Jurnal Teknologi

MORPHOLOGICAL AND ELECTRICAL CHARACTERIZATION OF HYBRID THIN-FILM COMPOSED OF TITANIA NANOCRYSTALS, POLY (3-HEXYLTHIOPHENE) AND PIPER BETLE LINN

Salmah Mohd Ghazali^a, Hasiah Salleh^{b*}, Mohd Sabri Mohd Ghazali^c, Ahmad Nazri Dagang^a, Azmi Zakaria^a, Muhammad Aimy Mahfuzzan Mohd Zaini^a, Muhamad Azman Zulkifli^c

^aSchool of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
^bCentre for Fundamental and Liberal Education, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
^cSchool of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
^dDepartment of Physics, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Article history Received

15 August 2015 Received in revised form 15 November 2015 Accepted 30 December 2015

*Corresponding author hasiah@umt.edu.my

Graphical abstract

Abstract

In this research, the effect of scan numbers of titania nanocrystals (TiO₂ NCs) on the morphological and electrical characteristics of hybrid thin-films is investigated. These hybrid thin-films consist of a combination of organic (Piper Betle Linn extraction and Poly (3-hexytlthiophene) (P3HT)) and inorganic TiO₂ NCs (anatase structure) materials. These hybrid thin-films are fabricated in heterojunction of ITO/TiO2 NCs/P3HT/Piper Betle Linn bilaver via electrochemistry method using Electrochemical Impedance Spectroscopy (EIS). The scan numbers of TiO₂ NCs are varied by 1, 3 and 5 number of scans. The morphological characterization is carried out via Field Emission Scanning Electron Microscopy (FESEM) meanwhile the electrical characteristic of the hybrid thin-film is measured by using four point probes. FESEM image indicates the particle size was found to be around 17-34 nm. The increment of scan number of TiO₂ NCs from one to five scan numbers of TiO₂ NCs in bilayers thin films showed that the atomic percentage of titanium decrease from 5.23% to 2.20%. This result indicates that as the thickness of thin films increases, the electrons required more energy to excite into conduction band of TiO2. Meanwhile, the electrical conductivities of hybrid solar cell increase from 0.385 Scm⁻¹ to 0.389 Scm⁻¹ as the scan numbers of TiO₂ increase from one to three, however the electrical conductivity decrease to 0.346 Scm⁻¹ at five scan numbers. As a conclusion, this study shows that the morphological and electrical properties of hybrid thin-films can be significantly affected by the scan number of TiO₂ NCs.

Keywords: Electrical conductivity, Field Emission Scanning Electron Microscopy, Piper Betle Linn, Poly (3-hexylthiophene), Titania nanocrystals

Full Paper

Abstrak

Dalam kajian ini, kesan jumlah bilangan imbasan nanohablur titanium dioksida, TiO₂ ke atas pencirian sifat morfologi dan sifat kekonduksian elektrik filem nipis hibrid telah dijalankan. Sel-sel suria hibrid ini terdiri daripada gabungan bahan organik (ekstrak Piper betle Linn dan poli (3-heksiltiofena), P3HT) dan bahan bukan organik (nanohablur TiO2 dalam bentuk struktur anatase). Sel-sel hibrid suria difabrikasi mengikut lapisan demi lapisan iaitu ITO/TiO₂/P3HT/Piper betle Linn melalui kaedah elektrokimia dengan menggunakan spektroskopi impedans elektrokimia. Bilangan imbasan nanohablur TiO₂ divariasikan kepada 1, 3 dan 5 bilangan imbasan. Pencirian morfologi dilakukan menggunakan mikroskop elektron imbasan medan pancaran (FESEM) manakala pencirian sifat kekonduksian elektrik filem diukur dengan menggunakan alat penduga empat titik. Imej mikroskop elektron imbasan medan pancaran menunjukkan bahawa saiz zarah TiO₂ berada dalam julat 17-34 nm. Nilai peratusan atom titanium menurun dari 5.23% kepada 2.20% apabila jumlah imbasan nanoablur TiO2 meningkat dari satu kepada lima imbasan. Keputusan ini menunjukkan bahawa semakin bertambah ketebalan filem TiO₂, elektron memerlukan lebih banyak tenaga untuk bergerak ke jalur konduksi TiO2. Sementara itu, nilai kekonduksian elektrik meningkat dari 0.385 Scm⁻¹ kepada 0.389 Scm⁻¹ apabila bilangan imbasan nanohablur TiO₂ meningkat dari satu imbasan kepada tiga imbasan dan menurun kepada 0.346 Scm⁻¹ bagi lima imbasan nanohablur TiO₂. Kesimpulannya, kajian ini menunjukkan sifat-sifat morfologi dan elektrik filem nipis hybrid

Kata kunci: Kekonduksian elektrik, Mikroskop elektron imbasan medan pancaran, Piper Betle Linn, Poli (3-heksiltiofena), Nanohablur titanium dioksida

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Green technology application is seen as one of the sensible solutions which are being adopted by many countries around the world to address the issues of energy [1-2] and environment [3-4] simultaneously. Green technology is a technology that allows us to progress more rapidly but at the same time minimizes the negative impact to the environment [5]. However, the world needs to find more efficient and effective ways to adopt green technology against other technologies which have been widely used and though cheaper, not necessarily benevolent. Every hour the sun shining onto earth is more than enough energy to satisfy global energy needs for an entire year [6-7]. One of the green energy, solar energy is the technology used to harness the sun's energy and make it usable [8]. The main device that converts the solar energy into the electrical energy is known as solar cell [9].Solar electricity in this era is no longer an imaginary, fringe idea. With photoelectric cells and a solar electric panel system, a household can easily reduce its electricity consumption [10] and realistically reverse its cost by generating more energy than the energy being consumed. The latest generation of solar cell can be classified into organic solar cell (OSC), dye-sensitized solar cell (DSSC) [11-12] and hybrid solar cell (HSC) [13]. Among these three types of latest generation of solar cell, hybrid solar cell has gained much more interest by the researchers due to combination of unique properties between an inorganic and an organic material [14].

In this study, the effect of scan numbers of titania nanocrystals (TiO₂ NCs) on morphological and electrical characteristics is studied. An inorganic materials (TiO₂ NCs) and organic materials (Poly (3hexylthiophene) (P3HT) and Piper Betle Linn's leaves) are employed for hybrid thin-films application. These hvbrid thin films are fabricated in bilayer heterojunction of ITO/TiO₂ NCs/P3HT/ Piper Betle Linn/Au by using electrochemistry method. TiO₂ NCsanatase is selected because it possesses high absorption coefficient [15], low cost, high electron mobility, physical and chemical stability, and environmentally friendly materials [16] and often used in photocatalytic application. Moreover, [17] had stressed out that the photocatalytic properties of TiO₂ nanoparticles are strongly depend on the surface area, the exposed surface and the crystallinity of the particles. According to Lira-Cantu et al. [18], semiconductor oxide such as TiO₂ is employed as an active support for trapping S-containing impurities. The study also shown that thiophene can be bond to TiO₂ via the aromatic ring, but also by the S-end atom. Meanwhile, the conjugated polymer P3HT is one of the promising conducting polymers which have high charge carrier mobility, low cost and good environmental stability [19]. Piper Betle Linn leaves are selected due to the ability to capture or to absorb over a wide range of light spectrum, low cost, environmentally friendliness as reported by Salmah et

al. [20]. According to Wu et al. [3], the lowest unoccupied molecular orbital (LUMO)/highest occupied molecular orbital (HOMO) energy levels of P3HT and TiO₂ are about -3.53/-5.20 and -4.2/-7.2 (eV vs Vacuum); respectively. Under ultraviolet photoexcitation, electron-hole pairs are created in the TiO₂ semiconductor and then are dissociated into free charge carriers (electrons and holes). The electrons are transferred to the conducting Indium glass substrate via TiO₂ grid; the holes are reduced by electron donation from the valence band of P3HT and then from the platinum-plate (Pt) counter electrode, with the circuit being completed via electron migration through the external load.

2.0 EXPERIMENTAL DETAILS

2.1 Materials and Dyes

All the solvents and the other chemicals employed for the research were reagent and were used as received without any further purification. The conductive glass plate (ITO, Indium doped SnO₂, sheet resistance 7 Ω /sq) and TiO₂ NCs were purchased from Magna Value Sdn. Bhd. and Sigma Aldrich Sdn. Bhd.; respectively. Meanwhile, P3HT was synthesized accordingly as reported by Nik Aziz *et al.* [21]. The ITO glass substrates were cut into 2 cm × 2 cm for this research purposes.

2.2 Preparation of Titanium Dioxide Nanocrystals, TiO_2 NCS Solution

The TiO₂ solutions were made using 100 ml 0.5 M TiO₂ nanoparticles anatase structures and were prepared by dissolved 3.994 g of TiO₂ in deionized water under magnetic stirring. Then, the solutions were treated with 0.035 M acetic acid for better surface morphology of TiO₂. A macroscopic phase separation or aggregation of the inorganic nanoparticles and a bad interfacial contact between inorganic and organic materials will occurred if both materials were incompatible, which leads in low efficiency of the charge transfer from organic to inorganic materials and easy interfacial charge recombination as reported by Zhong *et al.* [14]. Thus, modification of TiO₂ with acetic acid was expected to improve the surface morphology and reduce the aggregation of TiO₂ nanoparticles.

2.3 Preparation of Piper Betle Linn Dyes Solution

Samples of *Piper Betle Linn's* leaves were collected in Kuala Kangsar, Perak, Malaysia. The *Piper Betle Linn's* leaves were washed with water and dried in the oven at 60 ° C to remove water. After that, these dried leaves were crushed in a mortar and pestle and prepared as a powder form. Then, these fine powders were immersed in absolute ethanol at room temperature in the dark for a week. After a week, the solid were filtered out and the filtrates were used as sensitizers. This extraction method was carried out as recommended by Zhou *et al.* [22]. The dye solution was also characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. The dyes can absorbed the visible light spectrum and the presence of carbonyl and hydroxyl groups were reported and further discussed in [20].

2.4 Fabrication of Thin Film

The hybrid thin-films were fabricated in bilayer heterojunction via electrochemistry method. The ITO coated glass substrate must be clean from dust and dirt to avoid any contamination. Ultrasonic water bath was used to clean the ITO coated glass substrates. The first step to clean the ITO coated glass substrates were by using detergent solution where the ITO coated glass substrates should be immersed in this solution for 10 minutes at 30 °C. Then, the ITO coated alasses were immersed with distilled water at the same temperature condition for 5 minutes and repeated for three times. After that, the ITO coated glass substrates were immersed in acetone at the same time and temperature conditions as the previous step. Finally, the ITO coated glass substrates were dried by using a dryer and place in a clean petri dish [23].

Electrochemical Impedance Spectroscopy (EIS) PGSTAT302 was employed to deposit TiO₂ NCs, P3HT and also natural dyes on ITO coated glass substrates. The scan numbers of TiO₂ NCs is varied by 1, 3 and 5 and the scan numbers of P3HT and natural dyes are fixed to 5 scan numbers. The scan number also known as number of complete cyclic and the number of cyclic determine the difference in thickness [10]. The electrodeposited thin films of TiO₂ NCs then were annealed at 450 °C for two hours. The fabrication of hybrid thin film is shown in Figure 1.

Figure 1 The schematic diagram of hybrid thin film

2.5 Measurements

The morphological characteristics of TiO₂ NCs thin films with different scan numbers was observed using Field Emission Scanning Electron Microscope (FESEM) model JEOL SEM or LEO 1455 Variable Pressure SEM attached with Oxford Inca Energy Dispersive X-Ray (EDX) at 20 kV. The X-ray diffraction (XRD) patterns of TiO₂ NCs thin films with different scan numbers was recorded by using an X-ray diffractometer (Model Rigaku MiniFlex II Desktop) with CuKa radiation (λ =1.5405 Å). The 20 angle of the XRD spectra will be recorded at a scanning rate of 0.3° min⁻¹. The ultraviolet-visible (UV-

Vis) absorption spectra of hybrid thin films were measured using ultraviolet-visible spectrophotometer model Perkin Elmer, Lambda 25. Then, the optical energy gaps of the thin films are calculated by using Equation 1, where, h is Planck's constant, c is the velocity of light and λ is the emitted wavelength in photoluminescence spectrum. Meanwhile. the electrical conductivities of the hybrid thin films of ITO/TiO₂ NCs/P3HT/Piper Betle Linn were measured by using four points probes model Jandel RM3 under light intensity of 100 Wm⁻². Equation 2 is used to measure the sheet resistivity, R_s of the thin film, where V is voltage supplied, *I* is current and 4.532 is the correction factor.

$$E_{s} = \frac{hc}{\lambda}$$
 (Eq. 1)

$$R_{S} = 4.532 \times \frac{V}{I} \tag{Eq. 2}$$

$$\sigma = \frac{1}{R_S}$$
(Eq. 3)

3.0 RESULTS AND DISCUSSIONS

3.1 Surface Morphology

FESEM images of TiO₂ NCs for 1 and 5 scan numbers of TiO₂ NCs are shown in Figure 2 and Figure 3; respectively. The cluster formations of TiO₂ particles are due to the tiny water molecules and hydroxyl group are unavoidable on nanoparticles. Because of the small size of the cluster, they have a high surface energy, which leads to aggregation or oxidation. Thus, it is easy for nano-TiO₂ particles to heavily agglomerate in organic solvent or resin. To overcome this disadvantage, the agglomerate nanoparticles are loosened by being modified with acetic acid and Kamalan Kirubaharan et al. [24] had employed trifluoroacetic acid as capping agent to prevent the agglomeration of the titanium dioxide nanoparticles. The dark region was observed in Figure 2 (b) as compared to the bright region in Figure 2 (a) which indicates the difference in thickness of TiO2 NCs deposited. Meanwhile, FESEM images as shown in Figure 3 indicates that the particles size was found to be around 17-34 nm, corroborating the crystallite size calculated from the XRD data. These particles have well-ordered tetragonal structure, which is in good agreement with the result of XRD in section 3.2.

The atomic percentage of titanium deposited on ITO glass substrates for different scan number of TiO_2 NCS are shown in Table 1. As shown in Table 1, the atomic percentage of titanium deposited on ITO glass substrates before annealed at 450 °C was 0.74% and increase to 2.20% after annealed at 450 °C (2 hours) for 5 scan numbers of TiO_2 NCs. However, the atomic

percentage of titanium was 5.23% for 1 scan number of TiO₂ NCs after annealed at 450 °C (2 hours) which is larger than the atomic percentage of titanium for 5 scan numbers. This result indicates that heat treatment temperature and its duration can influence the rate of photodegradation. The long heating in air may results in decreasing of specific surface area, which also limits the photocatalytic activity of TiO₂ films [25].

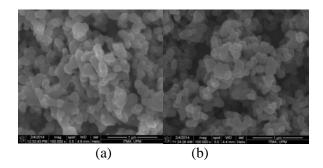


Figure 2 The surface morphologies of TiO_2 NCs at different scan number (a) (1) TiO_2 NCs (b) (5) TiO_2 NCs

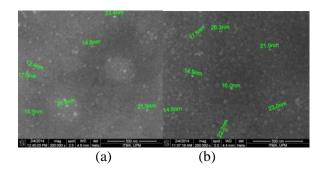


Figure 3 The particle sizes of $TiO_2 NCs$ at different scan number (a) (1) $TiO_2 NCs$ (b) (5) $TiO_2 NCs$

3.2 X-Ray Diffraction Analysis

Figure 4 shows the XRD patterns of pure anatase TiO₂ and TiO₂ at different scan numbers of 1, 3 and 5 scan numbers. As can be seen in Figure 4, all samples show the same peaks characteristic of the anatase phase of TiO₂ NCs. Based on the XRD spectrum (PDF 71-1168, ICSD Number: 009854) report, the TiO₂ was in tetragonal structure. Besides that, the anatase structure of TiO₂ NCs was confirmed unchanged during the annealing process take places at 450 °C for 2 hours and it can be confirmed by comparing the peaks exhibit at 20 of 25.1°, 37.6°, 47.9°, 53.8°, 54.9° and 62.6° with the *hkl* as stated in the pure TiO_2 's graph and the intensity was tabulated in Table 2. As shown in Figure 4, the diffraction peak at $2\theta \approx 25.1^{\circ}$ exhibits the highest intensity, which corresponds to the (101) plane of the TiO₂ anatase structure and it can be observed that the diffraction peak at plane (101) was shifted to the right as the scan numbers of TiO₂ increase. This shifting suggested that the linkage was made between TiO₂ NCs with the ITO coated glass substrate. Meanwhile, the optimum of scan number of TiO2 NCS has significantly affected the crystallinity of TiO_2 films. As scan number of TiO_2 NCS is decreased to 1 scan number, the crystallinity of thin film is enhanced. However, the excess of TiO_2 content in film may destruct the interpenetrating pathways for hole transport and causing in decreasing of XRD intensity [15].

Table 1 The atomic percentage of titanium deposited on ITO glass substrates at different scan number of TiO2 NCs

Sample Element	(5) TiO2 NCs before annealed		(5) TiO ₂ NCs annealed at 450 °C (2 hours)		(1) TiO ₂ NCs after annealed at 450 °C (2 hours)	
	Weight (%)	Atomic (%)	Weight (%)	Atomic (%)	Weight (%)	Atomic (%)
ОК	29.13	74.42	48.33	85.97	48.26	84.4
Ti K	0.87	0.74	3.70	2.20	8.96	5.23
In L	63.00	22.43	41.48	10.28	35.49	8.65
Sn L	7.00	2.41	6.49	1.56	7.29	1.72
Total	100		100		100	

Table 2 Two theta, peak list and intensity of TiO₂ NCs

2 theta, 20 (°)	Peak List	Intensity	
	(hkl)	(a.u.)	
25.1	(101)	999	
37.6	(004)	180	
47.9	(200)	224	
53.8	(105)	139	
54.9	(211)	135	
62.6	(204)	97	

Table 3 The energy band gap of titania, poly (3-hexylthiophene) and Piper Betle Linn dyes solution

Materials	Energy band gap, E_g (eV)		
Titania	3.20		
Poly(3-hexylthiophene)	1.70		
Piper Betle Linn dyes solution	2.51		

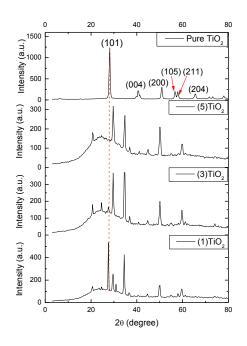


Figure 4 The XRD pattern of $\text{TiO}_2~\text{NCs}$ at different scan numbers

3.3 Energy Gap

As mentioned in the [26], TiO₂ NCs was selected due to its behavior as photo-catalysts. Hence, the photocatalysts reactions on TiO2 surfaces take place through the generation of electron-hole pairs, known as excitons, by radiation exceeding energy band gap of the materials [27-28]. Moreover, Khalil [8] stated that the energy level of the polymer can be tuned by chemical modification of the backbone chain and the energy level of the nanoparticles can be tuned through the size-dependent quantum confinement effects. The optical energy band gap is defined as the energy difference between two bands or the amount of energy required to mobilize the electron in the system [29]. The optical energy band gap, Eg of each material was tabulated in Table 3.

3.4 Electrical Conductivity

The electrical properties of ITO/TiO₂ NCs/ P3HT/Piper Betle Linn hybrid thin film under 100 Wm⁻² intensity of light are measured using four-point probe. The main function of four-point probe is used for measuring the resistivity of semiconductor samples. By passing a current through two outer probes and measuring the voltage through the inner probes allows the measurement of the resistivity. Electrical conductivity is the capacity of any object or substance to conduct an electric current. When an electrical potential difference is placed across a conductor its movable charges flow which giving rise to an electric conductivity current. The depends of the characteristics of the materials. A conductor such as a metal has a high conductivity and an isolator like glass, wood and vacuum has a low conductivity. The conductivity of a semiconductor is generally intermediate, but varies widely under different conditions. As can be seen in Figure 5, the electrical conductivities of thin films for different scan numbers of TiO₂ NCs lies in the semiconductor ranges (10-7-10³ Scm⁻¹) [30]. This result indicates that the combination of these materials were suitable to applied in solar cell application. The electrical conductivities of thin films increase from 0.385 Scm⁻¹ to 0.389 Scm⁻¹ as the scan numbers of TiO₂ NCs increase from 1 scan number to 3 scan numbers of TiO₂ NCs. However, the electrical conductivity of thin film decreases to 0.346 Scm⁻¹ when the scan numbers of TiO₂ NCs increase to 5 scan numbers. From the results, it observed that the scan numbers of TiO₂ NCs affected the conductivities of these hybrid solar cells. The result indicates that 3 scan numbers was the most effective thickness of TiO₂ for the electron to inject or promote to the conduction band of TiO2 and dissociated at P3HT and the holes dissociated at ITO glass substrate (excitons phenomenon).

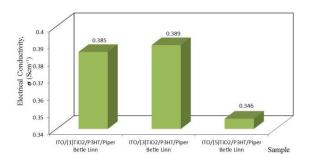


Figure 5 The electrical conductivity of hybrid solar cell at different scan numbers of $\text{TiO}_2\,\text{NCs}$

4.0 CONCLUSIONS

It can be concluded that the morphological and electrical properties of ITO/ TiO₂ /P3HT/*Piper Betle Linn* hybrid thin films can be significantly affected by the scan numbers of TiO₂ NCs. The performances of the device are significantly dependent on the charge transport properties of the TiO₂. The incorporation of optimum amount of TiO₂ into polymer P3HT may aid in the enhancing the crystallinity and providing a more continuous, efficient pathway for charge transport. This works suggested that the optimum TiO_2 content is at 3 scan numbers with the electrical conductivity of 0.389 Scm⁻¹ under 100 Wm⁻² of light intensity. However, the excess amount of TiO_2 may destroy the interpenetrating pathway for charge transport properties of the P3HT that lead to the deterioration of hybrid solar cell performance.

Acknowledgement

The authors would like to thank Ministry of Education Malaysia for providing my PhD scholarship through MyBrain15, Research Acculturation Grant Scheme (RAGS, Vot Number: 57114) and Fundamental Physics Laboratory UMT's staff and Institute of Advanced Technology, Universiti Putra Malaysia for facilitating the fund and equipment for the research purposes.

References

- Lo, S., Liu, Z., Li, J., Helen, L. C and Yan, F. 2013. Hybrid Solar Cells Based on Poly (3-Hexylthiophene) and Electrospun TiO2 Nanofibers Modified with CdS Nanoparticles. Progress in Natural Science: Materials International. 23(5): 514-518.
- [2] Calogero, G., Citro, I., Marco, G. D., Minicante, S. A., Morabito, M. and Genovese, G. 2014. Brown Seaweed Pigment as a Dye Source for Photochemical Solar. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 117: 702-706.
- [3] Wu, J., Yue, G., Xiao, Y., Lin, J., Huang, M., Lan, Z., Tang, Q., Huang, Y., Fan, L., Yin, S and Sato, T. 2013. An Ultraviolet Responsive Hybrid Solar Cell Based on Titania/Poly (3-hexylthiohene). Scientific Reports. 3: 1283.
- [4] Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. B. M. A. and Nahar, A. 2015. Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation. Renewable and Sustainable Energy Reviews. 41: 284-297.
- [5] Hall, A. 2010. Renewable Energy. Undergraduate Review: A Journal of Undergraduate Student Research. 12: 43-47.
- [6] Jarkko, E. 2012. Comparison of Three Finnish Berries as Sensitizers in a Dye-Sensitized Solar Cell. European Journal for Young Scientists and Engineers 1.
- [7] Pudaisani, P. R and Ayon, A. A. 2013. Low-Cost, High-Efficiency Organic/Inorganic Heterojuction Hybrid Solar Cells for the Next Generation Photovoltaic Device. *Physics, Conference Series*. 476:012140.
- [8] Khalil, E. J. 2012. Natural Dyes-Sensitized Solar Cells Based on Nanocrystalline TiO2. SainsMalaysiana 41. 8: 1011-1016.
- [9] Saunders, B. R. 2012. Hybrid Polymer/Nanoparticle Solar Cells: Preparation, Principles and Challenges. Colloid and Interface Science. 369: 1-15.
- [10] Hasiah, S., Ibrahim, K., Senin, H. B and Halim, K. B. K. 2008. Electrical Conductivity of Chlorophyll with Polythiophene Thin Film on Indium Tin Oxide as P-N Heterojunction Solar Cell. Journal of Physical Science. 19(2): 77-92.
- [11] Mohammadi, M. R., Louca, R. R. M., Fray, D. J and Welland, M. E. 2012. Dye-Sensitized Solar Cells Based on a Single Layer Deposition of TiO2 from a New Formulation Paste and Their Photovoltaic Performance. *Solar Energy*. 86: 2654-2664.
- [12] Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D. and Lee, C. 2014. Rosa Centifolia Sensitized ZnO Nanorods for Photoelectrochemical Solar Cell Applications. *Solar Energy*. 106: 143-150.
- [13] Fu, W., Shi, Y., Wang, L., Shi, M., Li, H. and Chen, H. 2013. A Green, Low-cost, and Highly Effective Strategy to Enhance the Performance of Hybrid Solar Cells: Post-

Deposition Ligand Exchange by Acetic Acid. Solar Energy Materials & Solar Cells. 117: 329-335.

- [14] Zhong, M., Sheng, D., Li, C., Xu, S. and Wei, X. 2014. Hybrid Bulk Heterojunction Solar Cells Based on Poly (3hexylthiophene) and Z907-Modified ZnO Nanorods. Solar Energy Materials and Solar Cells. 121: 22-27.
- [15] Yun, T. W. and Khaulah, S. 2011. Fabrication and Morphological Characterization of Hybrid Polymeric Solar Cells Based on P3HT and Inorganic Nanocrystal Blends. SainsMalaysiana. 40: 43-47.
- [16] Huang, Y., Hsu, J., Liao, Y., Yen, W., Li, S., Lin, S., Chen, C. and Su, W. 2011. Employing an Amphiphilic Interfacial Modifier to Enhance the Performance of a Poly (3-hexyl thiophene)/TiO2 Hybrid Solar Cell. Journal of Materials Chemistry. 21: 4450-4456.
- [17] Wu, B., Guo, C., Zheng, N., Xie, Z. and Stucky, G. D. 2008. Nonaqueous Production of Nanostructured Anatase with High-Energy Facets. American Chemical Society. 130: 17563-17567.
- [18] Lira-Cantu, M., Chafiq, A., Faissat, J., Gonvalez-Valls, I. and Yu, Y. 2011. Oxide/Polymer Interfaces for Hybrid and Organic Solar Cells: Anatase vs. Rutile TiO2. Solar Energy Materials & Solar Cells. 1362-1374.
- [19] Basel, M. A., Khaled, A. and Sahar, A. 2014. Fabrication and Characterization of Poly (3-Hexylthiophene) (P3HT) Sensor in Two Techniques (Dip-coating and Spin-coating) and Sensitivity Compared for Various Vapors. International Journal of Chemical Technology Research. 6(7): 3690-3696.
- [20] Salmah, M. G., Hasiah, S., Sabri, M. G. M., Dagang, A. N., Muhammad, A. M. Z. M. and Zakiyah, A. 2015. NanocrystalsTitania/Poly(3-Hexylthiophene) Combined with Piper Betle Linn as a Dye Source for Hybrid Solar Cells. Journal of Applied Science and Agriculture. 10(5) Special: 196-200.
- [21] Nik Aziz, N. A., Isa, M. I. N. and Hasiah, S. 2014. Electrical and Hall Effect Study of Hybrid Solar Cell. Clean Energy Technologies. 2(4): 322-326.

- [22] Zhou, H., Wu, L, Gao, Y. and Ma, T. 2011. Dye-Sensitized Solar Cells Using 20 Natural Dyes as Sensitizers. Photochemistry and Photobiology A: Chemistry. 219: 188-194.
- [23] Hasiah, S., Ghapur, E. A., Aziz, N. A. N., Dhafina, W. A., Hamizah, A., Laily, A. R. N. and Hazirah, C. H. 2014. Study the Electrical Properties and the Efficiency of Polythiophene with Dye and Chlorophyll as Bulk Hetero-Junction Organic Solar Cell. Advanced Materials Research. 895: 513-519.
- [24] Kamalan, K. A. M., Selvaraj, M., Maruthan, K. and Jeyakumar, D. 2012. Synthesis and Characterization of Nanosized Titanium Dioxide and Silicon Dioxide for Corrosion Resistance Applications. Coating Technology Research. 2: 163-170.
- [25] Habibi, M. H., Talebian, N. and Choi, J. 2007. The Effect of Annealing on Photocatalytic Properties of Nanostructured Titanium Dioxide Thin Films. Dyes and Pigments. 73: 103-110.
- [26] Mathews, N. R., Morales, E. R., Cortes-Jacome, M. A. and Toledo Antonio, J. A. 2009. TiO2 Thin Films – Influence of Annealing Temperature on Structural, Optical and Photocatalytic Properties. *Solar Energy*. 83: 1499-1508.
- [27] Hanaor, D. A. H., Triani, G. and Sorrell, C. C. 2011. Morphology and Photocatalytic Activity of Highly Oriented Mixed Phase Titanium Dioxide Thin Films. Surface and Coatings Technology. 205(12): 3659-3664.
- [28] Hardin, B. E., Snaith, H. J. and McGehee, M. D. 2012. The Renaissance of Dye-Sensitized Solar Cells. Nature Photonics. 6: 162-169.
- [29] Taylor, W. W. 2013. Nanoparticles and Polymer Crystallization Kinetics in Hybrid Eletronic Devices. Master Thesis. Faculty of California State Polytechnic State University, San Luis Obispo.
- [30] Brabec, C., Dyakonov, V. and Scherf, U. 2008. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Weinheim: Wiley-VCH.