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INTRODUCTION

 
 The development of an analytical method of 
solution of diffusion and advection
equation processes is critical for 
phenomena occurring in numerous 
bio-medical science, material science, engineering 
and pharmaceutical problems. The term 
diffusion equation refers to the solute transport due 
to the combined effect of diffusion and convection 
within a medium (Kumar, A., 2009
motivation for this study is the swelling and diffusion 
of hydrogel in a finite volume liquid
2005; Wang, S., X. Lou, 2009).  
 However, the moving boundary problem 
wastaken into consideration in this study.
particular kind of boundary value problem for partial 
differential equations (PDEs), and is 
case in which a phase boundary can move with time. 
It occurs in numerous physical applications involving 
diffusion, including: heat transfer
transition occurs;moisture transport such as swelling 
grains or polymers;and deformab
problems, where the solid displacement is governed 
by diffusion (Barry, S.I., J. Caunce, 2008
boundary value problems have also been considered 
in the body of literature on polymer swelling
particular relevance to drug delive
these systems, the boundary may move due to 
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A B S T R A C T  
The aim of this study is to develop two mathematical models with nonhomogeneous 
moving boundary condition. The main concept behind the solution is to separate the 
mathematical model based on the region where a particular release mechanism takes 
place. The first region represents the swelling-controlled process
representsthe diffusion-controlled process. Variable transformation 
impact on this study. The advection term in the advection
removed using Landau transformation in the swelling
diffusion-controlled model, the moving boundarycondition 
boundary condition. Finally, the nonhomogeneous moving boundary condition 
reduced to the homogeneous boundary condition using a 
models.  
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INTRODUCTION  

analytical method of 
solution of diffusion and advection-diffusion 

for the analysis of 
occurring in numerous fields,including 

medical science, material science, engineering 
. The term advection-

diffusion equation refers to the solute transport due 
to the combined effect of diffusion and convection 

2009). The main 
motivation for this study is the swelling and diffusion 
of hydrogel in a finite volume liquid (Bierbrauer, F., 

the moving boundary problem 
in this study.This is a 

particular kind of boundary value problem for partial 
and is adapted to the 

case in which a phase boundary can move with time. 
physical applications involving 
heat transfer, where a phase 

moisture transport such as swelling 
and deformable porous media 

where the solid displacement is governed 
Barry, S.I., J. Caunce, 2008). Moving 

boundary value problems have also been considered 
on polymer swelling, with 

particular relevance to drug delivery systems. In 
the boundary may move due to a 

swelling and dissolution process. 
summary of this, refer to (
Lopina, 2004; Siepmann, J., A. Gopferich, 2001
 We present a mathematical model for the 
changing of the hydrogel in the finite volume liquid, 
which takes into account, 
boundary for the swelling controlled, but also for 
diffusion controlled, which is the second moving 
boundary. The motion of the former boundary is 
governed by a swelling controlled process
motion of the latter boundary is governed by 
diffusion controlled process. 
 Mathematical models for diffusion
drug release have been developed in 
(Doumenc, F., B. Guerrier, 2001
Lu, S., 1998). Fick’s law has commonly been 
the base equation for models with suitable initial and 
boundary conditions. The analytical solution for the 
diffusion-controlled drug release models for regular 
geometries (MohdMahali, S., 
Wang, S., X. Lou, 2009) has been derived 
ideal conditions. The diffusion
a simplified geometry that 
solved was proven to be comparable with the 
numerical solution of the same model
geometry. Despite the availability of the analytical 
solution for diffusion-controlled drug delivery in 
various conditions, the analytical solution for drug 
delivery involving a swelling effect 
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two mathematical models with nonhomogeneous 
behind the solution is to separate the 

particular release mechanism takes 
controlled process; while the second 

ransformation has had a great 
this study. The advection term in the advection-diffusion equation was 

swelling-controlled model. In the 
ndition was transformed to a fixed 

nonhomogeneous moving boundary condition was 
a steady-state solution in both 
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swelling and dissolution process. For an overall 
(Kanjickal, D.G., S.T. 

Siepmann, J., A. Gopferich, 2001).  
mathematical model for the 

changing of the hydrogel in the finite volume liquid, 
 not only a moving 

boundary for the swelling controlled, but also for 
diffusion controlled, which is the second moving 
boundary. The motion of the former boundary is 

a swelling controlled process;while the 
motion of the latter boundary is governed by a 

Mathematical models for diffusion-controlled 
drug release have been developed in prior studies 
Doumenc, F., B. Guerrier, 2001; Colin, R., 1998; 

has commonly been used as 
the base equation for models with suitable initial and 
boundary conditions. The analytical solution for the 

controlled drug release models for regular 
 2011; Wang, S., 2009; 

has been derived in some 
ideal conditions. The diffusion-controlled model with 
a simplified geometry that has been analytically 

to be comparable with the 
numerical solution of the same model, with 3D 
geometry. Despite the availability of the analytical 

controlled drug delivery in 
various conditions, the analytical solution for drug 

swelling effect remains 
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restricted. Various mathematical theories have been 
proposed in developing models for drug deliveries 
involving swelling devices.  
 
Mathematical Model: 
 Drug delivery scientists encounter challengesin 
developing safe and effective oral delivery methods 
for therapeutic proteins. Hydrogels were investigated 
to overcome this problem for their potential use as an 
oral delivery system for protein. Hydrogels are 3D 
polymeric networks that imbibe a large volume of 
water, while remaining insoluble, due to the physical 
or chemical cross-linking of individual polymer 
chains [5,9]. Stimuli-responsive hydrogels undergo 
dramatic changes in swelling and network structure 
in response to environment stimuli such as pH, 
temperature, ionic strength, enzymes and light. 
 We consider a device of cylindrical geometry 
with height ℎ� loaded with a certainamount of drug. 
This device is placed in a cylindrical container with 
height ℎ� filled with unstirred liquid (Note that ℎ� = ℎ� ). An assumption is made thatthe expected 
diffusion is in an axial direction. The cross-section of 
the set-up is shown in Figs. 1 and 2. 
 

 
 
Fig. 1: The 2D geometry of a disc device in a 

cylindrical container. 
 
 We firstconsider the case of 2D disc geometry. 
However, for simplicity, we consider a one 
dimensional space where � = 0 refers to the centre 
of the hydrogel;� = �(	) refers to the boundary of 
the hydrogel moving with respect to time;and � = �� 
shows the boundary of the container.  
 

 
Fig. 2: Geometry of disc device in the form of 1D. 
 
Mathematical Formulation: 
 In order to develop a suitable mathematical 
model for this problem, we consider two 
regions:region 1 and region 2. Region 1 refers tothe 
region inside the hydrogel device (0 < � <�(	));while region 2 refers tothe region between the 

hydrogel surface to the boundary of the container 
(�(	) < 	 < ��). In region 1, we assume the release 
mechanism is swelling-controlled. On the other hand, 
the release mechanism is assumed to be diffusion-
controlled in region 2.  
 
Swelling-controlled model: 
 In region 1, the drug diffuses out of the domain 
at the boundaries, and may swell as fluids are 
absorbed. The situation can be expressed in terms of 
an advection-diffusion equation, as follows: 
��
� = �� ���

�� − ��
� � − �� �

� 0 < � <
�(	), 	 > 0 

(1) 

����� (0, 	) = 0 
(2) 

��(�(	), 	) = ��(�(	), 	) (3) ��(�, 0) = 1,   0 < � < �(	) (4) 
 where��(�, 	) is the concentration inside the 
hydrogel with ��as the constant diffusion coefficient, 
��
�  is the local rate of change of concentration over 

time, 
���
��  represents the diffusion of the 

concentration, 
��
� � is the dilution term, and �� �

� is 

due to local volume change. For the initial condition, 
the concentration is uniform in the device, and zero 
in the liquid. 
 
Diffusion-controlled model:  
 In region 2, the release mechanism is governed 
by the following equation: 
��
� = �� ���

��  �(	) < � < �� , 	 > 0           (5) 

��(�(	), 	) = ��(�(	), 	)                          (6) 
��
� (�� , 	) = 0               (7) 

��(�, 0) = 0,   �(	) < � < ��           (8) 
 where��(�, 	) is the concentration outside the 
hydrogel with ��as the constant diffusion coefficient. 
 
Methodology: 
Variable Transformation: 
 For the mathematical model in region 1, a 
Landau transformation will be used in order to 
remove the advection term. However, for this 
particular mathematical model, this transformation 
only takes place after the steady state solution (which 
will be introduced in the next section of this paper) is 
applied to this model. The Landau transformation is 
defined by:  
� = �

�(�),  � = 	 

 According to Bierbrauer, when the Landau 
transformation is applied, Equation (1) then 
becomes: 
�
 = !

��
��
"� − �#

� � ,      0 < � < 1, � > 0.          (9) 

 For region 2, the domain for the mathematical 
model will be changed by using the following 
transformation: 

�̅ = �&�(�)
�'&�(�), � = 	. 
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 The new domain is now 0 < �̅ < 1, � > 0. By 
using chain rule, we have ����	  

= �����̅
��̅
��

��
�	 + �����

��
�	 

= �����̅
�#

(�� − �(	)) + �����  

where �# = �
�  

�����  

= �����̅
��̅
�� = �����̅

1
(�� − �(	)) 

�������  

= �
�� (����� ) 

= �
�� (�����̅

��̅
��) 

= �
��

�����̅
1

(�� − �(	)) 

= 1
(�� − �(	))

�
��

�����̅  

= �
(�'&�(�))�

���
�� . 

 This equation is then been substituted to 
Equation 5 to have 
��
 = �� �

(�'&�(�))�
���
�� − �#

(�'&�(�)
��
�̅ . 

 Whereas, the no flux boundary condition (7) 

becomes 
�

(�'&�(�))
��
�̅ (1, �) = 0.Since

�
(�'&�(�)) ≠ 0, 

we can simply put the boundary condition as 
��
�̅ (1, �) = 0. 
 Then, Equations 5-8are changed into a new 
system of equations, as follows:  
��
 = �� �

(�'&�(�))�
���
�̅� − �#

�'&�(�)
��
�̅        0 < �̅ <

1, � > 0           (10) ��(0, �) = ��(0, �)         (11) ��
�̅ (1, �) = 0          (12) 

��(�̅, 0) = 0, 0 < �̅ < 1.        (13) 
 
Steady-state solution: 
 Most of the mathematical models related to the 
drug release mechanism in previous studiescome 
with a homogeneous boundary condition. However, 
in the present research, we encounter the 
nonhomogeneous moving boundary condition in the 
mathematical models.The steady state solution is 
applied to both the swelling-controlled model and the 
diffusion controlled model in order to transform the 
nonhomogeneous moving boundary condition to a 
homogeneous boundary condition. In this solution, 
we first assume that it will be written as a 
combination of steady state and transient solution.  �(�, 	) = *(�) + +(�, 	) 
 where*(�) is the steady state solution which is 
independent oft, and +(�, 	) is the transient solution 

which varies with t. We note the fact that it is a 
function of � alone, yet it must satisfy the heat 
equation. Since *�� = *′′ and *� = 0, substituting 
into the heat equation gives ,�*�� = 0.After 
dividingboth sides by ,� and integratingtwice with 
respect to �, we found that *(�) = -� + .. 
We then rewrite the boundary condition in terms of *: �(0, 	) = *(0) = 0₁, and �(2, 	) = *(2) = 0₂. 
The two conditions are applied to obtain the 
following: *(0) = 0� = -(0) + . = .  →. = 0� *(2) = 0� = -2 + . = -2 + 0� →- =

(4�&4�)
5 . 

 Therefore, the steady state solution is *(�) =4�&4�
5 + 0�.  

 We can then set aside the steady state solution 
and proceed to find the transient solution +(�, 	). 
First, we rewrite the initial-boundary value problem. 
In order to do so, we subtract out *(�) from the 
initial and boundary values. Since�(�, 	) = *(�) ++(�, 	), the results will be the conditions that the 
transient solution +(�, 	) alone must satisfy.  
 
Changingthe boundary conditions results in: �(0, 	) = 0� = *(0) + +(0, 	) 
→+(0, 	) = 0� − *(0) = 0 �(2, 	) = 0� = *(2) + +(2, 	) 
→+(2, 	) = 0� − *(2) = 0 
 
Changingthe initial condition results in: �(�, 0) = 6(�) = *(�) + +(�, 0) 
→ +(�, 0) = 6(�) − *(�) 
 

RESULTS AND DISCUSSION 
 
 We know that from steady state solution, the 
solution can be expressed as *(�) = -(�) + ., and 
it’s derivative would be * ′(�) = -. From the 
boundary conditions (2) and (3), we have: ����� (0, 	) = * ′(0) = 0 

��(�(	), 	) = *7�(	)8 = ��(�(	), 	) 
* ′(0) = 0 = - *7�(	)8 = -7�(	)8 + . = ��(�(	), 	) 
 Therefore, our steady state solution is: *(�) = 0� + ��(�(	), 	). 
 Since �(�, 	) = *(�) + +(�, 	), we may rewrite 
the boundary condition as follows: ����� (0, 	) = 0 = * ′(0) + +�′(0, 	) 

��(�(	), 	) = ��(�(	), 	) = *7�(	)8 + +�(�(	), 	) 
 Then the new boundary conditions are obtained: +� ′(0, 	) = 0 − * ′(0) = 0 



28                                              MuhamadHakimi Saudi and ShalelaMohdMahali, 2016 
Australian Journal of Basic and Applied Sciences, 10(7) Special 2016, Pages: 25-29 

+�(�(	), 	) = ��(�(	), 	) − *7�(	)8 = 0 
After that, the new initial condition is changed by 
subtracting the steady state solution *(�) from the 
original value of initial condition. ��(�, 0) = 1 = *(�) + +�(�, 0) +�(�, 0) = 1 − ��(�(	), 	). 
Therefore, equations(1)-(4), are transformed to the 
new system of equations: 
9�

� = �� �9�
�� − 9�

� � − +� �
�  

0 < � < �(	), 	 > 0 

(14) 

�+��� (0, 	) = 0 
(15) 

+�(�(	), 	) = 0 (16) +�(�, 0) = 1 − ��(�(	), 	),                        0 < � < �(	) 
(17) 

 By using Landau transformation, the advection 
term is removed so that the system (14)-(17) is now, 
9�
 = !

��
�9�
"� − �#

�
9�
" ,     0 < � < 1, 	 > 0        (18) 

9�
" (0, �) = 0                         (19) 

+�(1, �) = 0          (20) +�(�, 0) = 1 − ��(1, �), 0 < � < 1        (21) 
 After obtaining the homogenous boundary 
condition, we proceed to find the analytical solution 
for this problem. We may refer and compare the 
analytical solution to previous studies. In Bierbrauer 
[3], the boundary concentration is assumed to be a 
sink condition, to obtain the following: 
�
� = � ²�

�²
− � �

� − � �
� 0 < � < �(	), 	 >

0 

(22) 

�(�, 0) = 1  0 < � < �(0) (23) �(0) = 2 (24) �
� (0, 	) = 0  	 > 0 

�(�(	), 	) = 0 

(25) 

 with the final solution expressed as: �(�, 	)
= 4

; <
(−1)=2

(2? + 1)�(	) cos C(2? + 1);�
2�(	) D

E&!((�FG�)H
� )² J �(�K)L���KMN

O

=PQ
 

 For a diffusion-controlled model, the same 
steady state method is applied to equation (10)-(13) 
to reduce the nonhomogeneous moving boundary 
condition to homogeneous boundary condition. Since *(�) = -(�) + .and *R(�) = -, we would have the 
following: ��(0, �) = *(0) = ��(0, �) �����̅ (1, �) = *R(1) = 0 

 The following equation gives us the value of A 
and B. *(0) = ��(0, �) = -(0) + . *R(1) = 0 = - 
where- = 0 and . = ��(0, �). 
 Hence, the steady state solution would be: *(�) = 0� + ��(0, �). 

 Before we proceed to find the transient part +(�, 	), we first need to rewrite the boundary 
condition. ��(0, �) = ��(0, �) = *(0) + +�(0, �) �����̅ (1, �) = 0 = *R(1) + +�′(1, �) 

 The new boundary condition are obtained after *(�) is subtracted. +�(0, �) = ��(0, �) − *(0) = 0 +�′(1, �) = 0 − *R(1) = 0. 
 The new initial condition is obtained by 
applying the same step. *(�)is subtracted from the 
original value of initial condition. ��(�̅, 0) = 0 = *(�) + +�(�̅, 0) +�(�̅, 0) = 0 − ��(0, �). 
 Hence, the new system of equation for diffusion-
controlled model would be as the following: �+��� = ��

1
(�� − �(	))�

��+���̅� − �#
�� − �(	)

�+���̅  

 0 < �̅ < 1, � > 0  
         (26) +�(0, �) = 0          (27) 
9�
�̅ (1, �) = 0         (28) 

+�(�̅, 0) = 0 − ��(0, �)  0 < �̅ < 1.          (29) 
 As for comparison for a further analytical 
solution for this model, we refer to the analytical 
solution todiffusion-controlled drug releasefound in 
Wang and Lou. The model is presented in polar 
coordinates, with a homogeneous boundary 
condition.  

T(U,�)
� = � V�T(U,�)

U� + �
U

T(U,�)
U W, 

 0 < X < X₂, 	 > 0 
 

T7U�,�8
U = 0, 	 > 0 

Y(X, 0) =   ZQ [�⁄ ,   0 < X < X�0,   X� < X < X�  

  
which has the following solution: 

Y(X, 	) = ZQ]�
[� + 

�^N_
`a ∑ c�(_dF)

dFcN� eQ(fFg
g� )hLifF� M/g��

O=PQ , 

whereZQ is the initial loading and [� is the volume 
of the device.  
 
 
Conclusion 
 The swelling-controlled and diffusion-controlled 
processeshavebeen represented by the advection-
diffusion equation and the diffusion equation, 
respectively, with a nonhomogeneous moving 
boundary condition.  The analytical solutions from 
the proposed mathematical models will be further 
developed in the next phase of this study. Thiswill be 
suitable for the swelling hydrogel problem. In other 
words, it can be used to estimate the effective 
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diffusion coefficient of a drug from a delivery device 
with a 2D disc geometry, to an external finite 
volume,as well as for similar cases.  
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