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Abstract 

 

The basis idea of double bootstrap is using iteration procedure in the set sample of 

first bootstrap. The iteration seems to consume a period of time in completing all 

steps of double bootstrap algorithm and could delaying interested estimation such 

as accuracy estimation. To overcome this problem, an alternative of double 

bootstrap is proposed in this research. Instead of using iteration, generally, the 

procedure is to repeat the whole algorithm of single bootstrap in resulting a 

sample of double bootstrap. In terms of accuracy, this research constructs two 

double bootstrap intervals and estimates the coverage rate and its length.  The 

procedure of double bootstrap and its accuracy estimation apply in simulation 

study. The result shows double bootstrap intervals have the same coverage with 

nominal rate and gives shorter length when comparing with single bootstrap 

intervals. Thus, the proposed double bootstrap has given an accuracy estimation 

and not complex to be used in simulation study.  
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1 Introduction 
 

   The discussion on double bootstrap has become an interesting research either 

in parametric or nonparametric bootstrap. The aim for this discussion is to find a 

better result on solving the uncertainty estimation and provide more accuracy 

estimation when involving the used of either small or finite sample data. In terms 

of accuracy, the double bootstrap is widely used to estimate the one-sided and 

two-sided confidence interval, see for example [1], [2], [3] and [4]. These 

previous researches successfully increased the accuracy of interval estimation, 

where implementing the double bootstrap statistically proven to decrease the error 

from a factor of order n-2 to order n-1. It was proven either in theoretical and 

simulation study, see for example [5], [6], and [7].            

   Even though the previous discussion on double bootstrap gave a high impact, 

it seems that the procedure of implementing this method required a difficult and 

excessive calculation. The conventional double bootstrap procedure is used the 

iteration method where generally the second bootstrap replication is made at each 

replication sets of first, more likely, single bootstrap [4], [7] and [8]. This 

procedure is quite easy to perform if the single bootstrap replication number is 

small but the major problem happen if the replication is a greater value. When it 

happens, the procedure requires a long term period to perform the algorithm and 

takes time to estimate the accuracy estimation, such as two-sided confidence 

interval. To overcome this problem, an alternative algorithm of double bootstrap 

proposes in this research, where the aim is to show an easier procedure of double 

bootstrap method and to prove the accuracy of confidence interval using the 

constructed algorithm of double bootstrap intervals.  

This paper set out with some sections. Section 1 is for the brief introduction 

of an alternative double bootstrap and its application on confidence interval is 

discussed in Section 2. By considering an example of Exponentially Weighted 

Moving Average (EWMA) model, the corresponding algorithms of accuracy 

estimation are detailed in Section 3. By using Monte Carlo simulation study, a 

complete statistical evaluations are made and its detailed in Section 4. The 

concluding and some discussions are compiled in Section 5.    

 

2 The Double Bootstrap Confidence Intervals 
 

   Consider an observation on a sample X from a population with cdf F and 

obtain )%21(100  two-sided confidence interval estimators for a 

parameter )(Xh  and its estimator̂ . For the bootstrap, two samples bootstrap 

are obtained from replicating procedure of standard error. First procedure is to 

replicate standard error of X to obtain a single bootstrap sample, X* , and second 

procedure is to replicate the standard error of X* to obtain a double bootstrap 

sample denote as X**. Both of bootstrap sample are used to estimated the 

corresponding estimator, 
*̂ and )(ˆ ***** XXXh  .  
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   In this research, two bootstrap-base confidence intervals are proposed which 

are standard and bootstrap intervals. The confidence interval for double bootstrap 

Studentized is given:      

 

 )ˆ(ˆˆ),ˆ(ˆˆ **********
1

**   ttI BBt
   (1) 

 

where   5.02****** )1()ˆ()ˆ(ˆ   nn . Meanwhile, the confidence interval 

for double bootstrap Bias Corrected and accelerated (BCa) is given by: 

 

 **
1

** ˆ,ˆ
  BBBCa

I  (2) 

 

Consider the Studentised double bootstrap interval given in Equation (1), then the 

probability of coverage can be given by: 

  

      )ˆ(ˆˆˆ)ˆ(ˆˆ ************
1

** ttP  (3) 

 

3 Algorithms on Estimating the Accuracy of Double Bootstrap 

Intervals  
 

   The construction of intervals from previous section requires BB sets of double 

bootstrap replication from the first bootstrapping sample of standard error. 

Suppose the replication, BB = 1500, then from the previous discussion section, the 

require intervals are 1500
tI and 1500

BCaI  for two-sided double bootstrap confidence 

interval. Consider 90% confidence interval, then, for example Studentised, the 

value of **̂  less than or equal to upper limit of **
25.0t . The accuracy of these 

two-sided double bootstrap intervals are likely to be increase if the length of 

Studentised and BCa interval are estimated. The basis of difference between upper 

and lower limit is to obtain a shorter length of an interval, and statistically gives 

the accuracy of estimation. 

   To obtain useful numerical illustration of bootstrapping procedure, an example 

of interest model, i.e. EWMA and its residual are considered in this research. The 

aim of using the example model is to apply and construct the two-sided bootstrap 

interval of EWMA model. The approach of bootstrap method onto the EWMA 

model is used in two algorithms shown below. 

Algorithm 1: Probability of coverage rates 

Step 1 :Generate a sample of n1 size randomly from, for example, normal 

distribution. Estimate the EWMA model,   11  iii WxW  , where 

1,...,2,1 ni   

Step 2 :Estimate the residual model of EWMA, 1 iii Wxe  

Step 3 :Set the single bootstrap replication number, B. Sampling the estimation 

data of ei randomly with replacement. 
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Step 4 :Calculate the b
ix , where Bb ,...,2,1  by rearranging the residual 

equation. Average the row matrix of every b
ix  and denote the sample of 

single bootstrap is 
*

ix .  

Step 5 :Estimate EWMA model,
*

iW  and its residual, 
*

ie
 

Step 6 :Set the double bootstrap replication number, BB and sample the 

estimation of 
*

ie
 
randomly with replacement. 

Step 7 :Follow Step 4 and denote the double bootstrap sample is 
**

ie  

Step 8 :Set the confidence interval rate. Calculate the ** and )(ˆ **  

Step 9 :Estimate the upper and lower limit for two-sided BCa  and Studentised 

interval for double bootstrap. Calculate the coverage rate for both 

intervals 

Step 10 :Repeat this algorithm by setting N times repetition 

 

Algorithm 2: Length of two-sided double bootstrap intervals 

Step 1 :Generate a n2 sample size randomly and estimate the EWMA model  

and its residual. 

Step 2 :Follow Step 3 – Step 7 of Algorithm 1. 

Step 3 :Set the confidence level and  , for example 90% and 05.0 . 

Estimate the upper and lower limit of BCa interval. Find the length of 

this interval. 

Step 4 :Repeat Step 4 for Studentised interval. 

 

4 Monte Carlo Simulation 
 

   The Algorithm 1 and Algorithm 2 are considered to be implementing in 

simulation study. Consider a sample size n1 = 30 and N = 10 000 repetition for 

Algorithm 1. Meanwhile, for Algorithm 2, three sample sizes are used, n2 = 30, 60, 

200. Consider a Gaussian distribution, ),( 2N  generate randomly for both 

algorithms. In case of accuracy performance of two-sided single and double 

bootstrap intervals, consider confidence interval for mean is estimated by using 

two nominal coverages, i.e. 90% and 95%. The performance of accuracy 

estimation due to the use of Algorithm 1 and Algorithm 2 are shown in Table 1 

and Table 3 respectively. 

Table 1. Empirical Coverage Rates of Bootstrap Intervals 

Interval 
90% 95% 

Single  Double  Single  Double  

EWMA-BCa 0.90 0.90 0.95 0.95 

EWMA-Studentised 0.64 0.88 0.65 0.93 
Result obtained from N=10 000 replication with B = 1000 and BB = 1500 are single and double bootstrap 

replication respectively. 
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Table 1 shows the empirical coverage rates of single and double bootstrap 

intervals. The single and double BCa bootstrap intervals have empirical coverage 

rate equal to nominal coverage rates, i.e. 0.90 and 0.95. For the coverage rate of 

single and double Studentised bootstrap confidence interval are 0.64 and 0.88 for 

nominal coverage 90%. Meanwhile, for 95% coverage, the estimation of 

Studentised intervals are 0.65 and 0.90 for single and double bootstrap 

respectively. The double bootstrap estimation appears to be approximately 

approach to the both nominal rates, whereas single bootstrap is statistically 

different from nominal rates of 0.90 and 0.95. This result is similar to [9] study, 

where the coverage rate value of double bootstrap is more approaching to nominal 

rate and in terms of performance, i.e. for comparison, its found that bootstrap 

interval method gives a better performance compare to Studentised. For a better 

conclusive result of estimation in Table 1, a calculation of under-coverage 

percentage is made and can be further refer to Table 2. An interesting result 

showed that the double bootstrap interval only given 2.05 (90%) and 2.10 (95%) 

whereas a higher percentage given using single bootstrap interval, i.e. 25.25 (90%) 

and 30.20 (95%). 

 

Table 2. Under-coverage Percentage of EWMA-Studentised Intervals 

Nominal  

Coverage 
Singlea Doubleb 

90% 25.52 2.05 

95% 30.20 2.10 
a,bTwo-sided single bootstrap interval.  

 

   Table 3 shows the numerical accuracy of single and double bootstrap intervals, 

where the length is estimated. In both case of confidence level, the length either 

single or double bootstrap, are decreased as n2 increase. For example, 95% 

confidence level for BCa bootstrap intervals, the estimation values are decreased 

from 0.05097 → 0.04130 → 0.03185, and 0.04008 → 0.03285 → 0.02526. Both 

of BCa and Studentised are decreased the length estimation as n2 increase from 30 

→ 60 → 200. As mentioned by [10], theoretical simulation of performance can be 

describe as size sample increased, the estimation of accuracy will going to be 

decreased. Moreover, the interesting part of this result is that, BCa interval 

method is given shorten length either in single or double bootstrap. This pattern of 

result was proven by several studies, for example [11], [12] and [13].    

 

Table 3. Empirical Length of Bootstrap Intervals Estimation 

Interval 
Single   Double 

30b 60 200   30 60 200 

(a) 90%a 

   

  

  

  

EWMA-BCa 0.042 0.034 0.026 

 

0.033 0.027 0.021 

EWMA-Studentised 0.574 0.371 0.218 

 

0.532 0.352 0.205 
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Table 3. (Continued): Empirical Length of Bootstrap Intervals Estimation 

 

(b) 95%a 
   

  

   EWMA-BCa 0.050 0.041 0.031 

 

0.040 0.032 0.025 

EWMA- Studentised 0.660 0.432 0.260   0.641 0.421 0.245 
aConfidence level choosen in Algorithm 2. bThe set of sample size, n2. 

 

   However, referring to Table 3, double bootstrap is seen to improve the 

estimation of single bootstrap, which in describing the decreasing factor of order 

that has mentioned by [5]. The lengths of Studentised and BCa are reported to be 

shorter than single bootstrap intervals. For example, n2 = 60 and 90% confidence 

level for Studentised, the double bootstrap is given 0.027 whereas the single 

bootstrap is 0.034. In this case, it might due to the used of smaller standard 

deviation in procedure of estimating double bootstrap confidence intervals. The 

smaller standard deviation is resulted from replication procedure of residual of 

single bootstrap, i.e. refers to Algorithm 2, Step 2. The replication decreased the 

residual onto some small new values which statistically lead to small standard 

deviation estimation.   

  

5 Conclusions  
 

   This research proposed an alternative double bootstrap algorithm using the 

sampling of residual with replacement. This alternative algorithm implemented 

onto constructing two-sided double bootstrap confidence interval, and two 

algorithms of accuracy estimation of interval were conducted. Using Monte Carlo 

simulation study, Algorithm 1 increased the coverage rate of double bootstrap 

intervals and decreased the under-coverage percentage of interval. Furthermore, 

for Algorithm 2, the length of Studentised and BCa intervals were decreased as n2 

increase, and pointed that the lengths were shorter compare to all single bootstrap 

intervals.  
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