the other GHs (Watahiki *et al.*, 1989). These domains, contributing to the GH specific structural and biological features, may play an essential function in the activities of GH. Analysis of domain structure showed that the GD1,GD2, GD3 and GD4 regions are arranged on the outside, while the GD5 region is restricted to the inside of the molecule. Thus, the GD1, GD2, GD3 and GD4 domains are considered to be involved in the specific binding of the GHs, while the GD5 domain may participate mainly in the formation and stabilization of GH-specific configurations (Watahiki *et al.*, 1989). Other than that, a stretch of 13 residues (CFKKDMHKVETYL) of the C-terminal region (183-195) of the aa sequence of *T. tambroides* is totally conserved with common carp and all known GHs except for several mammalian and high organism species (Figure 3).

It has been shown that in chicken and human GHs there are 1 and 3 different aa sequence, respectively (Saito *et al.*, 1988), and these are the only regions which have strong similarity among the various vertebrate GH sequences. Thus, these conserved regions are thought to be essential for either tertiary folding/hormone or binding/hormone receptor interactions (Venkatesh and Brenner, 1997).

The aa sequence predicted from the *T. tambroides* cDNA sequences were compared to those of GHs from other fish. In this comparison analysis, the deduced amino acid sequence of *T. tambroides* GHs showed four levels of homology with other GH molecules. High level homology, ranging from 99-75%, was found with Cypriniformes (*Cyprinus carpio, Carassius auratus gibelio* and *Ctenopharyngodon idella*) and Siluriformes (*Pangasius pangasius, Clarias gariepinus*). Salmonid fishes (*Oncorhynchus tshawytscha* and *Oncorhynchus masou*)

showed medium homology: about 63%. Fish species from Perciformes (*Trichogaster leerii* and *Channa striata*), Pleuronectiformes (*Paralichthys olivaceus*) and Scorpaeniformes (*Sebastes schlegelii* and *Cottus kazika*) displayed low homology: about 50%. Meanwhile, very low homology, about 40%, belongs to Acipenciforms (*Acipenser gueldenstaedtii* and *Acipenser sinensis*) and mammals (*Bos Taurus* and *Rattus novegious*). In this analysis, *Tor* GH had the highest similarity with *Cyprinus carpio* GH with which it shared 99% and 98% homology in terms of amino acid and nucleotide sequences, respectively (Table 3).

The phylogenetic analysis divided the studied fish into two major groups (Figure 4 and Figure 5). As discussed above, it can be seen that the fish were separated according to their intron type: while members of Ostariophysi possess only four introns, members of superorders Protacanthopterygii and Acanthopterygii, which share a common origin, have five introns (Clements *et al.*, 2004; Venkatesh and Brenner, 1997). The Cypriniformes and Siluriformes, which are grouped together in a superoder Ostariophysi, are sister orders to Salmoniformes (*Protacanthoperygii*), Perciformes and Scorpaeniformes (superorder Acanthopterygii), probably derived from a common ancestor (Lemaire, *et al.*, 1994; Venkatesh and Brenner, 1997). Acanthopterygii, Perciformes and Scopaeniformes have been grouped as a monophy letic lineage by Meire *et al.* (2006). Thus, the result obtained showing that the fish were clustered according to their taxonomic groups and phylogenetic grouping supported the present fish classification (Nelson, 1994).

Table 3. Comparison of nucleotide and amino acid sequences of *Tor tambroides* with other teleost and mammal growth hormones

Homology level	Species	Nucleotide similarity (%)	Amino acid similarity (%)
High	Cypriniformes:		
0	Cyprinuscarpio	98.0	99.7
	Barbonymusgonionotus	97.0	99.7
	Ctenopharyngodonidella	94.3	95.7
	Ictiobusbubalus	90.3	93.8
	Catlacatla	93.3	87.7
Moderate	Siluriformes:		
	Clariasgariepinus	74.2	74.6
	Pangasiuspangasius	76.2	75.5
	Salmoniformes:		
	OncorhynchusmasouOncorhynchustshawytscha	73.2	63.0
		72.7	63.3
Low	Perciformes:		
	Trichogastertricopterus	65.8	56.2
	Trichogasterleerii	65.2	55.9
	Pleuronectiformes:		
	Paralichthysolivaceus	61.3	50.2
	Platichthysstellatus	62.3	51.3
	Scorpaeniformes:		
	Cottuskazika	64.5	55.7
	Sebastesschlegelii	63.8	54.5
	Acipenciformes:		
	AcipensergueldenstaedtiiAcipensersinensis	62.0	47.6
	1 0 1	62.4	48.0
	Mammals:		
	Bostaurus	60.9	44.8
	Rattusnovegious	60.2	43.3

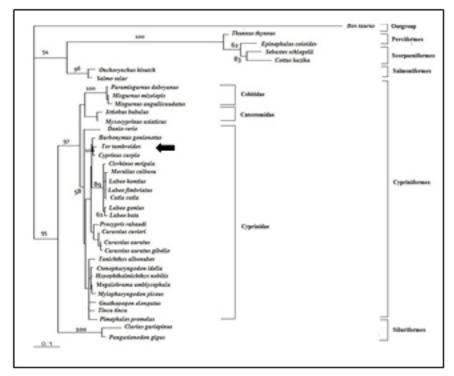


Figure 4. The consensus phylogenetic tree of fish growth hormone nucleotide sequences obtained using the Maximum Likelihood (ML) method. The newly cloned *Tor tambroides* growth hormone gene sequence is indicated by an arrow.

In this analysis, Cypriniformes was recovered as a monophyletic group with strong bootstrap support (Jr et al., 2010). This order was divided into several groups according to family: Cobitidae, Catostomidae and Cyprinidae. The phylogenetic grouping of catostomids with cyprinids rather than cobitids in the NJ tree (Figure 5) was similar as several previous tree analyses, using both the NJ method (Clements et al., 2004) and Maximum Parsimony (MP) (Jr et al., 2010). This shows that Cobitidae was paraphyletic with respect to Catostomidae and Cyprinidae. The Cyprinidae was monophyletic except for Danio rerio. A previous study showed that Cyprinidae families were always determined as monophyletic with strong nodal support while the subfamily Rasborinae was never documented as a monophyletic and the included species were always determined to be different, unrelated clades or lineages (Myden et al., 2009). The newly cloned T. tambroides GH gene sequence is clustered monophyletically with strong bootstrap support. As expected it was very close to the C. carpio GH gene sequence as they are located in the same clade and derived from the same family. Hence, this analysis proves that the sequence obtained was GH gene has high similarity with other teleost GH genes in terms of structure and relationship.

CONCLUSION

In this study, the GH gene of T. tambroides has been successfully isolated and cloned. The aa sequence predicted from the cDNA brings new information about the GH structure of a teleost which a Malaysian indigenous species. In Malaysia, the isolation of GH genes is still rare and many studies only focus on fish species from temperate countries. Our data was the first to report on the isolation of the GH gene from a Malaysian indigenous species, a finding which helps to understand the molecular characteristics of the T. tambroides GH gene and may lead to the production of a recombinant GH gene protein, and molecular analysis in order to better understand growth determination through GH regulation. This would give an insight into the molecular aspects of the growth performance of a species which is known to have a slow growth rate. The finding is hoped to assist researchers and aquaculturists to improve the growth performance of cultured T. tambroides in the future.

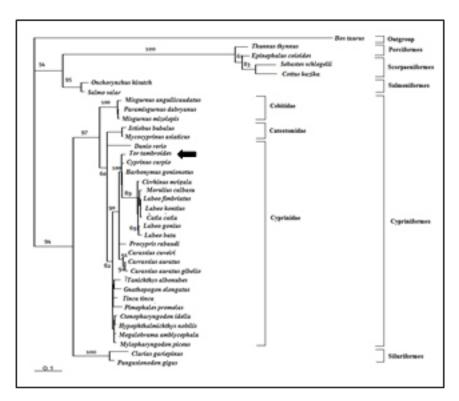


Figure 5. Consensus tree (50% majority-rule) of growth hormone nucleotide sequences using Neighbour-Joining (NJ) method in PAUP. Values at the branch points are the percentage of bootstrap replicates that support the branch out of 1,000 analyses. The newly cloned *Tor tambroides* growth hormone gene sequence is indicated by an arrow. Accession numbers are as follows: *Bos taurus (NM180996), Thunnus thynnus (X06735), Epinephelus coioides (EU280321), Sebastes schlegelii (U89917), Cottus kazika (AB079538), Oncorhynchus kisutch (M19999), Salmo salar (X14305), Misgurnus anguillicaudatus (DQ350433), Paramisgurnus dabryanus (DQ350432), Misgurnus mizolepis (AF133815.1), Ictiobus bubalus (AY375302), Myxocyprinus asiaticus (DQ350434.1), Danio rerio (NM_001020492), Cyprinus carpio (X13670.1), Barbonymus gonionotus (FJ265053), Cirrhinus mrigala (AF140281.2), Morulius calbasu (AY691181.1), Labeo fimbriatus (AY691182.1), Labeo kontius (AY691184.1), Catla catla (AY053361), Labeo gonius (AY691183.1), Labeo bata (AY691182.1), Procypris rabaudi (EU863219), Carassius cuvieri (AF389237.1), Carassius auratus (AF069398), Carassius auratus gibelio (AY265352), Tanichthys albonubes (EU367959), Gnathopogon elongatus (FJ265030.1), Tinca tinca (DQ980027), Pimephales promelas (AY643399), Ctenopharyngodon idella (AY616661), Hypophthalmichthys nobilis (X60473.1), Megalobrama amblycephala (AY170124), Mylopharyngodon piceus (AF389238.1), Clarias gariepinus (EF411172), and Pangasionodon gigas (L27835).*

ACKNOWLEDGMENTS

We gratefully acknowledge the School of Fisheries and Aquaculture Science for providing the facilities to conduct the research, and the Malaysian Mahseer Hatchery Aquaculture Tropical Institute (AQUATROP) for providing the samples

REFERENCES

- Anathy, V., Venugopal, T., Koteeswaran, R., Pandian, T.J. and Mathavan, S. 2001. Cloning, sequencing and expression of cDNA encoding growth hormone from Indian catfish (*Heteropneustes fossilis*). *Bioscience* 26(3): 315-324.
- Agellon, L.B., Davies, S.L., Chen, T.T. and Powers, D.A. 1988. Structure of a fish (rainbow trout) growth hormone gene and its evolutionary implications. *Bulletin of Evolution* 85: 5136-5140.
- Carlacci, L., Chou, K.C. and Manggiora, G.M. 1991. A heuristic approach to predicting the tertiary structure of bovine somatotropin. *Biochemistry*. 30: 4389-4398.
- Cavari, B., Funkentein, B., Chen, T.T., Gonzalez-Villasenor, L.L. and Schartl., M. 1993. Effect of growth hormone rate of gilthead sea bream (*Sparus aurata*) and use a different constructs for the production of transgenic fish. *Aquaculture* 111:189-197.

- Chang, Y.S., Liu, C.S., Huang, F.L. and Lo, B. 1992. The primary structure of growth hormones of three cyprinids species: Bighead carp, silver carp and grass carp. *General Comparative Endocrinology* 87: 385-393.
- De Jesus, E.G.T., Ayson, A.G., Amimiya, Y., Moriyama, S., Hyodo, S., Hirano, T. and Kawauchi, H. 2002. Milkfish (Chanos chanos) growth hormone cDNA cloning and mRNA expression in embryos and early larval stages. *Aquaculture* 208: 177-188.
- Filby, A.L. and Tyler, C.R. 2007. Cloning and characterization of cDNAs for hormones and/or r eceptors of growth hormone, insulin-like growth factor-I, thyroid hormone and corticosteroid and the gender-, tissue-, and developmentalspecific expression of their mRNA transcripts in fathead minnow (*Pimephales promelas*). *General Comparative Endocrinology* 150: 151-163.
- Fine, M., Sakal, Levanon, A., Lipshitz, O. and Gertler, A. 1993a. A short-time refolding procedure that dramatically increases the yields of recombinant monomeric carp growth hormone and its Cys123 Ala mutant: implications for other proteins with unpaired number of cysteine residues. *Biotechnology Techniques* 7: 769-774.
- Fine, M., Sakal, E., Vashdi, D., Daniel, V., Levanon, A. and Lipshitz, O. 1993b. Recombinant carp (*Cyprinus carpio*) growth hormone: Expression, purification, and determination of biological actity *in vitro* and *in vivo*. *General comparative Endocrinology* 89: 51-61.
- Gonzalez-Villasenor, L.I., Zhang, P., Chen, T.T. and Powers, D.A. 1988. Molecular cloning and sequencing of coho salmon growth hormone cDNA. *Gene* 65: 239-246.
- Inoue, K., Iwatani, H. and Takei, Y. 2003. Growth hormone and insulin-like growth factor I of a euryhaline fish Cottus kazika cDNA cloning and expression after seawater acclimation. *General Comparative Endocrinology* 131: 77-84.
- Jr, H.L.B, Reneau, P.C., Doosey, M.H and Bell, C.D. 2010. Evolutionary divergence of duplicate copies of the growth hormone gene in suckers (Actinopterygii:catostomidae). *International Journal of Molecular Science* 11: 1090-1102.
- Koren, Y., Sarid, S., Ber, R. and Daniel, V. 1989. Carp growth hormone: molecular cloning and sequencing of cDNA. *Gene* 77: 309-315.

- Law, M.S., Cheng, K.W., Fung, T.K., Chan, Y.K., Yu, K.L. and Chan, K.M. 1996. Isolation and characterization of two distinct growth hormone cDNAs from the goldfish, *Carassius auratus. Archives of Biochemistry and Biophysics* 330(1): 19-23.
- Lemaire, C., Warit, S. and Panyim, S. 1994. Giant catfish Pangasianodon gigas growth hormoneencoding cDNA: cloning and sequencing by one-sided polymerase chain reaction. *Gene* 149: 271-276.
- Marins, L.F., Levy, J.A., Folch, J.M. and Sanchez, A. 2003. A growth hormone-based phylogenetic analysis of euteleostean fishes including a representative species of the Atheriniformes Order, *Odontesthes argentinensis*. *Genetics and Molecular Biology 26* (3): 295-300.
- Meire, K.M., Castano, C., Laurino, J., Levy, J.A. and Marins, L.F. 2006. cDNA cloning and phylogenetic analysis of growth hormones genes from the mullet *Mugil platanus* (Mugilomorpha, Mugulidae) and the halfbeak *Hemiramphus brasiliensis* (Atherinomorpha, Hemiramphidae). *Rio Grandae* 28(2): 97-102.
- Momota, H., Kosugi, R., Hiramatsu, H., Ohgai, H., Hara, A. and Ishioka, H. 1998. Nucleotide sequence of cDNA from the pregrowth hormone of red seabream (*Pagus major*). *Nucleic acids Residue* 16: 3107.
- Nguyen, T.T.T., Ingram, B.A., Sungan, S., Gooley, G., Sim, Y.S., Tinggi, D. and De Silva, S.S. 2006. Mitochondrial DNA diversity of broodstock of two indigenous mahseer species, *Tor tambroides* and *T. douronensis* (Cyprinidae) cultured in Sarawak, Malaysia. *Bulletin of Aquaculture* 253: 259-269.
- Pendon, C., Martinez-Barbera, J.P., Perez-Sanchez, J., Rodriguez, R.B., Grenett, H. and Valdivia, M.M. 1994. Cloning of the sole (Solea senegalensis) growth hormone-encoding cDNA. *Gene* 145: 237-240.
- Posada, D. and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. *Bioinformatics* 14(9): 817-819.
- Saito, A., Sekine, S., Komatsu, Y., Sato, M., Hirano., T. and Itoh, S. 1988. Molecular cloning of eel growth hormone cDNA and its expression in *Escherichia coli*. *Gene* 73: 545-551.
- Sakamoto, T., Shepherd, B.S., Madsen, S.S., Nishioka, R.S., Siharath, K., Richman III, N.H., Ben, H.A. and Grau, E.G. 1997. Osmoregulatory actions of growth hormone and prolactin in an advanced teleost. Bulletin of Gene Comparative Endrocrinology 106: 95-101.

- Sato, N., Watanabe, K., Murata, K., Sakaguchi, M., Kariya, Y., Kimura, S., Nonaka, M. and Kimura, A. 1988. Molecular cloning and nucleotide sequence of tuna growth hormone cDNA. *Biochemica et Biophysica Acta* 949: 35-42.
- Sekine, S., Mizukami, T., Saito, A., Kawauchi, H. and Itoh, S. 1989. Isolation and characterization of a novel growth hormone cDNA from chum salmon (*Oncorhynchus keta*). Biochemica et Biophysica Acta 1009: 117-120.
- Somers, W., Ultsch, M., Vos, A.M.D. and Kossiakoff, A.A. 1994. The X-ray structure of a growth hormoneprolactin receptor complex. *Nature* 372: 478-481.
- Swafford, D.I. 2000. PAUP (Phylogenetic analysis using parsimony) and other methods. Version 4. Sinaauer Associates, Sunderland, Massachusetts.
- Venkatesh, B. and Brenner, S. 1997. Genomic structure and sequence of the pufferfish (*Fugu rubripes*) growth hormone-encoding gene: a comparative analysis of teleost growth hormone genes. Gene 187: 211–215.
- Watahiki, M., Yamamoto, M., Yamakawa, M., Tanaka, M. and Nakashim, K. 1989. Conserved and unique amino acid residues in the domains of the growth hormones: flounder growth hormone deduced from the cDNA sequence has the minimal size in the growth hormone prolactin gene family. *Biological Chemistry* 264(1): 312-316.
- Yada, T. 2007. Growth hormone and fish immune system. General Comparative Endocrinology 152: 353-358.
- Yowe, D.L. and Epping, R.J. 1995. Cloning the barramundi growth hormone-encoding gene: a comparative analysis of higher and lower vertebrate GH gene. *Gene* 162: 255-259.