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In this paper, we present the application of the gradient descent of indeterminism (GDI) shad-
owing filter to a chaotic system, that is the ski-slope model. The paper focuses on the quality of
the estimated states and their usability for forecasting. One main problem is that the existing
GDI shadowing filter fails to provide stability to the convergence of the root mean square error
and the last point error of the ski-slope model. Furthermore, there are unexpected cases in
which the better state estimates give worse forecasts than the worse state estimates. We investi-
gate these unexpected cases in particular and show how the presence of the humps contributes
to them. However, the results show that the GDI shadowing filter can successfully be applied to
the ski-slope model with only slight modification, that is, by introducing the adaptive step-size
to ensure the convergence of indeterminism. We investigate its advantages over fixed step-size
and how it can improve the performance of our shadowing filter.
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1. Introduction

In recent years, a number of techniques have
been established for finding shadowing trajecto-
ries [Davies, 1994; Hammel, 1990; Kostelich &
Schreiber, 1993; Walker & Mees, 1997] and state
estimation [Judd & Smith, 2004] of nonlinear
dynamical systems. One method that has proven
very powerful recently is the gradient descent of
indeterminism (GDI) shadowing filter [Judd, 2003].
Gradient descent is an optimization technique that
minimizes a quantity by moving continuously in the
direction of steepest descent [Judd et al., 2004a].

The gradient descent methods were originally
demonstrated for simple chaotic systems.

Shadowing trajectories method is an impor-
tant technique to assess the quality and the relia-
bility of forecasting models and numerically com-
pute trajectories of chaotic systems [Judd et al.,
2004b]. Shadowing plays an important role in the
theory of indistinguishable states [Judd & Smith,
2004, 2001], which is a new approach to state esti-
mation, ensemble and probabilistic forecasting. In
this study, the gradient descent algorithm will be
used because results have shown that, for a perfect
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deterministic model, it will converge to shadowing
trajectories if the observational noise is sufficiently
small [Ridout & Judd, 2002].

There are two objectives of this study. One is
to see if the standard gradient descent of indeter-
minism (GDI) shadowing filter can successfully be
applied to a real world dynamical system, particu-
larly one that exhibits chaotic properties. An exam-
ple of such a system is a ski-slope model. The model
has been introduced by Lorenz [1993]. However, it
appears that it has not been investigated by any
researcher until a few years ago when the genera-
tion of the hump pattern on a ski-slope was studied
by Egger [2002]. The results of this study, which will
be discussed in detail later, show that the original
GDI shadowing filter fails to provide stability to the
convergence of the errors. Therefore, it requires fur-
ther research on the cause of the problem and pos-
sible approach to address the problem. This leads
to our second objective of the study, that is, to pro-
pose a potential solution to the problem, namely
the introduction of the adaptive step-size in the
algorithm.

In this study, the ski-slope model is selected
for two main reasons. Firstly, as stated above, the
objective of this study is to see if the gradient
descent algorithm can be successfully applied to real
world, chaotic system such as the ski-slope model.
Secondly, the application of the original gradient
descent shadowing filter to the ski-slope model has
a convergence problem. Therefore, further research
is required on the cause of the problem and the pos-
sible approach to address the problem.

In this study, we introduce in addition an adap-
tive step-size algorithm for the GDI shadowing fil-
ter. We will also discuss some analysis of the per-
formance of modified GDI shadowing filter using
adaptive step-size and a comparison with the per-
formance of GDI shadowing filter using fixed step-
size.

Note that this paper is only concerned with the
perfect model scenario (PMS), that is, the system
under study has known dynamics, identical to the
model. We restrict our attention to a deterministic
model, that is, the dynamics of the model do not
involve any random elements, and only observations
are influenced by measurement noise.

The paper is organized as follows. Section 2 pro-
vides a description of the formulation and govern-
ing equations of four-dimensional ski-slope model.

In Sec. 3, we discuss the standard shadowing fil-
ter using gradient descent of indeterminism (GDI).
Section 4 introduces some required modifications of
the shadowing filter for the investigation of the ski-
slope model. The results of the implementation of
the standard and modified algorithm on the ski-
slope model for state estimation and their usability
for forecasting, including some unavoidable prob-
lems in forecasting the model, are presented and
analyzed in Sec. 5. The discussions on the limi-
tations of the adaptive step-size and the ski-slope
model follow in Sec. 6.

2. Ski-Slope Model

To the best of our knowledge, there have been only
two studies investigating the motion of a skier on a
ski-slope. Lorenz may have been the first to model
the motion of skiers on ski-slopes. He introduced the
ski-slope model [Lorenz, 1993], where he considered
the motion of sled and board on a ski-slope. He for-
mulated the governing equations of motion, and dis-
cussed the assumptions employed in the modeling
process. He presented some discussions on several
chaotic properties of the ski-slope, including sev-
eral common features of a low-dimensional nonlin-
ear dynamical system such as the bifurcations and
the attractor of the system.

Egger [2002] presented a microscopic model
where the humps are assumed to be generated by
the action of individual skiers and the tracks of the
skiers are modified by the humps in a nonlinear pro-
cess. The model reproduces many of the observed
features of mogul fields, in particular, regular pat-
terns which do not occur in a linear version of the
model. He demonstrated that the generation of reg-
ular hump patterns at ski-slopes can be achieved
with a model of relatively low complexity. In his
model, a skier is able to keep his course against
gravity and to make turns. Mini humps and holes
are generated at every turn which then evolve into
regular hump patterns.

Lorenz was more interested in chaotic motion
on slopes with prescribed regular hump patterns
but not in the formation of these moguls while in
Egger’s model, humps are generated by the action
of many individual skiers which in turn affect the
tracks of the skiers. In this study, we will consider
a four-dimensional ski-slope model that has been
introduced by Lorenz [1993].
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2.1. The formulation of the model

To illustrate the application and performance of the
shadowing filter, we will use the motion of a board
on a ski-slope. We reproduce the Lorenz’s model, in
which the focus is on the motion of a board slid-
ing down a ski-slope. To simplify our mathemat-
ical model, we will employ some assumptions. As
have been described by Lorenz [1993], the motion
of a board on a ski-slope is considered as a scat-
tering by smoothly rounded moguls. It is assumed
that the ski-slope has plenty of round moguls. The
moguls are assumed to be physically similar and
are uniformly spaced. Unlike in Egger’s model, we
ignore that the humps are generated and altered by
the action of the skiers. We instead will prescribe a
fixed topography for the mogul.

It is assumed that the motion of the board will
be governed by the action of three forces. The first
force, F1 is the gravity force which is directed ver-
tically downward. The second force, F2 is the fric-
tion force, which is directed against the velocity.
The third force, F3 is the force that the slope exerts
against the board, which is directed normal to the
slope’s surface (that is, right angles to the slope),
and opposing the effect of gravity to just the extent
needed to keep the board sliding instead of sticking
to the slope or taking off into the air [Lorenz, 1993].
The forces diagram is shown in Fig. 1.

2.2. The governing equations
of motion

The following derivation follows Lorenz [1993]. The
equations describing the motion of a board on a ski-
slope obeys the Newton’s Second Law of Motion:
the board’s acceleration is equal to the sum of the
forces acting on the board, per unit mass. Suppose
X,Y,Z are the southward, eastward, and normal
(to the slope) distances, respectively, U, V,W are
velocity components in the downslope, cross-slope
and normal (to the slope) directions, respectively,
r is the coefficient of friction, and H(X,Y ) is the
height of the slope above some horizontal reference
plane. The equations of motion of the board are
then

dX

dt
= U, (1a)

dY

dt
= V, (1b)

O

Z

X

F3F2

F1

Fig. 1. A forces diagram. Note that the direction of arrows
represent the direction of the forces, but the length of the
arrows does not represent the magnitudes of the forces. The
triangle represents the cross-section of the slope.

dZ

dt
= W, (1c)

dU

dt
= −F

∂H

∂X
− rU, (1d)

dV

dt
= −F

∂H

∂Y
− rV, (1e)

dW

dt
= −g + F − rW, (1f)

where F is the vertical component of the force of
the slope against the board, g is the acceleration of
gravity, g = 9.81 m/s2. Since

Z = H(X,Y ), (2)

on the slope, it follows that

W = U
∂H

∂X
+ V

∂H

∂Y
(3)

and

dW

dt
= −∂H

∂X

(
F

∂H

∂X
+ rU

)
− ∂H

∂Y

(
F

∂H

∂Y
+ rV

)

+
(

∂2H

∂X2
U2 + 2

∂2H

∂X∂Y
UV +

∂2H

∂X2
V 2

)
, (4)
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eliminating W and dW/dt, gives

F =
g +

∂2H

∂X2
U2 + 2

∂2H

∂X∂Y
UV +

∂2H

∂X2
V 2

1 +
(

∂H

∂X

)2

+
(

∂H

∂Y

)2 .

(5)

We now define a four-dimensional ski-slope
model as follows. Suppose r is chosen to be r−1 =
2s, and H(X,Y ) is given by

H = −aX − b cos(pX) cos(qY ).

To be specific we choose in our numerical com-
putation that 2π/p = 10.0 m, 2π/q = 4.0 m, a =
0.25 m and b = 0.5 m. Note that h, the height of a
mogul above a neighboring pit is 2b. From Eqs. (1)–
(5) it follows that Eq. (1) can be reduced to the
following set of governing equations of motion:

dX

dt
= U, (6a)

dY

dt
= V, (6b)
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Fig. 2. Twenty typical simulated paths, computed numeri-
cally using Eqs. (6a)–(6d) above, where the diamonds repre-
sent the center of the moguls.

dU

dt
= −F

∂H

∂X
− rU, (6c)

dV

dt
= −F

∂H

∂Y
− rV. (6d)

2.3. The chaotic properties of the
ski-slope model

An essential property of chaotic system is that
nearby states will eventually diverge regardless of
how small the initial differences are. As an exam-
ple, we observe the simulated paths of 20 boards
on a ski-slope model that start with identical veloc-
ities, but from slightly different points, where the
starting points are chosen uniformly in an interval
of 0.2 m. Let X, U , and V be 0.0ms−1, 4.0ms−1,
and 2.0ms−1 respectively, and Y varies from −0.2
to 0. The paths of these boards are shown in Fig. 2.
It can clearly be seen in the figure that, even by the
first 25 m from the starting line, the small initial
differences has been increased. Observe also that
the tendency of the boards to deflect away from the
moguls is clear, and the motion is chaotic.

3. Shadowing Filter by Gradient
Descent of Indeterminism

Consider a discrete-time d-dynamical model given
by zi+1 = f(zi). Given a sequence of observations
S = (s1, s2, . . . , sn), a shadowing trajectory of S is
defined as a sequence of states Z = (z1, z2, . . . , zn)
such that Z is a trajectory of our model f and Z
shadows S: for Z to be a trajectory requires zi+1 =
f(zi), for 1, 2, . . . , n − 1; and for Z to shadow S
requires that distances ‖si − zi‖, for i = 1, 2, . . . , n,
are small relative to a level of noise strength.

We assume the measurement noise to be addi-
tive and independent Gaussian random variates
with mean 0 and variance σ2 on each component.
Therefore,

si = ci + ξi

where the true trajectory is C = (c1, c2, . . . , cn), and
the ξi are noise realizations.

Our aim now is to find a trajectory that
is consistent with the observations, or shadowing
trajectory. While there are a number of methods
to do this, a straightforward method is by imple-
menting gradient descent of indeterminism (GDI)
shadowing filter [Judd & Smith, 2001; Stemler &
Judd, 2009].
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For any sequence of states Z the mean squared
indeterminism function I : R

nd → R is defined by
[Stemler & Judd, 2009]

I(Z) =
1

n − 1

n∑
i=1

‖zi+1 − f(zi)‖2. (7)

Note that this scalar function is a measure of the
average mismatch between states and forecasts.
Therefore, it measures how far a sequence of states
is from being a trajectory. A sequence of states will
be a trajectory if and only if the indeterminism is
zero.

If one wants to find a shadowing trajectory Z
from given noisy observations S, the indeterminism
can be used. Starting from I(S) �= 0 (for the obser-
vation s the indeterminism I(S) is almost surely
nonzero), gradient descent can be used to mini-
mize I. The gradient descent method then follows
the steepest descent of the gradient of I(z) down to
a minimum where I(z) = 0. An explicit implemen-
tation of GDI is to solve the following differential
equation

dz

dτ
= −∇I(z(τ)), (8)

where z(0) = S, τ is the time interval (or sampling
frequency) and in the limit of τ → ∞ we obtain
a shadowing trajectory. It can be shown that the
GDI method always converges to a trajectory of
the model [Ridout & Judd, 2002], that is, as I(Z)
converges monotonically to zero, then Z converges
to a trajectory of f . A more detailed discussion of
the properties of GDI shadowing filter can be found
in [Judd & Smith, 2004; Judd et al., 2004a; Judd &
Smith, 2001; Stemler & Judd, 2009; Ridout & Judd,
2002].

While Eq. (8) can be solved using various
methods, we used a fixed step Euler integration
method as it is more straightforward. Letting Zm =
(z1,m, z2,m, . . . , zn,m), where z0 = S, the equation is
reduced to

zi,m+1

= zi,m − 2∆
n − 1

×




−A(zi,m)(zi+1,m − f(zi,m)), i = 1

zi,m − f(zi−1,m)

−A(zi,m)(zi+1,m − f(zi,m)), 1 < i < n

zi,m − f(zi−1,m), i = n

(9)

where the subscript m is the iteration number, ∆ is
a suitably chosen step-size and A(z) is the adjoint
of f (transpose of the Jacobian matrix) evaluated
at z. J(z) is the Jacobian of f at z, defined as

Jij(z) =
dfi

dzj
.

The algorithm may work for arbitrary positive
choices of 2∆/(n− 1) smaller than 1. The principal
test to determine ∆ is by observing the convergence
of the indeterminism Im = I(Zm), which should
be strictly decreasing, as the reason GDI shadow-
ing filter is used is to minimize Im. Larger values
of ∆ tend to give faster convergence, but tend to
increase the possibility of failure, that is, the inde-
terminism will not be strictly decreasing [Stemler &
Judd, 2009].

With this method iterative time discrete models
can be solved but our ski-slope models are flows of
general form ż = F (z). If we assume that the obser-
vations are with a constant sampling frequency τ ,
our task is to find a map f for the flow. Given a
sequence of observations S = (s1, s2, . . . , sn), we
will implement the GDI shadowing filter to find z(t)
of ż = F (z), such that Z = (z(0), z(τ), . . . , z(n −
1)τ) shadow S. This can be done by integrating
ż = F (z), with z(0) = x, for a time interval τ to
obtain a map f(x) = z(τ). Suppose z(t), 0 ≤ t ≤ τ
is the solution, an adjoint product can be computed
by solving the homogeneous differential equation

du

dt
= J(z(τ − t))T u, u(0) = v; (10)

and the adjoint product is given by u(τ). Equa-
tions (6a)–(6d) define our flow ż = F (z), and
z = (X,Y,U, V ) for the ski-slope model.

The adjoint products are computed using ana-
lytic approximation.

3.1. Definitions of measured
quantities

In this study, we assess the performance of the GDI
shadowing filter using some measurements which
have been defined in the previous study [Stemler &
Judd, 2009]. The quality of the estimated states Zm

are investigated by measuring how close Zm is to
being a trajectory, that is, its indeterminism Im [as
defined in Eq. (7)], and the final state mismatch
magnitude, In,m = ‖zn,m − f(zn−1,m)‖. We mea-
sure the distance between the estimated states Z
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and the true trajectory C = (c1, c2, . . . , cn), by the
root mean square error of states

Em =

√√√√ 1
n

n∑
i=1

‖zi − ci‖2 (11)

and the last point error En,m = ‖zn,m − cn‖. We
measure the usability of our state estimate for fore-
casting, using a quantity called separation time,
or shadowing time, which is the largest lead time
for which the forecast error remain less than some
threshold.

Tm = max{T : ‖cn+t − f t(zm,n)‖ < 2σ,

∀ 0 ≤ t ≤ T}. (12)

3.2. The windowing test

Before applying our shadowing filter, there are a
number of adjustable parameters to be determined.
The parameters are the step-size ∆, number of iter-
ations to achieve convergence m, the integration
interval τ , and the number of steps for adjoint com-
putations w. We obtained the optimal values of
these parameters using the windowing test. It is a
basic method to find optimal or appropriate val-
ues of parameters for shadowing filters [Stemler &
Judd, 2009]. For a trajectory of n = 10 points, we
obtained the following optimal values of the param-
eters: n = 10, m = 100, 2∆/(n − 1) = 0.1, w = 20,
and τ = 1 sec.

4. Improved GDI Shadowing Filter
with Adaptive Step-Size

It is common feature of iterative optimization algo-
rithms that there is a trade-off between the amount
of computation and the accuracy of results. There
is also often a trade-off between the stability of the
algorithm and the rate of convergence. Recall the
discussion on the algorithm of the GDI shadowing
filter, a fixed step-size ∆ is used in the iteration
[see Eq. (9)]. The choice of ∆ results in a trade-off
between the stability and the rate of convergence.
Generally, a small value of ∆ will ensure stability,
but provide a slow rate of convergence. The princi-
ple criteria of determining the value of the step-size
is by observing the convergence of the indetermin-
ism, which must always be decreasing.

Note that when a gradient descent problem is
implemented as an ordinary differential equation
(ODE) as in Eq. (9), then the rate of convergence

can be slow because this ODE is a stiff equation
[Judd et al., 2004a]. The gradient descent problem,
Eq. (9), is inheritly stiff, because the linearizations
of the models have modes with small eigenvalues
that may later become unstable. These potential
instabilities in shadowing algorithms would result in
poor quality of solutions, or worse, failure of conver-
gence [Judd et al., 2004a]. Furthermore, since I(z)
in Eq. (7) is defined by a quadratic form, the rate
of convergence will slow or decrease as the solu-
tion is approached. Note that in Eq. (9) a fixed
step-size is used in the iteration. We propose to
employ adaptive step-sizes to overcome these dif-
ficulties. We define adaptive step-size ∆, as a num-
ber of different values of step-size in the iterative
GDI shadowing filter (but must always be decreas-
ing), which are changed to avoid the convergence
failure of a shadowing filter. Adaptive step-size can
decrease the rate convergence by reducing the value
of the step-size.

GDI can fail if the step-size is too large, but
is slow if step-size is too small. Failure here means
that the indeterminism does not decrease when a
step is taken. It is not necessarily a good idea to
choose the largest step that results in a decrease
of indeterminism, but certainly if a step-size does
not cause a decrease, when a smaller step-size does,
then the step-size should be reduced. This is the
idea behind the approach implemented here.

4.1. The implementation

The flowchart in Fig. 3 summarizes the algorithm.
The essential idea is to adapt the step-size

based on the convergence of the indeterminism to
maintain a high rate of convergence without com-
promising the stability. That is, the need to reduce
the step-size is based on the comparison between
the indeterminism of the current and the previous
iterations. If it appears that the current indetermin-
ism is greater than or equal to the indeterminism in
the previous iteration, then the step-size is reduced
by a factor k in the next iteration and the state
estimates of the previous iteration are filtered again
but using a new reduced value of the step-size. On
the other hand, if the indeterminism decreases, the
step-size remains unchanged for the next iteration.

The adaptive step-size can be implemented by
the following algorithm:

(1) Set the initial state estimates, Z0 = S and
the initial step-size ∆0. Compute the initial
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1) Set m = m +1 

2) Set ∆m = ∆m-1 

1) Set 

a) initial state estimates, Z0 = S

b) initial step-size, 2 ∆0 /(n-1)= 0.1

2) Compute Im = I ( Z0 ) using equation 7 
3) Set the number of iteration, m = 1

YESYES

YES NO

Set                     

a) Im = I m-1

b)  Zm using Zm-1

c) ∆m = ∆m-1     
k

START

END

Compute 

a) Zm using Zm-1 and ∆m-1 

b) Im = I (Zm) using equation 7

m = 100? m = 100?

NONO

Im > Im-1?

Fig. 3. The flow chart to show the steps involved in a GDI shadowing filter with adaptive step-size.

indeterminism I0 = I(Z0). Then set the number
of iterations, m = 1.

(2) Apply GDI shadowing filter to obtain Zm using
Zm−1 and ∆m−1. Compute the indeterminism
Im = I(Zm). If Im ≥ Im−1, then divide ∆m by a
factor k and set m = m−1, the state estimates
Zm = Zm−1 and Im = Im−1. If Im < Im−1 then
set m = m + 1 and ∆m = ∆m−1.

(3) Repeat Step 2 for 100 number of iterations.

4.2. Choice of adaptive factor

If the step-size is divided by a factor k when the
indeterminism increases, then what is the optimal
or appropriate value for k? Although we initially
considered several values of k, we found by experi-
ment that there was no significant difference in any

of them. It appears that the algorithm works for
any positive choices of k greater than 1. Our results
suggest that, in most cases, a value of 2 will pro-
vide good solutions. Therefore, we use k = 2 in the
following experiments. If k 	 1 then there is no
progress to convergence, because the step becomes
too small too quickly, hence k should not be too
large.

4.3. The initial step-size

Since the step-size is varied throughout the itera-
tion, what is the optimal value for the initial step-
size ∆0? The convergence is ensured, that is, the
indeterminism will always be decreasing or at least
in the worst case, nonincreasing. The only concern
is the speed of the convergence. Although the GDI
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shadowing filter using adaptive step-size may work
for arbitrary positive choices of 2∆0/(n − 1) less
than 1, we find that a value around 2∆0/(n − 1) =
0.1 generally gives the fastest rate of convergence.

5. Results and Discussions

5.1. State estimation using fixed
step-size

To demonstrate the quality of the GDI shadow-
ing filter to the ski-slope model, we consider 100
different trajectories of the ski-slope model, which
are generated using different initial conditions. The
trajectory or the ski-slope data are generated by

solving Eqs. (6a)–(6d) using the function ode45 of
MATLAB, which is based on an explicit Runge–
Kutta formula. Every trajectory has ten points.
We test the iterative GDI shadowing filter where
2∆/(n− 1) = 0.1 for observation data having three
different noise strengths, expressed in relative stan-
dard deviation (in %) RSD = 5, 10 and 15. Figure 4
shows the average values of Im, Em, In,m, En,m and
∆m as a function of the number of iterations m.

The filter gives around an order of magnitude
reduction of In,m and Im, for all of the three noise
levels. However, it can be clearly observed in the
figure that the GDI shadowing filter is unstable
and fails to provide the convergence, that is, Em

increases as m increases, while En,m decreases for

m
0 20 40 60 80 100

I m

0

0.5

1

1.5
RSD = 15% (AS)

RSD = 15% (FS)

RSD = 10% (AS)

RSD = 10% (FS)

RSD = 5% (AS)

RSD = 5% (FS)

m
0 20 40 60 80 100

I n,
m

0

0.5

1

1.5

2

(a) (b)

m
0 20 40 60 80 100

E
m

0

0.2

0.4

0.6

0.8

1

m
0 20 40 60 80 100

E
n,

m

0

0.2

0.4

0.6

0.8

1

(c) (d)

m
0 20 40 60 80

0.04

0.06

0.08

0.1

∆
m

(e)

Fig. 4. The average value of Im, Em, In,m, En,m and the term ∆m as a function of m, for RSD = 5, 10 and 15, m = 100,
k = 0.5, and the 2∆0/(n − 1) = 0.1. AS represents adaptive step-size and FS represents fixed step-size.
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the first few iterations and then begin to increase as
m increases. Again, this convergence issue requires
some modification to the filter.

Observe also in Fig. 4 that, on average, In,m <
Im. This feature is a consequence of the limited
information available to the final state of the
sequence. The final state zm,n only has to make
adjustments to mismatches on one side, whereas a
state in the middle of the sequence has to make
adjustments to mismatches on both sides, which is
usually harder to achieve and requires more itera-
tions to converge, and hence In,m < Im.

5.2. State estimation using
adaptive step-size

To investigate the performance of the GDI shadow-
ing filter using adaptive step-size, we computed the
average values for Im, Em, In,m and En,m using the
same initial observation data as the previous exper-
iment. Figure 4 shows the average value of Im, Em,
In,m, En,m and the term 2∆/(n − 1) as a function
of m, for RSD = 5, 10 and 15, where the same data
from the experiment in the previous experiment are
used.

It can be clearly observed from Fig. 4 that,
using adaptive step-size, the average value of all
four quantities decreases as the number of GDI iter-
ative steps, m increases. Also observe in Fig. 4 that
using adaptive step-size, after m = 100 iterations,
Im and In,m are reduced slightly more than the fixed
step-size. Em decreased by a factor of about 1/3,
and En,m decreased by about 1/4. There is a slower
rate of decrease after around ten iterations, with
almost the same shape of decrease for all three noise
levels. This feature can be understood as follows.
Typically, in the first ten iterations of the shadow-
ing filter algorithm using adaptive step-size, the big
step-sizes removes large mismatches from the states
that are caused by large observational errors and in
the following iterations the algorithm is adjusting
states using smaller step-sizes, to achieve conver-
gence to a trajectory.

5.3. Forecasting using fixed
step-size

We now consider the quality of forecasts. Recall that
we defined the separation time Tm as the maximum
time for which the forecast error remains less than
a threshold of 2σ. It is useful to compare Tm, for

m > 0 with the value T0, that is, the forecast from
the raw unfiltered observation. Using the same data
as the previous subsection, we computed the aver-
age value of Tm for the ski-slope model, plotted as
a function of the number of iterations in Fig. 5.

Note that the optimal number of iterations m =
100 is obtained using the windowing test, as men-
tioned in Sec. 3.2. That is, sufficient convergence is
achieved and the algorithm will be stopped after 100
iterations. As m increases, better state estimates are
obtained as shown in Fig. 4. Therefore, it should be
expected that the separation time for better state
estimates will increase as m increases.

There are two main points that can be observed
from the figure. First, the shadowing filter pro-
vides improved or longer separation time, some-
times more than two units. This is because the fore-
cast using the state estimates (the noise-reduced
trajectory) will remain close to the future state
of the true trajectory longer than the observations
(noisy trajectory). Second, note from the figure that
the average separation time is not strictly increas-
ing, for all three noise levels, for example, there
are a number of spikes in the average separation
time. The spiking phenomenon observed in the fig-
ure is generally attributed to forecasted trajecto-
ries being deflected to the wrong side of a hump
on the ski-slope that is directly in the path of the
skier. For all noise levels, there can be a situa-
tion where better estimated states (the ones with
smaller error) give worse forecast than the worse
estimated states. Investigations show us that this
rare case only happens if the trajectory forecasted
by the better estimated states happen to be moving
closer to a hump and deflected to the wrong side of a
hump. On average, such cases happen 26 times, out
of 100 sequences tried. An example of such unavoid-
able phenomena is illustrated in Fig. 6. The black
(thick) trajectory is the truth, the red (solid) tra-
jectory is the trajectory forecasted using state esti-
mates after fifth iteration and the blue (dashed)
trajectory is the forecasted trajectory using seventh
iteration. Note that the hump at (−20,−55) is the
one that causes the problem. Therefore, we conclude
that the phenomenon does not indicate the failure
of the shadowing filter to obtain better estimate,
but rather merely a consequence of the tendency of
a skier to be deflected on the wrong side of a hump.
This behavior is unavoidable, because in our formu-
lation of the model, it is assumed that a skier might
tend to avoid moving over a hump.
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m
0 10 20 30 40 50 60 70 80 90 100

T
m

3

3.5

4

4.5

5

5.5

6

RSD = 5% (FS)

RSD = 5% (AS)

RSD = 10% (FS)

RSD = 10% (AS)

RSD = 15% (FS)

RSD = 15% (AS)

Fig. 5. The average separation time Tm as a function of number of iterations m. AS represents adaptive step-size and FS
represents fixed step-size.

−30 −28 −26 −24 −22 −20 −18 −16 −14 −12

−60

−55

−50

−45

−40

−35

Fig. 6. An example of a ski-slope trajectory where bet-
ter state estimates give worse forecast than worse state
estimates.

5.4. Forecasting using adaptive
step-size

Figure 5 shows the average separation time Tm

as a function of the number of iterations m, for
adaptive step-size, using the same data used in the
experiment for the ski-slope model in the previous
experiment.

Observe in the figure that adaptive step-size
performs better than fixed step-size for all noise lev-
els. This can be explained by the better performance
of adaptive step-size in reducing the average value
of Im, In,m, Em and En,m, compared to fixed step-
size. However, the spiking phenomenon still occurs
even when we employ adaptive step-size, because as
previously explained this is an unavoidable property
of the system.

6. Limitations

The limitation of this research is that so far we have
only focused on the perfect model scenario, which
is a mere hypothetical. In reality, the model and
the observations of the systems are never perfect.
Therefore, it is hoped that in the future, some of
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the results presented in this note can be general-
ized to the imperfect model scenario (IPMS). Some
limitations of this method can be improved in the
future. There are a variety of possible methods to
adapt the step-size, but the approach proposed in
this paper is an example of a simple and straight-
forward method. One of the simplest methods that
has been proposed is scaling the step-size by the
gradient vector, that is, divide ∆ by ‖∂I/∂z‖. The
method provides a more uniform, almost linear rate
of convergence. However, it has been shown that
this simple adaptive step-size scheme excited insta-
bilities in the jet-stream of the atmosphere when
applied to a weather model [Judd et al., 2004a], and
other schemes should be considered.

There are at least two limitations of the model.
Firstly, the ski-slope model would be more realistic
if the friction force were made to be proportional to
the force of the slope against the board. For exam-
ple, when the board is nearly taking off, presumably
because it is shooting over a mogul, the frictional
effect will be greatly reduced. The assumption that
the force of friction is proportional to velocity is
convenient, but is quite controversial on account of
its oversimplicity. It has been shown that in some
experiments, that it is a plausible assumption, at
least as an approximation [Brauer, 2001]. Another
noticeable limitation of the model is that it does
not deal with sliding objects of various sizes and
shapes. Therefore, if a skier slides down a slope
using a slightly longer board, this will not make
any difference in terms of the trajectory. We treat
the board as if it is a single particle, and disregard
the flexibility of real boards and the variability of
their orientations.

7. Conclusion

This paper presents two important findings: the
study of the application of the GDI shadowing fil-
ter to the ski-slope model and the refinement of the
standard shadowing algorithm by introducing a new
approach in selecting the step-size. The application
of gradient descent shadowing algorithms to the ski-
slope model appears to be successful and it has
shown that the method can be applied practically.
However a minor modification, that is by using
adaptive step-size, instead of fixed step-size, in
the gradient descent algorithm can further improve
the performance of the algorithm, particularly in

estimating states of true trajectories. It is designed
to reduce the indeterminism at each iteration, elim-
inate the uncertainty in the selection of the opti-
mal value for step-size parameter, and to increase
the speed of convergence without compromising the
stability.

It has been demonstrated that the adaptive
step-size performs significantly better than the fixed
step-size. One main problem is that the original
GDI shadowing filter fails to provide stability to
the convergence of the root mean square error and
the last point error of the ski-slope model. A sim-
ple solution to this problem is proposed, that is,
by employing a new adaptive step-size approach
designed to ensure the convergence of indetermin-
ism during each iteration. The adaptive step-size
will guarantee the average value of Im and Em

to be strictly decreasing, or at least nonincreasing.
Although a bigger step-size will generally give faster
convergence, the possibility of failure is higher. That
is, the convergence of the indeterminism may not be
strictly decreasing. Although fixed step-size has a
faster initial convergence in some cases, it is eventu-
ally surpassed by adaptive step-size. This step-size
is important to ensure successful application of GDI
shadowing filter and hopefully will further enhance
the performance of the original shadowing filter.

There are also unexpected results with the qual-
ity of forecasts for the ski-slope model. There are
cases where the improved or better state estimates
do not improve the quality of forecasts. After fur-
ther investigations, we found out that this phe-
nomenon is due to the existence of the moguls which
change the direction of the skier and hence reduce
the separation time.
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