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Abstract. In this paper, we shall introduce and study the pairwise nearly compact and paracompact bitopological spaces 
and investigate some of their characterizations. Moreover we study the pairwise nearly compact and pairwise nearly 
paracompact bitopological spaces by using -property. Some examples and counterexamples would be provide in 
order to establish their properties. Furthermore the Lindelöf and pairwise nearly Lindelöf bitopological spaces are also 
discussed. Finally, we suggest some ideas to apply the spaces mention above to study the topological entropy which is 
using to measure the complexity of dynamical systems.  

INTRODUCTION 

Compactness plays an important role in mathematical analysis especially in the field of topology. Currently, it is 
still an active research including it generalizations, and to find it applications in other fields. In literature there are 
several generalizations of the notion of compact and paracompact spaces and these are studied separately for 
different reasons and purposes. One of the main generalization is Lindelöf spaces. In early 1970's, Singal and 
Mathur [1, 2] and Herrington  [3] have introduced and studied the notion of nearly compact spaces as one of the 
generalizations of compactness. Thereafter Ergun [4] introduced the notion of nearly paracompact space and studies 
some of it characterizations.  

Next in 1982, Balasubramaniam [5] introduced and studied the notion of nearly Lindelöf spaces as another 
extension of compactness. Moreover the author and his colleague [6, 7, 8] have been studied the generalizations of 
compactness and Lindelöfness in bitopological spaces and investigated several of their characterizations. The 
purpose of this paper is to investigate some properties of generalized compactness in topological spaces and 
bitopological spaces, and studied some of their properties and characterizations. Section 3 until section 6 will 
discuss these kinds of purposes.        

There are several definitions of topological entropy in literature since 1965 till now, proposed such as by Adler et 
al. [9], Bowen [10], Cánovas and Rodríguez [11], Yang and Bai [12], etc. In section 7, we review some concepts and 
properties of topological entropy in the sense of Adler et al. [9]. Adler et al. used the concept of compact space to 
define topological entropy. As we know, topological entropy have applications in dynamical systems to measure 
how complicated the systems is or has chaotic property. At the end of this paper we suggests some ideas of 
topological entropy by using the generalized compact spaces such as nearly compact, paracompact, nearly 
paracompact, Lindelöf, etc. It might be useful for future research.  

PRELIMINARIES 

Throughout this paper, all spaces  and  (or simply X) are always mean topological spaces and 
bitopological spaces, respectively unless explicitly stated. If  is a topological property, then -  denotes an 
analogue of this property for  has property  with respect to . As we shall see below, sometimes -

-  (and thus    pairwise- ). Also sometimes - -  and thus - - , i.e.,  
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has property  for each  . Also note that  has a property  has a property - . The 
prefixes -  or  - will be replaced by - or  -, respectively, if there is no chance for confusion.  

By -int  and -cl , we shall mean the interior and the closure of a subset  of  with respect to topology , 
respectively. By -open cover of , we mean that the cover of  by -open sets in ; similar for the -regular 
open cover of , etc. If , then -   and -  will be used to denote the interior and closure of  
in the subspace  with respect to topology , respectively. In this paper always  and . The reader 
may consult [13] for the detail notations. 

 
Definition 1. In a topological space , a set  is called regular open if  and regular closed if 

  [14, p. 92]. 
 
Definition 2. Let    be a bitopological space. A subset  of  is said to be 
(i) i-open if  is open with respect to τi in ,  is called open in  if it is both -open and -open in , or 
equivalently,   in ; 
(ii) i-closed if  is closed with respect τi in ,  is called closed in  if it is both -closed and -closed in , or 
equivalently,   in ; 
(iii) -regular open [12] if  ,  is called pairwise regular open if it is both -regular 
open and -regular open; 
(iv)  -regular closed [12] if  ,  is called pairwise regular closed if it is both -
regular closed and -regular closed; 
(v) -clopen if  is both -closed and -open set in ,  is called clopen in  if it is both -clopen and -clopen in ; 
(vi) -clopen if  is i-closed and j-open set in ,  is called clopen if it is both -clopen and -clopen in 

;   
where . 

Note that in any bitopological space ,   and  are always -regular open and -regular closed 
sets. The complement of an -regular open set is -regular closed and vice versa. If , then -int( -cl ) 
is -regular open set in  and -cl( -int ) is -regular closed set in . We also note that arbitrary union of -
open sets in  is -open, arbitrary intersection of -closed sets in  is -closed, finite intersection of -open sets in  
is -open, finite union of -closed sets in  is -closed. But this is not true, in general, for -regular open and 

-regular closed sets. In fact the intersection, not necessarily the union, of two -regular open sets in  is 
-regular open. The union, not necessarily the intersection, of two -regular closed sets in  is -regular 

closed. More general, finite union of -regular closed sets in  is again -regular closed and finite 
intersection of -regular open sets in  is again -regular open.  

Note that in  where  is usual topology and  is lower limit topology or Sorgenfrey topology, i.e., 
topology generated by right half-open intervals (see [15, p. 75]), the union of -regular open sets   and 

  is , which is not -regular open set in  since 
. 

The intersection of -regular closed sets  and  is  which is not -regular closed set in  
since  . 

Subspaces of a topological space are one of the significant research in the study of topological spaces. A subset 
of a topological space inherits a topology of its own, in an obvious way. If  is a topological space and , 
the collection  is a topology for , called relative topology or induced topology for . Any time 
a topology is used on a subset of a topological space without explicitly being described, it is assumed to be the 
relative topology. 

 
Definition 3. [16] A bitopological space  is said to be -almost regular if for each  and for each -
regular open set  of  containing , there is an -regular open set  such that -cl .  is 
called pairwise almost regular if it is both -almost regular and -almost regular. 
 
Definition 4. [17, 6, 7] A bitopological space  is said to be -Lindelöf if the topological space   is 
Lindelöf.  is called Lindelöf if it is both -Lindelöf and -Lindelöf. Equivalently,  is Lindelöf if every -
open cover of  has a countable subcover for each . 
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Definition 5. [8] A bitopological space  is said to be -nearly Lindelöf if for every -open cover  of 
, there exists a countable subset  of  such that .  is called pairwise 

nearly Lindelöf if it is both -nearly Lindelöf and -nearly Lindelöf. 

COMPACT AND PARACOMPACT SPACES 

In advanced analysis and topology, the notion of a compact set is of enormous importance. The definition of 
compactness uses the notion of an open cover, which we now define. 

 
Definition 6. [18] A topological space  is compact if each open cover of  has a finite subcover. 
 
Example 1.  with usual topology is not compact. In fact, the cover of  by the open sets   for    has 
no finite subcover. 

Paracompact spaces were first introduced by Dieudonné (see [18]) in 1944 as a natural generalization of compact 
spaces but still retaining enough structure to enjoy many of the properties of compact spaces, yet sufficiently general 
to include a much wider class of spaces. To proceed, we need a great deal of terminology applying to coverings. 

 
Definition 7. [19, 20] Let  be a topological space. A cover  of  is a refinement of another cover  

 if for each , there exists an   such that  , i.e., each  is contained in 
some . If the elements of  are open sets, we will call  an open refinement of ; if they are closed sets, we 
call  a closed refinement. If  is finite subcollection, we will call  a finite refinement of . 

In other words, a cover  is said to be a refinement of a cover , denoted as , if every member of  is a 
subset of some members of . We will use this notation in the investigation of topological entropy.  

 
Definition 8. [19, 20] A family  of subsets of a space  is locally finite if for every point  

, there exists a neighbourhood  of  such that the set  is finite, i.e., each  has a 
neighbourhood  meeting only finitely many . 

To see how paracompactness generalizes compactness, first we write an equivalent way of the definition of 
compactnes as follows: 

 “A topological space  is compact if each open cover of  has an open finite refinement.” 
This definition is equivalent to the usual one; given a refinement , one can choose for each element of  an 
element of   containing it; in this way one obtains a finite subcollection of   that covers X. 
 
Definition 9. [18, 20] A topological space X is paracompact if each open cover of  has an open locally finite 
refinement. 

Many authors, folowing the lead of Bourbaki [21], include as part of the definition of the term paracompact the 
requirement that the space is Hausdorff. Bourbaki also includes the Hausdorff condition as part of the definition of 
compact. We shall not follow this convention. 

NEARLY COMPACT AND NEARLY PARACOMPACT SPACES 

A topological space   is said to be nearly compact [1] if and only if every open cover of  has a finite 
subcollection, the interiors of the closures of whose members cover the space . A subset of a topological space is 
called nearly compact if it is a nearly compact space as a subspace. Now by using Definition 1, we are ready to write 
another equivalent definition of a nearly compact space. A topological space  is nearly compact if and only if 
each regular open cover of  has a finite subcover [1]. The following is another equivalent definition of nearly 
compact space. 

 
Definition 10. A topological space  is said to be nearly compact if for every open cover  of , 
there exists a finite subset  of  such that  . 

In [22], Singal and Arya have introduced a class of topological spaces called nearly paracompact spaces, see also 
[4, 23]. These are characterized by the following property: 
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Definition 11. A topological space  is said to be nearly paracompact if every regular open cover  admits an open 
locally finite refinement. A subset of  is called nearly paracompact if the relative topology defined on it is nearly 
paracompact.  
Note that, if  is an open set, then for any subset  

                                                   .                                                              (1) 
 

Theorem 1. A topological space is nearly paracompact if and only if every regular open cover admits a regular 
open locally finite refinement. 
Proof.  Necessity: Let   be a regular open cover of any nearly paracompact space . Then  has an 
open locally finite refinement, say, . Hence for every , there exists an open neighbourhood  
of x such that the set  is finite. On the other hand  is the family of 
regular open subsets of  envelopes of members of  trivially a cover of . Since 

 by (1), then  is finite for every  and thus   
is locally finite. It is also a refinement of  since for any , there exists a superset  such that 

 and consequently  holds. Sufficiency is straightforward.   

Every paracompact space is evidently nearly paracompact but the converse is not hold in general as shown by 
[4]. We summarize it as the following counterexample. 

 
Example 2. Let  be a set of all real numbers and let  denote a topology on  such that the whole proper subsets 
are dense. Then  determined by  is nearly paracompact since the only nonempty regular open subset is . But it is 
not paracompact since it is impossible to define an open locally finite refinement of the cover with basic 
neighborhoods. For example, we can choose the basic neighborhoods   on  for any  and  

. This fit the above description. 

PAIRWISE NEARLY COMPACT SPACES 

In this section, the definitions of pairwise nearly compact spaces will be introduced and some characterizations 
are established. 

 
Definition 12. A bitopological space  is said to be -nearly compact if for every -open cover 

 of , there exists a finite subset  of  such that , or equivalently, 
every -regular open cover of  has a finite subcover.  is called pairwise nearly compact if it is both -
nearly compact and -nearly compact. 
 
Example 3. The space  where  is usual topology and  is lower limit topology, is not -nearly 
compact since the -regular open cover  of  has no finite subcover. It is also not -
nearly compact since the -regular open cover   of  has no finite subcover. However, the 
spaces ,   and  are -nearly compact, -nearly compact and 

-nearly compact, respectively since the only -regular open cover, -regular open cover 
and -regular open cover of these spaces is   which has one element, so it is finite. Here, , and  
mean cofinite topology and cocountable topology, respectively.   

We easily note that every -compact space is -nearly compact but the converse is not true. For example, the 
space  is -nearly compact since the -regular open cover of  is   which has 
one element, so it is finite. Recall that   is cofinite topology and   is left ray topology on  generated by basis 
sets of the form . But  is not -compact since  a -open cover of 

 has no finite subcover. 
It is well known that the -closed subspaces of an -compact space are -compact but for -nearly compact 

spaces it is not necessarily true in general by Example 4 below shows. The following proposition gives an analogue 
result for -nearly compact subspaces. 
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Proposition 1. Let  be an -nearly compact space and let  be an -clopen and -open subspace of 
. Then  is -nearly compact. 

Proof. Let  be an -clopen and -open subspace of . Let    be an -open cover of . Since -open 
subsets of an -open subspace of  is -open sets in , then   is a cover of  by -open subsets of . Then  

 forms an -open cover of . Since  is -nearly compact, there exists a finite subfamily  
  such that 

 

                                          . 

But A and  are disjoint; hence . Thus 

 

 

 

                                                               . 
 Therefore  is -nearly compact.   
 
Corollary 1. Let  be a pairwise nearly compact space and let  be a clopen subspace of . Then  

 is pairwise nearly compact. 
In Proposition 1, the condition that  is -clopen and -open subspace is necessary. It is not sufficient to 

assume that  is only -closed as the following example shows. 
 

Example 4. The space  is clearly -nearly compact since the only nonempty -
regular open subset is . Let  be the set of all natural numbers, then  is -closed but not -open. The 
subspace  of  where  is discrete topology on  is not -nearly compact 
since  is -regular open cover of , has no finite subcover. 

PAIRWISE NEARLY PARACOMPACT SPACES 

We have already defined the concept of locally finite for a topological space  in Definition 8. If the 
bitopological space  considered, -locally finite concept appear as in the following definition. 

 
Definition 13. A family  of subsets of a bitopological space  is -locally finite if for every 
point , there exists an -neighbourhood  of  such that the set  is finite, i.e., each 

 has an -neighbourhood  meeting only finitely many .  
We extend the notion of paracompactness to the bitopological setting as follows. 
 
Definition 14. A bitopological space  is said to be -paracompact if every -open cover of  admits an -open 
refinement which is -locally finite. X is called paracompact if it is -paracompact for each . 

In 1969, Singal and Arya [22] introduced the notion of nearly paracompact in topological spaces. We extend this 
notion to bitopological spaces as follows. 

 
Definition 15. A bitopological space  is said to be -nearly paracompact if every cover of  by -regular 
open sets admits an -open refinement which is -locally finite. X is called pairwise nearly paracompact if it is both 

-nearly paracompact and  -nearly paracompact.  
It is clear that every -compact space is -paracompact but the converse is not true as the following example shows. 
 
Example 5. The space   is -paracompact but it is not -compact (see [15, p. 56-57]). It is also not  

-nearly compact by Example 3.  
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Proposition 2. [8] Let  be an -almost regular and -nearly Lindelöf space. Then  is -nearly 
paracompact. 

Clearly, every -paracompact space is -nearly paracompact but the converse is not true as Example 6 below 
shows. Furthermore, every -nearly compact space is -nearly paracompact but the converse is not true as 
Example 7 below shows. 

 
Example 6. Observe that the spase  is a -nearly compact and hence -nearly 
Lindelöf. Thus  is a -nearly paracompact by Proposition 2, since  is -almost regular. But 

 is not -paracompact since the intersection of any countable collection of -open sets is -open and thus 
uncountable (see [15, p. 51]). 
 
Example 7. The space  is not -nearly compact by Example 3 but  is -nearly paracompact 
by Proposition 2, since it is -almost regular and -nearly Lindelöf. 

Observe that, -paracompact and -nearly compact spaces are independent notions as Example 5 and 
Example 6 above show. Now the following diagram holds.  
 

                                                                   i-paracompact 
 
 
                            i-compact                                                                    -nearly paracompact 
 
 
                                                                 -nearly compact 

 
FIGURE 1.  Relations among generalized i-compact spaces. 

 
None of these implications is reversible by the necessary counterexamples above. The diagram for pairwise 
properties is similar. Many of the concepts and results obtained will be very useful for the future research. 

TOPOLOGICAL ENTROPY OF MAPS ON COMPACT SPACES 

Topological entropy can be an indicator of complicated (chaotic) behavior in dynamical systems. Whether the 
topological entropy of a dynamical system is positive or not is of primary significance, due to the fact that positive 
topological entropy implies that one can assert that the system is chaotic. It is hard, as remarked by [24, 12], to get a 
good idea of what topological entropy means directly from various definitions of topological entropy. Thus it is 
enough to know that topological entropy of a dynamical system is a measure of complexity of dynamic behavior of 
the system, and it can be seen as a quantitative measurement of how chaotic of a dynamical system. Generally 
speaking, the larger the topological entropy of a system is, the more complicated the dynamics of this system would 
be. 

The characterization of chaos in terms of topological entropy is the most satisfactory one from a mathematical 
perspective but is not very computable in applications (with a computer). The definition in terms of Lyapunov 
exponents is the most computable (possible to estimate) on a computer. 

Most of the results and proofs of this section are taken from Adler et al. [9]. In this section, we always let  be a 
nonempty compact space unless explicitly stated. 

 
Definition 16. For any open cover  of , let  denote the number of sets in a subcover of minimal cardinality. 
A subcover of a cover is minimal if no other subcover contains fewer members. We call  the 
topological entropy of . 
Since  is compact and  is an open cover, there always exists a finite subcover. Then we have 

.  
 

Definition 17. For any two covers  of ,  defines their join. 
Let  be a continuous mapping. If  is an open cover of  then from continuity, the family 

 is again an open cover of .  
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Remark 1. (i)  The operation  is obviously commutative and associative. 
                      (ii)  . 

The following proposition state the properties of  and . The reader may find the detail proof in [25].  
 
Proposition 3. Let  be two open covers of a compact space . Then 
(i)     and  ; 
(ii)   ; 
(iii)   ; 
(iv)    and . If  is onto, we have equality. 
 
Lemma 1. For every open cover  of , the following 

 

exists and is a nonnegative real number. 
Proof. See [9, 25]. 
 
Definition 18. The topological entropy    of a mapping  with respect to an open cover  is defined as   

.  
 

Definition 19. The topological entropy  of a mapping  is defined as 

. 
Obviously, . 

 
With several notions of generalized compactness that we have discussed above, we suggest some ideas of new 

topological entropy by using the generalized compact spaces such as nearly compact, paracompact, nearly 
paracompact, Lindelöf, etc, and it properties can be investigated. We also can try to investigate topological property 
in the case of bitopological spaces since there is no researcher doing this nowaday. Many open problems might be 
appear from this ideas and some problems in dynamical systems can be solved. It might be useful for future 
research.  
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