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Abstract 

 

This paper presents approximate analytical solutions for chaotic Chen system 

which is a three-dimensional system of ordinary differential equations using 

differential transform method. Comparisons between the fourth-order 

Runge-Kutta (RK4) methods with different time steps were done. It has been 

observed that the accuracy of RK4 solutions can be increased by decreasing the 

time step. Furthermore, the numerical results are compared to those obtained by 

the Runge-Kutta method to illustrate the preciseness and effectiveness of the 

proposed method.  
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1 Introduction 
 

Scientists who deal with nonlinear dynamical systems cannot elude the experience 

of chaos, an advanced field of mathematics that involves the study of dynamical 

systems. Many scientists have struggled to find analytical solutions for these 

chaotic systems. Such tasks always meet with a stumbling block due to its 

complexities. The accuracies on its long term solutions are sometimes questionable 

although the numerical methods are available to provide approximate solutions. To 
overcome this problem, there is a method called the differential transformation method 
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(DTM). DTM was introduced by Zhou [15], who solved linear and nonlinear initial 

value problems in electric circuit analysis. DTM was applied to solve many 

solution of linear and nonlinear differential equation. For example, Al-Sawalha and 

Noorani [1] have applied this method to solve Lorenz system. Chen and Liu [3] also 

applied this method to solve two boundary value problems. Besides that, Yu and 

Chen [14] apply the differential transformation method to the optimization of the 

rectangular fins with variable thermal parameters.  

Differential transformation method is a semi-analytical solution in the form of 

a polynomial which is different from the traditionally high-ordered Taylor series 

method. The Taylor series method will consume long computational time for large 

orders since it requires symbolic computation of the necessary derivatives of the 

data functions. The differential transform method is an iterative procedure that is 

described by the transformed equations of original functions for solution of 

differential equations. With this method, it is possible to obtain highly accurate 

results or exact solutions for differential equations.  

When dealing with nonlinear systems of ordinary differential equations, such 

as the Chen system, it is often difficult to obtain a closed form of the analytic 

solution. In the absence of such a solution, the accuracy of the DTM method is 

then tested against classical numerical methods, such as the Runge–Kutta method 

(RK4). RK4 has been widely and commonly used for simulating solutions for 

chaotic systems [7, 13, 8, 9]. The Chen system can exhibit both chaotic and 

non-chaotic behavior for distinct parameter values. A similar implementation and 

analysis was done by Hussain and Salleh [6] by using continuous Galerkin Petrov 

time discretization scheme for the solutions of the Chen system. As such, the 

objective of this paper is essentially two fold. First, we shall give a comparison in 

the case of a fixed time step between the DTM and RK4 for the solution of the 

chaotic Chen system. Secondly, we look into the effect of time steps on the 

accuracy of the DTM as the Chen system transform from a non-chaotic system to 

a chaotic one. 

 

2 Differential Transformation Method 
 

The basic definitions of differential transformation are introduced as follows: 

Let 𝒙(𝒕) be analytic in a domain 𝐃 and let 𝒕 = 𝒕𝒊 represent any point in 𝐃. 

The function 𝒙(𝒕) is then represented by one power series whose center is 

located at 𝒕𝒊. The Taylor series expansion function of 𝒙(𝒕) is of the form: 

 

 𝑥(𝑡) = ∑
(𝑡−𝑡𝑖)𝑘

𝑘!

∞
𝑘=0  [

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=𝑡𝑖

 ∀ 𝑡 ∈ 𝐃.           (1) 

 

The particular case of Eq. (1) when 𝑡𝑖 = 0 is referred to as the Maclaurin series 

of 𝑥(𝑡) and is expressed as: 

 

𝑥(𝑡) = ∑
𝑡𝑘

𝑘!

∞
𝑘=0  [

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=0

 ∀ 𝑡 ∈ 𝐃.               (2) 
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Put 

 𝜑(𝑡, 𝑘) =
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘  ∀ 𝑡 ∈ 𝐃.                     (3) 

 

For 𝑡 = 𝑡𝑖 then 𝜑(𝑡, 𝑘) = 𝜑(𝑡𝑖, 𝑘), where 𝑘 belongs to a set of non-negative 

integers, denoted as the 𝐾 domain. Thus, (3) can be written as 

 

 𝑋(𝑘) = 𝜑(𝑡𝑖, 𝑘) = [
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=𝑡𝑖

,              (4) 

 

where 𝑋(𝑘) is called the spectrum of 𝑥(𝑡) at 𝑡 = 𝑡𝑖. 

If 𝑥(𝑡) can be expressed by Taylor series then 𝑥(𝑡) can be represented as 

 𝑥(𝑡) = ∑
(𝑡−𝑡𝑖)𝑘

𝑘!

∞
𝑘=0 𝑋(𝑘).                   (5) 

 

Eq. (5) is called the inverse transformation of 𝑋(𝑘). Using the symbol “𝐷” 

denoting the differential transformation process and combining (4) and (5), it is 

obtained that 

 𝑥(𝑡) = ∑
(𝑡−𝑡𝑖)𝑘

𝑘!

∞
𝑘=0 𝑋(𝑘) ≡ 𝐷−1{𝑋(𝑘)},           (6) 

or 

𝐷[𝑥(𝑡)] ≡ 𝑋(𝑘). 
 

From Zhou [15], the differential transform of function 𝑥(𝑡) is defined as: 

 𝑋(𝑘) =
𝐻𝑘

𝑘!
[

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=0

 , 𝑘 = 0, 1, 2, …              (7) 

 

where 𝑋(𝑘) represents the transformed function (T-function) and 𝑥(𝑡) is the 

original function. The differential spectrum of 𝑋(𝑘)  is confined within the 

interval 𝑡 ∈ [0, 𝐻], where 𝐻 is a constant which is the time horizon of interest. 

The differential inverse transform of 𝑋(𝑘) is defined as follows: 

 𝑥(𝑡) = ∑ (
𝑡

𝐻
)

𝑘
∞
𝑘=0 𝑋(𝑘).                (8) 

Eq. (8) can be obtained as follows: 

Form Eq. (2), we know that 𝑥(𝑡) = ∑
𝑡𝑘

𝑘!

∞
𝑘=0  [

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=0

. Then expand it, we get 

 𝑥(𝑡) =  
𝑡0

0!
[

𝑑0𝑥(𝑡)

𝑑𝑡0 ]
𝑡=0

+
𝑡1

1!
[

𝑑1𝑥(𝑡)

𝑑𝑡1 ]
𝑡=0

+
𝑡2

2!
[

𝑑2𝑥(𝑡)

𝑑𝑡2 ]
𝑡=0

+
𝑡3

3!
[

𝑑3𝑥(𝑡)

𝑑𝑡3 ]
𝑡=0

+ ⋯.  (9) 

From Eq. (7), we get  

𝑋(0) =  
𝐻0

0!
[

𝑑0𝑥(𝑡)

𝑑𝑡0 ]
𝑡=0

, 

𝑋(1) =  
𝐻1

1!
[

𝑑1𝑥(𝑡)

𝑑𝑡1
]

𝑡=0
, 

𝑋(2) =  
𝐻2

2!
[

𝑑2𝑥(𝑡)

𝑑𝑡2 ]
𝑡=0

, 

𝑋(3) =  
𝐻3

3!
[

𝑑3𝑥(𝑡)

𝑑𝑡3 ]
𝑡=0

, 

⋮ 
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The first term in Eq. (9) is 

 
𝑡0

0!
[

𝑑0𝑥(𝑡)

𝑑𝑡0 ]
𝑡=0

=
𝑡0

𝐻𝑂 [
𝐻0

0!
[

𝑑0𝑥(𝑡)

𝑑𝑡0 ]
𝑡=0

]. 

 

Proceeding in a similar manner, we can obtain second term, third term and so on. 

Therefore, Eq. (9) becomes 

 𝑥(𝑡) =  
𝑡0

𝐻𝑂 [
𝐻0

0!
[

𝑑0𝑥(𝑡)

𝑑𝑡0 ]
𝑡=0

] +
𝑡1

𝐻1 [
𝐻1

1!
[

𝑑1𝑥(𝑡)

𝑑𝑡1 ]
𝑡=0

] +
𝑡2

𝐻2 [
𝐻2

2!
[

𝑑2𝑥(𝑡)

𝑑𝑡2 ]
𝑡=0

] +

                         
𝑡3

𝐻3 [
𝐻3

3!
[

𝑑3𝑥(𝑡)

𝑑𝑡3 ]
𝑡=0

] + ⋯. 

 

Because 𝑋(𝑘) =
𝐻𝑘

𝑘!
[

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘 ]
𝑡=0

, then  

𝑥(𝑡) =  
𝑡0

𝐻𝑂 𝑋(0) +
𝑡1

𝐻1 𝑋(1) +
𝑡2

𝐻2 𝑋(2) +
𝑡3

𝐻3 𝑋(3) + ⋯. 

Hence, 

𝑥(𝑡) = ∑ (
𝑡

𝐻
)

𝑘
∞
𝑘=0 𝑋(𝑘).  ∎ 

 

It is clear that the concept of differential transformation is based upon the 

Taylor series expansion. The original functions are denoted by lowercase letters, 

while their transformed functions (i.e., their T-functions) are indicated by the 

corresponding uppercase letter. The values of function 𝑋(𝑘)  at values of 

argument 𝑘 are referred to as discretes, i.e., 𝑋(0) is known as the zero discrete, 

𝑋(1) as the first discrete etc. The more discretes available, the more precise it is 

possible to restore the unknown function. The function 𝑥(𝑡) consists of the 

T-function 𝑋(𝑘), and its value is given by the sum of the T-function with (
𝑡

𝐻
)

𝑘

 

as its coefficient. 

Using the differential transformation, a differential equation in the time 

domain can be transformed to be an algebraic equation in the 𝐾 domain and 

𝑥(𝑡) can be obtained by finite-term Taylor series plus a remainder, as Eq. (2) 

 

 𝑥(𝑡) = ∑
𝑡𝑘

𝑘!

𝑛
𝑘=0 𝑋(𝑘)  + 𝑅𝑛+1(𝑡),          (10) 

where 

𝑅𝑛+1(𝑡) = ∑
𝑡𝑘

𝑘!

∞
𝑘=𝑛+1 𝑋(𝑘), 

 

and 𝑅𝑛+1(𝑡) → 0, as 𝑛 + 1 → ∞ within the time interval of interest, say 𝑡 ∈
[0, 𝐻]. If 𝑅𝑛+1(𝑡) is small enough, then 𝑥(𝑡) can be represented by finite terms. 

Therefore, the function 𝑥(𝑡) is expressed by a finite series and Eq. (8) can be 

written as: 

 𝑥(𝑡) = ∑ (
𝑡

𝐻
)

𝑘
𝑛
𝑘=0 𝑋(𝑘)            (11) 
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Eq. (11) implies that the value of ∑ (
𝑡

𝐻
)

𝑘
∞
𝑘=𝑛+1 𝑋(𝑘) is negligible. Usually, the 

value of 𝑛 are decided by a convergence of series coefficient. 

There are four operation properties of differential transformation have been 

used in this paper. Let us consider ℎ(𝑡), 𝑓(𝑡) and 𝑔(𝑡) are three uncorrelated 

functions with time 𝑡 and 𝐻(𝑘), 𝐹(𝑘), 𝐺(𝑘) are the transformed functions 

corresponding to ℎ(𝑡) , 𝑓(𝑡) , 𝑔(𝑡) , respectively. Let 𝜆 ∈ ℝ , the following 

theorem that can be deduced from Eqs. (7) and (8) are given below [8].  

 

Theorem 2.1. If ℎ(𝑡) = 𝑓(𝑡) ± 𝑔(𝑡), then 𝐻(𝑘) = 𝐹(𝑘) ± 𝐺(𝑘). 

 

Proof. Suppose that ℎ(𝑡) = 𝑓(𝑡) ± 𝑔(𝑡). Then 

𝐷[ℎ(𝑡)] = 𝐷[𝑓(𝑡)] ± 𝐷[𝑔(𝑡)]. 
 

Since 𝐷[ℎ(𝑡)] = 𝐻(𝑘), 𝐷[𝑓(𝑡)] = 𝐹(𝑘), and 𝐷[𝑔(𝑡)] = 𝐺(𝑘), hence   

𝐻(𝑘) = 𝐹(𝑘) ± 𝐺(𝑘). ∎   

 

Theorem 2.2. If ℎ(𝑡) = 𝜆𝑓(𝑡), then 𝐻(𝑘) = 𝜆𝐹(𝑘), where 𝜆 is a constant. 

 

Proof. Suppose that ℎ(𝑡) = 𝜆𝑓(𝑡). Then 

𝐷[ℎ(𝑡)] = 𝐷[𝜆𝑓(𝑡)] = 𝜆𝐷[𝑓(𝑡)]. 
 

Because 𝐷[ℎ(𝑡)] = 𝐻(𝑘) and 𝐷[𝑓(𝑡)] = 𝐹(𝑘), hence 

𝐻(𝑘) = 𝜆𝐹(𝑘). ∎ 

 

Theorem 2.3. If ℎ(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
, then 𝐻(𝑘) =

𝑘+1

𝐻
𝐹(𝑘 + 1). 

 

Proof. Suppose that ℎ(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
. Then  

𝐷[ℎ(𝑡)] = 𝐷[
𝑑𝑓(𝑡)

𝑑𝑡
]. 

We have from Eq. (7), 

𝐻(𝑘) =
𝐻𝑘

𝑘!
[

𝑑𝑘

𝑑𝑡𝑘
ℎ(𝑡)]

𝑡=0
. 

Since ℎ(𝑡) =
𝑑𝑓(𝑡)

𝑑𝑡
, then 

𝐻(𝑘) =
𝐻𝑘

𝑘!
[

𝑑𝑘

𝑑𝑡𝑘

𝑑𝑓(𝑡)

𝑑𝑡
]

𝑡=0
. 

 

Next, multiply the numerator and denominator by 𝐻 and 𝑘 + 1, we get 

 

𝐻(𝑘) =
𝐻𝑘+1(𝑘+1)

𝐻(𝑘+1)!
[

𝑑𝑘+1𝑓(𝑡)

𝑑𝑡𝑘+1 ]
𝑡=0

=
𝑘+1

𝐻
[

𝐻𝑘+1

(𝑘+1)!
[

𝑑𝑘+1𝑓(𝑡)

𝑑𝑡𝑘+1 ]
𝑡=0

]. 

 

From Eq. (7), we know that 

𝐹(𝑘 + 1) =
𝐻𝑘+1

(𝑘+1)!
[

𝑑𝑘+1𝑓(𝑡)

𝑑𝑡𝑘+1 ]
𝑡=0

. 
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Hence, 

𝐻(𝑘) =
𝑘+1

𝐻
𝐹(𝑘 + 1).  ∎ 

 

 

Theorem 2.4. If ℎ(𝑡) = 𝑓(𝑡)𝑔(𝑡), then 𝐻(𝑘) = ∑ 𝐹(𝑙)𝐺(𝑘 − 𝑙)𝑘
𝑙=0 . 

 

Proof. Suppose that ℎ(𝑡) = 𝑓(𝑡)𝑔(𝑡). From Eq. (8), we get 

 

ℎ(𝑡) = [∑ (
𝑡

𝐻
)

𝑘

𝐹(𝑘)∞
𝑘=0 ] [∑ (

𝑡

𝐻
)

𝑘

𝐺(𝑘)∞
𝑘=0 ]. 

Then, 

ℎ(𝑡) = [𝐹(0) +
𝑡

𝐻
𝐹(1) + (

𝑡

𝐻
)

2

𝐹(2) + ⋯ ] [𝐺(0) +
𝑡

𝐻
𝐺(1) + (

𝑡

𝐻
)

2

𝐺(2) + ⋯ ]. 

 

Then expand it, we get 

ℎ(𝑡) = 𝐹(0)𝐺(0) + (
𝑡

𝐻
) [𝐹(0)𝐺(1) + 𝐹(1)𝐺(0)] + (

𝑡

𝐻
)

2
[𝐹(0)𝐺(2) +

𝐹(1)𝐺(1) + 𝐹(2)𝐺(0)] + ⋯. 

 

Hence, 

ℎ(𝑡) = ∑ (
𝑡

𝐻
)

𝑘
∑ 𝐹(𝑙)𝐺(𝑘 − 𝑙)𝑘

𝑙=0
∞
𝑘=0 . 

 

From Eq. (8), we know that 

ℎ(𝑡) = ∑ (
𝑡

𝐻
)

𝑘
∞
𝑘=0 𝐻(𝑘). 

Therefore, 

𝐻(𝑘) = ∑ 𝐹(𝑙)𝐺(𝑘 − 𝑙)𝑘
𝑙=0 . ∎ 

 

3 Chen System 
 

The Chen dynamical system, first found by Chen and Ueta [4], is defined as: 

 
𝑑𝑥

𝑑𝑡
= 𝑎(𝑦 − 𝑥) ,                 (12) 

 

 
𝑑𝑦

𝑑𝑡
= (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦,             (13) 

 

 
𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧.                  (14) 

 

where 𝑥, 𝑦 and 𝑧 are state variables and parameters 𝑎, 𝑏 and 𝑐 are positive 

real numbers. Bifurcation studies shows that with the parameters 𝑎 = 35 and 

𝑐 = 28 and 𝑏 = 12, system (12)-(14) exhibits non-chaotic behaviour while for 

parameters 𝑎 = 35  and 𝑐 = 28  and 𝑏 = 3 , the system exhibits chaotic 

behaviour [11]. For other aspects of this dynamical system, see for example, [13, 

5, 6, 11]. 
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By taking the differential transform of Eqs. (12)-(14) with respect to time 𝑡, 

gives: 

 

 
𝑘+1

𝐻
𝑋(𝑘 + 1) = −𝑎𝑋(𝑘) + 𝑎𝑌(𝑘),                   (15) 

 

 
𝑘+1

𝐻
𝑌(𝑘 + 1) = (𝑐 − 𝑎)𝑋(𝑘) − ∑ 𝑋(𝑙)𝑍(𝑘 − 𝑙) + 𝑐𝑌(𝑘)𝑘

𝑙=0 ,      (16) 

 

 
𝑘+1

𝐻
𝑍(𝑘 + 1) = ∑ 𝑋(𝑙)𝑌(𝑘 − 𝑙) − 𝑏𝑍(𝑘)𝑘

𝑙=0 .                   (17) 

 

where 𝑋(𝑘) , 𝑌(𝑘) and 𝑍(𝑘) are the differential transformations of the 

corresponding functions 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡), respectively. 

 

Proof Eq. (15): From Eq. (12), 
𝑑𝑥

𝑑𝑡
= 𝑎𝑦 − 𝑎𝑥, and then 

 

𝐷 [
𝑑𝑥

𝑑𝑡
] = 𝐷[𝑎𝑦] − 𝐷[𝑎𝑥]. 

By Theorem 3,  

𝐷 [
𝑑𝑥

𝑑𝑡
] =

𝑘+1

𝐻
𝑋(𝑘 + 1)  

 

and by Theorem 2,  

 

𝐷[𝑎𝑦] = 𝑎𝐷[𝑦] = 𝑎𝑌(𝑘), 𝐷[𝑎𝑥] = 𝑎𝐷[𝑥] = 𝑎𝑋(𝑘). 

Hence, 

     
𝑘+1

𝐻
𝑋(𝑘 + 1) = −𝑎𝑋(𝑘) + 𝑎𝑌(𝑘). ∎ 

 

Proof Eq. (16): From Eq. (13), 
𝑑𝑦

𝑑𝑡
= (𝑐 − 𝑎)𝑥 − 𝑥𝑧 + 𝑐𝑦. Then 

 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥 − 𝑎𝑥 − 𝑥𝑧 + 𝑐𝑦, 

and then 

D[
𝑑𝑦

𝑑𝑡
] = 𝐷[𝑐𝑥] − 𝐷[𝑎𝑥] − 𝐷[𝑥𝑧] + 𝐷[𝑐𝑦]. 

 

By Theorem 3,  

𝐷 [
𝑑𝑦

𝑑𝑡
] =

𝑘+1

𝐻
𝑌(𝑘 + 1), 

and by Theorems 2 and 4,  

𝐷[𝑐𝑥] = 𝑐𝐷[𝑥] = 𝑐𝑋(𝑘), 

𝐷[𝑎𝑥] = 𝑎𝐷[𝑥] = 𝑎𝑋(𝑘), 

𝐷[𝑐𝑦] = 𝑐𝐷[𝑦] = 𝑐𝑌(𝑘), 

  𝐷[𝑥𝑧] = ∑ 𝑋(𝑙)𝑍(𝑘 − 𝑙)𝑘
𝑙=0 . 

Hence, 
𝑘+1

𝐻
𝑌(𝑘 + 1) = 𝑐𝑋(𝑘) − 𝑎𝑋(𝑘) − ∑ 𝑋(𝑙)𝑍(𝑘 − 𝑙) + 𝑐𝑌(𝑘)𝑘

𝑙=0 . 
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Thus by factorization, we obtain 
𝑘+1

𝐻
𝑌(𝑘 + 1) = (𝑐 − 𝑎)𝑋(𝑘) − ∑ 𝑋(𝑙)𝑍(𝑘 − 𝑙) + 𝑐𝑌(𝑘)𝑘

𝑙=0 . ∎ 

 

Proof Eq. (17): From Eq. (14), 
𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧. Then 

𝐷 [
𝑑𝑧

𝑑𝑡
] = 𝐷[𝑥𝑦] − 𝐷[𝑏𝑧]. 

By Theorem 3,  

𝐷 [
𝑑𝑧

𝑑𝑡
] =

𝑘+1

𝐻
𝑍(𝑘 + 1). 

 

and by Theorems 4 and 2, 

𝐷[𝑥𝑦] = ∑ 𝑋(𝑙)𝑌(𝑘 − 𝑙)𝑘
𝑙=0 , 

                      𝐷[𝑏𝑧] = 𝑏𝐷[𝑧] = 𝑏𝑍(𝑘). 

Hence, 

    
𝑘+1

𝐻
𝑍(𝑘 + 1) = ∑ 𝑋(𝑙)𝑌(𝑘 − 𝑙) − 𝑏𝑍(𝑘)𝑘

𝑙=0 . ∎ 

 

Eqs. (15)-(17) can be rewritten in the following forms: 

 𝑋(𝑘 + 1) =
𝐻

𝑘+1
[−𝑎𝑋(𝑘) + 𝑎𝑌(𝑘)],              (18) 

 

 𝑌(𝑘 + 1) =
𝐻

𝑘+1
[(𝑐 − 𝑎)𝑋(𝑘) − ∑ 𝑋(𝑙)𝑍(𝑘 − 𝑙) + 𝑐𝑌(𝑘)𝑘

𝑙=0 ],     (19) 

 

 𝑍(𝑘 + 1) =
𝐻

𝑘+1
[∑ 𝑋(𝑙)𝑌(𝑘 − 𝑙) − 𝑏𝑍(𝑘)𝑘

𝑙=0 ].              (20) 

 

where the initial conditions are given by 𝑋(0) = −10, 𝑌(0) = 0 and 𝑍(0) =
37.  

The difference equations presented in Eqs. (18)-(20) describe the Chen 

system, from a process of inverse differential transformation. It can be shown that 

[2] the solutions of each subdomain take 𝑛 + 1 terms for the power series like Eq. 

(11), i.e., 

 𝑥𝑖(𝑡) = ∑ (
𝑡

𝐻𝑖
)

𝑘

𝑋𝑖(𝑘),      0 ≤ 𝑡 ≤ 𝐻𝑖
𝑛
𝑘=0 ,                (21) 

 𝑦𝑖(𝑡) = ∑ (
𝑡

𝐻𝑖
)

𝑘

𝑌𝑖(𝑘),      0 ≤ 𝑡 ≤ 𝐻𝑖
𝑛
𝑘=0 ,                (22) 

 𝑧𝑖(𝑡) = ∑ (
𝑡

𝐻𝑖
)

𝑘

𝑍𝑖(𝑘),      0 ≤ 𝑡 ≤ 𝐻𝑖
𝑛
𝑘=0 ,              (23) 

 

where 𝑘 = 0, 1, 2, … , 𝑛 represents the number of terms of the power series, 𝑖 =
0, 1, 2, … expresses the i-th subdomain and 𝐻𝑖 is the subdomain interval. 

 

4 Results and Discussions 

 

RK4 has been widely and commonly used for simulating solutions for chaotic 

system. The Chen system can exhibit both chaotic and non-chaotic behaviour for  
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distinct parameter values. In this paper, a comparison in the case of a fixed time 

step between the DTM and the RK4 for the solution of the chaotic Chen system 

are made. The accuracy of RK4 has to be determined first for the solution of 

(12)-(14) at different time steps before comparing with the DTM. 

In this paper, the parameters 𝑎 = 35  and 𝑐 = 28  with 𝑏 = 12 

(nonchaotic) and 𝑏 = 3 (chaotic) are fixed with the chosen initial point 𝑥(0) =
−10, 𝑦(0) = 0 and 𝑧(0) = 37. The simulations done in this paper are for the 

time span 𝑡 ∈ [0,7] (see [2]). We decided to use 15 terms in the DTM series 

solutions based on our preliminary calculations. 

 

Nonchaotic Solution 

 

First, we considered the non-chaotic case where 𝑎 = 35, 𝑏 = 12 and 𝑐 = 28. 

With the help of Maple 13, the approximate solutions are obtained from Eqs. 

(21)-(23) are as follows: 

𝑥(𝑡) = −10 + 350𝑡 + 1575𝑡2 −
186725

3
𝑡3 +

2008825

4
𝑡4 +

36773275

12
𝑡5 −

                
1805054335

24
𝑡6 +

13794025585

72
𝑡7 +

1307105651515

192
𝑡8 −

                
377410683279595

5184
𝑡9 −

2554510491404455

10368
𝑡10 +

1240464104833247141

114048
𝑡11 −

                
88674216650904514699

1368576
𝑡12  −

12640634830518546961543

17791488
𝑡13 +

                
3392190983355641413863313

249080832
𝑡14                                (30) 

𝑦(𝑡) = 440𝑡 − 3760𝑡2 −
14540

3
𝑡3 +

2819950

3
𝑡4 −

29486417

3
𝑡5 −

332044736

9
𝑡6 +

               
220205392501

126
𝑡7 −

857730678109

72
𝑡8 −               

1299096318590405

9072
𝑡9 +

               
7993446094681189

2520
𝑡10 −

3771497748478405397

332640
𝑡11 −

8519606284253357671

25920
𝑡12 +

               
737442191071873067552327

155675520
𝑡13 −

55995365950558666605319

54486432
𝑡14,         (31) 

𝑧(𝑡) = 37 − 444𝑡 + 464𝑡2 +
186032

3
𝑡3 −

988996

3
𝑡4 −

40448516

5
𝑡5 +

809770482

5
𝑡6 −

               
2694568762

5
𝑡7 −

22830882548039

1260
𝑡8 +

977005325990431

3780
𝑡9 −

               
2338196538364391

113400
𝑡10 −

2089996859048600023

59400
𝑡11 +

               
551354183828196039569

1663200
𝑡12 +  

109662584305002047060191

64864800
𝑡13 −

               
55036321193801190556472717

908107200
𝑡14.                                (32) 

 

With the help of Maple 13, we have determined the solution points of (12)-(14) 

at different time steps by RK4. The solutions points obtained are presented in 

Table 1, Table 2 and Table 3. Besides, we have also determined the accuracy of 

RK4 first for the solution of (12)-(14) at different time steps before comparing 

with the DTM. Table 4 has presented the results of this analysis.  
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 Table 1: The solutions points obtained by RK4 at ∆𝑡 = 0.01 for 𝑏 = 12. 

 

𝑡 𝑥 𝑦 𝑧 

1 -27.054660707952385 -25.829785688541233 37.195681864725281 

2 -24.220203102041877 -15.960756261129872 38.727949536128537 

3 -17.836012791172013 -5.014096669129172 35.030555096436205 

4 -9.831210400585520 4.021272883035658 28.746019629584722 

5 -1.930913832633712 10.866833989119137 22.890177162419099 

6 5.185500567394349 16.603394521003989 19.140513211975744 

7 11.616145579345145 22.122303983970380 18.221904191712490 

 

   Table 2: The solutions points obtained by RK4 at ∆𝑡 = 0.001 for 𝑏 = 12. 

 

𝑡 𝑥 𝑦 𝑧 

1 -27.047610997112465 -25.739174916436922 37.246933667368730 

2 -24.094615765497160 -15.671791155115487 38.695923775424773 

3 -17.530325686423151 -4.598760826330686 34.807847239447890 

4 -9.383270776787116 4.451179921926637 28.396246353313699 

5 -1.408563824663765 11.292701652193208 22.554860165609400 

6 5.749554548317780 17.073991902763906 18.952855983564156 

7 12.226017201470815 22.667499705337408 18.306715029396594 

 

  Table 3: The solutions points obtained by RK4 at ∆𝑡 = 0.0001 for 𝑏 = 12. 

 

𝑡 𝑥 𝑦 𝑧 

1 -27.047610303357526 -25.739166712852754 37.246938185625440 

2 -24.094604480173528 -15.671765500479907 38.695920712709458 

3 -17.530298572723827 -4.598724352586933 34.807827361975773 

4 -9.383231385407043 4.451217410480568 28.396215623488707 

5 -1.408518135446471 11.292738778094994 22.554831146374224 

6 5.749603793217553 17.074033070884695 18.952840364482545 

7 12.226070439195535 22.667547304917715 18.306723790831653 

 

         Table 4: A determination of accuracy of RK4 for 𝑏 = 12. 

𝑡 ∆= |𝑅𝐾40.01 − 𝑅𝐾0.001| 
 

∆= |𝑅𝐾40.001 − 𝑅𝐾0.0001| 

 
∆𝑥 ∆𝑦 ∆𝑧 

 
∆𝑥 ∆𝑦 ∆𝑧 

1 0.00705 0.09061 0.05125 
 

6.938E-07 8.204E-06 4.518E-06 
2 0.1256 0.289 0.03203 

 
1.129E-05 2.565E-05 3.063E-06 

3 0.3057 0.4153 0.2227 
 

2.711E-05 3.647E-05 1.988E-05 
4 0.4479 0.4299 0.3498 

 
3.939E-05 3.749E-05 3.073E-05 

5 0.5224 0.4259 0.3353 
 

4.569E-05 3.713E-05 2.902E-05 
6 0.5641 0.4706 0.1877 

 
4.924E-05 4.117E-05 1.562E-05 

7 0.6099 0.5452 0.08481 
 

5.324E-05 4.760E-05 8.761E-06 
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   Table 5: Differences between 15-term DTM and RK4 solutions for 𝑏 = 12. 

𝑡 ∆= |𝐷𝑇𝑀0.05 − 𝑅𝐾0.001| 
 

∆= |𝐷𝑇𝑀0.01 − 𝑅𝐾0.001| 

 
∆𝑥 ∆𝑦 ∆𝑧 

 
∆𝑥 ∆𝑦 ∆𝑧 

1 0.1236 1.057 0.5508 
 

6.938E-07 8.204E-06 4.519E-06 
2 0.6455 1.534 0.1605 

 
1.129E-05 2.566E-05 3.063E-06 

3 1.106 1.597 0.6777 
 

2.712E-05 3.648E-05 1.988E-05 
4 1.811 1.654 1.677 

 
3.940E-05 3.749E-05 3.073E-05 

5 1.706 1.487 0.9864 
 

4.569E-05 3.713E-05 2.902E-05 
6 1.762 1.476 0.5989 

 
4.925E-05 4.117E-05 1.562E-05 

7 1.752 1.472 0.04003 
 

5.324E-05 4.760E-05 8.762E-06 
 

 

Referring to Table 4, we could see that the maximum difference between the RK4 

solutions on time steps ∆𝑡 = 0.001  and ∆𝑡 = 0.0001  is of the order of 

magnitude of 10−5. This level of accuracy is matched by the 15-term DTM 

solutions on the smaller time step ∆𝑡 = 0.01, as depicted in Table 5. Now 

realizing the potential of DTM method, a further step is done to demonstrate its 

accuracy at a smaller time step ∆𝑡 = 0.001. We can see that the accuracy of the 

RK4 solutions is increasing by decreasing the time step, and this brought the 

DTM solutions and the RK4 solutions closer to each other up to a maximum 

difference of order |10−8| [2]. 

 

Chaotic Solution 

 

Next, we considered the chaotic case where 𝑎 = 35, 𝑏 = 3 and 𝑐 = 28. In this 

case the approximate solutions are obtained from Eqs. (21)-(23) are as follows: 

 

𝑥(𝑡) = −10 + 350𝑡 + 1575𝑡2 −
128450

3
𝑡3 +

221725

4
𝑡4 +

11186560

3
𝑡5 −

               
754023445

24
𝑡6 −

4384159955

18
𝑡7 +

871980103135

192
𝑡8  

              −
24536076035

648
𝑡9 −

4580576044494961

10368
𝑡10 +  

4724308495578929

1782
𝑡11 +

              
38904511962395575061

1368576
𝑡12 −

13643633312629976033

31104
𝑡13 −

              
59108193556586294076941

249080832
𝑡14,                (33) 

𝑦(𝑡) = 440𝑡 − 2095𝑡2 −
109445

3
𝑡3 +

7057495

12
𝑡4 −

19884341

12
𝑡5 −

5769398299

72
𝑡6 +

               
400431583141

504
𝑡7 +

18272324444179

4032
𝑡8 −

654564294964703

5184
𝑡9 +

               
15781731351080869

40320
𝑡10 +

1499604939166435637

120960
𝑡11 −

                
306785730292404817321

2280960
𝑡12 −

332253732475438414257601

622702080
𝑡13 +

                
167686111488364713419785541

8717829120
𝑡14,                 (34) 
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𝑧(𝑡) = 37 − 111𝑡 −
4067

2
𝑡2 +

362101

6
𝑡3 +

861097

24
𝑡4 −

327171397

40
𝑡5 +

              
4047783797

80
𝑡6 +

326595204709

560
𝑡7 −

64216557874249

5760
𝑡8 +

              
889264293069443

120960
𝑡9 +

4813574200599526613

3628800
𝑡10 −

              
18785251214069759759

1900800
𝑡11 −

4684354837870299463087

53222400
𝑡12 +

              
3651636938080246167677483

2075673600
𝑡13 −

7196956035468238335333607

4151347200
𝑡14.       (35) 

 

With the help of Maple 13, we have determined the solution points of 

(12)-(14) at different time steps by RK4 for chaotic Chen system. The solutions 

points obtained are presented at Table 6, Table 7 and Table 8. We expected the 

solutions are highly sensitive to time step since the system is chaotic. This is 

shown by the results presented in Table 9.  

 

     Table 6: The solutions points obtained by RK4 at ∆𝑡 = 0.01 for 𝑏 = 3. 

t x y z 

1 -15.904279627723110 -13.162241166169599 32.088768779730344 

2 16.163615171786290 6.128874885530317 40.622140400402537 

3 -10.806055372478783 -8.570831723887125 30.730176224737862 

4 7.376025873778008 13.998969329790345 36.104921021208311 

5 0.100275676526658 2.188242498621259 20.390805267577554 

6 -10.053647927618957 -11.33428384111115 25.252478725614482 

7 15.739569434757931 16.623203918673357 26.963870881059763 

 

    Table 7: The solutions points obtained by RK4 at ∆𝑡 = 0.001 for 𝑏 = 3. 

𝑡 𝑥 𝑦 𝑧 

1 -15.904923862671938 -13.162222904435073 32.090047425873714 

2 16.318177645974252 6.369459256345558 40.655950945086806 

3 -10.705242534162903 -8.474052644673662 30.502572655311047 

4 3.770851902703171 12.523956039625540 37.032553450438239 

5 -1.751800326432415 2.618093565167990 25.330275929887352 

6 -9.933292257336563 -10.295384284966910 23.242119839844348 

7 -8.340718269094994 -8.336382626514890 25.087431073946013 

    

Table 8: The solutions points obtained by RK4 at ∆𝑡 = 0.0001 for 𝑏 = 3. 

𝑡 𝑥 𝑦 𝑧 

1 -15.904923455907273 -13.162222060962183 32.090047601955776 

2 16.318160368268374 6.369431543965352 40.6559479487732618 

3 -10.705249232267281 -8.474056884447783 30.502592078905155 

4 3.771509099784785 12.524292414387077 37.032301243234180 

5 -1.751032483050321 2.618146534062463 25.328889429283835 

6 -9.933262483349147 -10.296556942992606 23.240489345677946 

7 -8.340787581856300 -8.342718784434861 25.075071051617045 
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           Table 9: A determination of accuracy of RK4 for 𝑏 = 3. 

𝑡 ∆= |𝑅𝐾40.01 − 𝑅𝐾0.001| 
 

∆= |𝑅𝐾40.001 − 𝑅𝐾0.0001| 

 
∆𝑥 ∆𝑦 ∆𝑧 

 
∆𝑥 ∆𝑦 ∆𝑧 

1 0.0006442 1.826E-05 0.001279 
 

4.068E-07 8.435E-07 1.761E-07 
2 0.1546 0.2406 0.03381 

 
1.728E-05 2.771E-05 2.996E-06 

3 0.1008 0.09678 0.2276 
 

6.698E-06 4.240E-06 1.942E-05 
4 3.605 1.475 0.9276 

 
0.0006572 0.0003364 0.0002522 

5 1.852 0.4299 4.939 
 

0.0007678 5.297E-05 0.001386 
6 0.1204 1.039 2.01 

 
2.977E-05 0.001173 0.00163 

7 24.08 24.96 1.876 
 

6.931E-05 0.006336 0.01236 
 

   Table 10: Differences between 15-term DTM and RK4 solutions for 𝑏 = 3. 

𝑡 ∆= |𝐷𝑇𝑀0.01 − 𝑅𝐾0.001|   ∆= |𝐷𝑇𝑀0.001 − 𝑅𝐾0.0001| 

 
∆𝑥  ∆𝑦   ∆𝑧 

 
∆𝑥    ∆𝑦  ∆𝑧 

1 4.068E-07 8.436E-07 1.761E-07   4.556E-11 9.305E-11 1.808E-11 
2 1.728E-05 2.772E-05 2.997E-06 

 
2.070E-09 3.314E-09 3.655E-10 

3 6.699E-06 4.240E-06 1.943E-05 
 

8.410E-10 5.601E-10 2.383E-09 
4 0.0006573 0.0003364 0.0002522 

 
8.048E-08 4.118E-08 3.091E-08 

5 0.0007679 5.297E-05 0.001387 
 

9.410E-08 6.420E-09 1.700E-07 
6 2.978E-05 0.001173 0.001631 

 
3.656E-09 1.441E-07 2.005E-07 

7 6.932E-05 0.006337 0.01236   7.062E-09 7.779E-07 1.522E-06 
 

 

 

 

 

 
    Figure 1: RK4 solutions on ∆𝑡 = 0.05 vs 

            ∆𝑡 = 0.01 t-x plane. 

 

 

 

 

   Figure 4: RK4 solutions on ∆𝑡 = 0.01 vs                  

         ∆𝑡 = 0.001 t-x plane. 
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 Figure 2: RK4 solutions on ∆𝑡 = 0.05 vs 

             ∆𝑡 = 0.01 t-y plane 

 

 

 

 
       Figure 3: RK4 solutions on ∆𝑡 = 0.05 vs  

           ∆𝑡 = 0.01 t-z plane. 

 

 

RK4 solutions are presented separately because it is difficult to show clearly 

the RK4 solutions on various time steps on the same plot. From Figurse 1, 2 and 3, 

we can see that both the RK4 solution on ∆𝑡 = 0.05 and ∆𝑡 = 0.01 deviate 

when 𝑡 ≥ 0.5. While from Figures 4, 5 and 6, we can see that the solutions on 

∆𝑡 = 0.01 and ∆𝑡 = 0.001 begin to deviate from each other when 𝑡 ≥ 4 (see 

also columns 2-4 of Table 8). The differences between the RK4 solutions on 

∆𝑡 = 0.001 and ∆𝑡 = 0.0001 are given in the last three columns of Table 9. As 

expected, the solutions of the chaotic system become less accurate as time 

progresses. According to Table 9, we could see that the maximum difference 

between the RK4 solutions on time steps ∆𝑡 = 0.001 and ∆𝑡 = 0.0001 is of the 

order of magnitude of |10−2| which is much larger than in the nonchaotic case. 

 

Figure 5: RK4 solutions on ∆𝑡 = 0.01 vs 

         ∆𝑡 = 0.001 t-y plane. 
 

 

 

Figure 6: RK4 solutions on ∆𝑡 = 0.01 vs  

     ∆𝑡 = 0.001 t-z plane. 
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In the previous section, we have determined the 15-term DTM on time step 

∆𝑡 = 0.001 outperforms the RK4 on a much smaller step size ∆𝑡 = 0.0001 for 

the nonchaotic case. The solutions of the chaotic system become less accurate as 

time progresses [2]. 
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