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Preface

The international symposium “Mathematical Progress in Expressive Image
Synthesis” (MEIS), provides a unique venue where mathematicians, computer
graphics (CG) researchers, and those who work in industry gather to share and
discuss shared contemporary issues and future collaborative projects. The inter-
national symposium MEIS2015 aimed to furnish a venue where various issues in
CG application fields could be discussed by mathematicians, CG researchers, and
practitioners. Through the previous conferences, MEIS2013 and MEIS2014,
mathematicians as well as CG researchers have recognized that CG is a specific and
practical activity derived from mathematical theories. Issues found in CG broaden
the field of mathematics (and vice versa), and CG visualizes mathematical theories
in an aesthetic way.

This volume presents the papers selected from the MEIS2015 proceedings,
originally issued as MI Lecture Notes Vol. 64, Kyushu University, 2015. Several
invited talks attracted and inspired prospective attendees who work in academia or
industries having strong interests in digital media creations, scientific visualization,
and visual engineering. This year, we aimed to provoke interdisciplinary research
projects through the peer-reviewed paper/poster presentations at the symposium.
The topics included geometry, curves and surfaces, fabrication, fluid, interpolation,
illusion, texture, visualization, and rendering. We hope readers will find themselves
deeply inspired through the harmony of mathematics and graphics research and the
industrial work displayed in this volume.

February 2016 Yoshinori Dobashi
Hiroyuki Ochiai

v



MEIS2015 Committee

Co-Chairs

Hiroyuki Ochiai, Kyushu University
Yoshinori Dobashi, Hokkaido University

International Program Committee

Ken Anjyo, OLM Digital
Jean-Marie Aubry, Weta Digital
Bernd Bickel, Disney Research
Yasuhide Fukumoto, Kyushu University
Sunil Hadap, Adobe Research
Kei Iwasaki, Wakayama University
Shizuo Kaji, Yamaguchi University
Kenji Kajiwara, Kyushu University
Miyuki Koiso, Kyushu University
J.P. Lewis, Victoria University of Wellington/Weta Digital
Yoshihiro Mizoguchi, Kyushu University
Yoshiyuki Ninomiya, Kyushu University
Yutaka Ohtake, The University of Tokyo
Makoto Okabe, University of Electro-Communications
Daisuke Tagami, Kyushu University

External Reviewer

Alexandre Derouet-Jourdan, OLM Digital

vii



Acknowledgments

The MEIS2015 Organizing Committee is very much grateful to the Institute of
Mathematics for Industry (IMI), Kyushu University for sponsoring the Symposium
MEIS2015. We would like to thank the Japan Science and Technology Agency
(JST), Mathematics Program: Alliance for Breakthrough between Mathematics and
Sciences (ABMS) on our five-year project “Mathematics for Computer Graphics”
for continuous support. We also extend our thanks to Kazuko Ito for her hard work
on the conference arrangement, Seiko Sasaguri and Nagatoshi Sasano on the pro-
duction of the proceedings, and Ayumi Kimura for both. Last but not least, we
appreciate the hard work of the international program committee and the external
reviewers in the tight schedule.

ix



Contents

Geometry and Mechanics of Fibers: Some Numerical Models . . . . . . . . 1
Florence Bertails-Descoubes

Tetrisation of Triangular Meshes and Its Application in Shape
Blending. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Shizuo Kaji

A Construction Method for Discrete Constant Negative Gaussian
Curvature Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Shimpei Kobayashi

Fabrication-Aware Geometry Processing . . . . . . . . . . . . . . . . . . . . . . . 35
Daniele Panozzo

Revisiting Vorticity: Pushing Fluid Solvers to the Next Level . . . . . . . . 41
Robert Bridson

Active Comicing for Freehand Drawing Animation . . . . . . . . . . . . . . . 45
Tsukasa Fukusato and Shigeo Morishima

A Multilayered Model for Artificial Intelligence of Game Characters
as Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Youichiro Miyake

Visual Media Culture Supported by Illusion of Depth . . . . . . . . . . . . . 61
Kokichi Sugihara

Wang Tile Modeling of Wall Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 71
Alexandre Derouet-Jourdan, Yoshihiro Mizoguchi and Marc Salvati

High-Resolution Visualization Library for Exascale Supercomputer . . . 83
Yoshitaka Wada, Kohei Murotani, Masao Ogino, Hiroshi Kawai
and Ryuji Shioya

Drawing Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Toshio Oshima

xi

http://dx.doi.org/10.1007/978-981-10-1076-7_1
http://dx.doi.org/10.1007/978-981-10-1076-7_2
http://dx.doi.org/10.1007/978-981-10-1076-7_2
http://dx.doi.org/10.1007/978-981-10-1076-7_3
http://dx.doi.org/10.1007/978-981-10-1076-7_3
http://dx.doi.org/10.1007/978-981-10-1076-7_4
http://dx.doi.org/10.1007/978-981-10-1076-7_5
http://dx.doi.org/10.1007/978-981-10-1076-7_6
http://dx.doi.org/10.1007/978-981-10-1076-7_7
http://dx.doi.org/10.1007/978-981-10-1076-7_7
http://dx.doi.org/10.1007/978-981-10-1076-7_8
http://dx.doi.org/10.1007/978-981-10-1076-7_9
http://dx.doi.org/10.1007/978-981-10-1076-7_10
http://dx.doi.org/10.1007/978-981-10-1076-7_11


Aesthetic Design with Log-Aesthetic Curves and Surfaces . . . . . . . . . . . 107
Kenjiro T. Miura and R.U. Gobithaasan

Attractive Plane Curves in Differential Geometry . . . . . . . . . . . . . . . . . 121
Jun-ichi Inoguchi

dNLS Flow on Discrete Space Curves . . . . . . . . . . . . . . . . . . . . . . . . . 137
Sampei Hirose, Jun-ichi Inoguchi, Kenji Kajiwara, Nozomu Matsuura
and Yasuhiro Ohta

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xii Contents

http://dx.doi.org/10.1007/978-981-10-1076-7_12
http://dx.doi.org/10.1007/978-981-10-1076-7_13
http://dx.doi.org/10.1007/978-981-10-1076-7_14


Geometry and Mechanics of Fibers: Some
Numerical Models

Florence Bertails-Descoubes

Abstract In this talk I will give an overview of our work on the simulation of fibers
and entangled materials, such as hair, with a specific interest for virtual prototyping
and computer graphics applications. I will first introduce a family of high-order,
reduced models for discretizing Kirchhoff’s equations for thin elastic rods in a both
faithful and robust way. Such models are particularly well-suited for simulating
inextensible fibers subject to bending and twisting, and featuring an arbitrary curly
resting geometry. Then I will show how such models can be coupled to frictional
contact using the nonsmooth contact dynamics framework, and Iwill present a hybrid
iterative solver suitable for robustly handling thousands packed fibers at reasonable
frame rates. Finally, I will give some insights into the inverse modeling of fibers,
consisting in taking an arbitrary curve geometry as input and inferring corresponding
geometric and physical parameters of the simulator such that the input geometry
corresponds to a stable configuration at equilibrium.

Keywords Physics-based simulation · Thin elastic rod · Frictional contact · Hair
simulation · Inverse physics-based design

1 Introduction

Deformable slender structures such as hair fibers, cloth, ribbons, tree branches or
leaves, are ubiquitous aroundus. Theyoften feature an intricate natural shape, ranging
from straight to curly, and are characterized by a complex motion involving strongly
nonlinear deformations, such as buckling. These complex shapes andmotions greatly
contribute to the visual richness of the real world. When multiple such structures are

(Joint work with Romain Casati, Gilles Daviet, and Alexandre Derouet-Jourdan).

F. Bertails-Descoubes (B)
Inria - Laboratoire Jean Kuntzmann (CNRS - Grenoble University) Inria
Rhône-Alpes, 655 Avenue de l’Europe, 38334 Saint-Ismier Cedex, France
e-mail: Florence.Descoubes@inria.fr

© Springer Science+Business Media Singapore 2016
Y. Dobashi and H. Ochiai (eds.), Mathematical Progress in Expressive
Image Synthesis III, Mathematics for Industry 24,
DOI 10.1007/978-981-10-1076-7_1

1



2 F. Bertails-Descoubes

coupled together with contact and friction, the range of emerging phenomena is
even more exacerbated, giving rise to stick-slip dynamical instabilities, entangling,
or spontaneous collective behavior. Human hair, which is typically composed of
150,000 thin fibers, beautifully depicts such complex mechanical behavior when
fluttering in the wind.

As the essence of Computer Graphics is to represent the visual appearance of
the real world with the highest fidelity, it is important for practitioners to be able to
capture all the relevant details of a given scene. In the case of a dynamical scene
involving passive objects such as hair, cloth, or natural phenomena, physics-based
simulation has proven over the years to be a method of choice for capturing resulting
visual effects. Unlike phenomenological methods which develop descriptive models
for reproducing a given emerging phenomenon, physics-based methods provide gen-
erativemodels whose goal is to explain the physical causes of the phenomenon. From
a set of initial conditions as well as a few physical parameters (e.g., the mass, the
stiffness, the natural shape), a physics-based simulator may generate not just a single
effect, but a wide range of emerging phenomena revealing the whole complexity of
the underlying physics.

When designing a physics-based simulator for computer graphics, one has
inevitably in mind the four following criteria:

1. Realism: Ingredientswhich are necessary to capture relevant visual effects should
be identified, and translated numerically with as few quality loss as possible.

2. Robustness: The simulator should converge properly for a subsequent range of
parameters.

3. Efficiency: The simulator should be fast enough for allowing complex scenes to
be simulated in reasonable timings (in our case, a few days of computation for a
given scene is considered as an upper-bound).

4. Control: The simulator should provide the user with some handles to control the
shape and motion of the object in an intuitive way.

Over the ten past years, we have been striving to develop some numerical models
satisfying all four criteria at the same time. Our work has focused on the simulation
of slender structures prone to contact and dry friction, and especially on the dynamics
of thin fiber assemblies, with some direct applications in hair simulation and inverse
physics-based design.

2 High-Order Reduced Models for Simulating
Dynamic Fibers

The first part of the talk will be devoted to the presentation of the numerical models
that we have been developing for simulating the dynamics of flexible fibers, the
so-called super-helix and super-clothoid models [1, 2, 4].

I will first introduce the mechanical equations for inextensible thin elastic rods,
namely the Kirchoff equations, which take the form of second order partial differen-
tial equations subject to boundary conditions. Noting that curvatures and twist play
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a major role both in the geometric and dynamic description of this model, we have
come up with a spatial rod discretization based on elements that are polynomial in
such quantities.

Our first scheme relied on piecewise constant curvatures [1], and was then
extended to piecewise linear curvatures [2, 4]. One major advantage of such
curvature-based formulations is that the kinematics of the discretized rod remains,
by construction, perfectly inextensible. Such intrinsic inextensibility thus removes
the burden of adding subsequent (stiff) inextensibility contraints when solving the
dynamics. The price to pay, however, is that the geometry of the rod is not readily
available but has to be computed iteratively from the curvatures.

In the piecewise constant case [1], each element turns out to be a perfect circular
helix (hence the super-helix name for the model), leading to a cheap and exact
evaluation of all the terms of the discrete dynamic equations. For higher orders
however, one unfortunately loses such a closed-form formula and a both accurate
and efficient spatial integration scheme has to be designed.

In the piecewise linear case (where each element takes the form of a 3D clothoid),
we were able to build an accurate integration scheme which proved to be orders
of magnitude faster compared to classical integration methods [4]. The key of our
approach was to leverage the fact that the solution takes the form of a power series
expansion, while avoiding the pitfall of catastrophic cancellation through an adap-
tive integration strategy. With this tool in hand, we were able to demonstrate that the
super-clothoidmodel could capture intricate shapes both robustly and efficiently,with
better spatial accuracy and geometric fairness compared to state-of-the-art methods
(see Fig. 1).

Fig. 1 Many physical strands exhibit a smooth curled geometry with linear-like curvature profile,
which is captured and deformed accurately thanks to our super-clothoid model [4]. From left to
right and top to bottom, three examples of real strands whose shapes are synthesized and virtually
deformed in real-time using a very lownumber of 3Dclothoidal elements: a vine tendril (4 elements),
a hair ringlet (2 elements), and a curled paper ribbon (1 single element). Left photograph courtesy
of Jon Sullivan, pdphoto.org.
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Fig. 2 Simulation of a fast
head movement without (top)
and with (bottom) Coulomb
friction, using our robust
solver from [5]. In the latter
case, hair remains much
more coherent and depicts
typical stick-slip effects

3 Robust Frictional Contact Model for Fiber Assemblies

The second part of the talk will be focused on the dynamic simulation of fiber
assemblies, where individual fibers are coupled to each other through contact and
friction.

I will first illustrate why capturing threshold effects in friction is key to realism
(see Fig. 2), before introducing the nonsmooth Signorini-Coulomb friction model
and its various formulations. We shall see what the numerical counter-parts are for
each formulation, and how each of them performs in terms of efficiency, robustness,
and scalability [3].

Then I will explain how we managed to design a robust and scalable frictional
contact solver by combining an iterative Gauss-Seidel strategy together with an
extremely robust one-contact solver [5]. Our global solver proved to converge well
in scenarios involving thousands fibers subject to tens thousands frictional contact
points, and thus allowed us to enhance considerably the realism of hair simulations.
Our method has been adopted by the special effects industry for simulating hair and
fur accurately [10].

4 From Geometry to Physics: Inverse Design of Fiber
Assemblies

Finally, I will present some new important challenges regarding inverse physics-
based design. While current simulators may succeed in reaching a good level of
realism, they remain difficult to control in order to achieve a precise artistic goal.
More precisely, to generate some desirable shapes and motions, one should be able
to feed a simulator with the “right” parameters. Finding such parameters remains
a difficult task, which is often performed through a tedious trial and error process.
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To make this task fully automatic, we have started looking at inverse solutions in
the case where a static shape is provided as input: the inverse model should be able
to interpret this shape automatically as a stable equilibrium of the simulator under
gravity and other external forces, such as contact and friction.

In the case of an isolated fiber, we have shown that inverting any of our super-
model [1, 4] boils down to two decoupled problems, both of them being easy to
solve [6, 7]: First, an equilibrium condition which appears to be linear in the natural
shape of the fiber, thanks to the curvature-based parameterization of our fibermodels;
Second, a sufficient stability condition that can be simply set by fixing a lower-bound
for the ratio of stiffness over mass. Actually, the only remaining difficulty is to solve
a merely geometric fitting problem—converting a curve as a piecewise helix or
clothoid. In the case of helical fitting, we have already brought some efficient and
robust solutions to this geometric approximation problem [6, 9].

In the presence of contact and friction, Coulomb sticking constraints have to be
considered, which makes the overall inverse problem nonsmooth and ill-posed. We
have shown that assuming known mass and stiffness, as well as a simplified inverse
model, it is possible to recover a plausible natural shape as well as frictional contact
forces at play [8]. This work allowed us, for the first time, to animate in a plausible
way a few hair geometries stemming from recent hair captures (see Fig. 3).

Fig. 3 Real curly wig (left) captured from [11], inverted by our method in [8] and physically
animated (middle) and trimmed (right)



6 F. Bertails-Descoubes

5 Conclusion

Throughout this long-term work on the numerical modeling of fibers and frictional
contact, we have learnt that systematically concentrating the efforts on the upstream
modeling and formulation of problems often pays off: even for very complex prob-
lems, the resulting numerics may be greatly simplified, and thus solved more easily
and robustly. Keeping in mind this key lesson, we are starting to investigate the
case of 2D slender structures (namely plates and shells), for which many exciting
challenges remain open.
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Tetrisation of Triangular Meshes
and Its Application in Shape Blending

Shizuo Kaji

Abstract The As-Rigid-As-Possible (ARAP) shape deformation framework is a
versatile technique for morphing, surface modelling, and mesh editing. We discuss
an improvement of the ARAP framework in a few aspects: 1. Given a triangular
mesh in 3D space, we introduce a method to associate a tetrahedral structure, which
encodes the geometry of the original mesh. 2. We use a Lie algebra based method
to interpolate local transformation, which provides better handling of rotation with
large angle. 3. We propose a new error function to compile local transformations into
a global piecewise linear map, which is rotation invariant and easy to minimise. We
implemented a shape blender based on our algorithm and its MIT licensed source
code is available online.

Keywords Shape blending · Tetrahedral mesh · As-rigid-as-possible deformation

1 Introduction

In Shape blending the seminal paper [1], they introduced amorphing algorithm called
the As-Rigid-As-Possible (ARAP, for short) shape interpolation. Since then, the
technique has been successfully applied to various shape deformation applications.
In their original paper, tetrahedral volume meshes are used to produce interpolation
of shapes. However, in most computer graphic systems it is common to represent
shapes by surface meshes. To convert a surface mesh to a volume mesh is a non-
trivial task (see, for example, [13]) and the resulting volumemesh tends to havemany
extra internal vertices, which makes applications inefficient. Instead of considering
volume meshes, one can “fatten” surface meshes. A common practice is to associate
a tetrahedral structure to a triangular surface mesh by adding the normal vector for
every triangle (see, for example, [15]). Although this simple trick has been widely

S. Kaji (B)
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8 S. Kaji

Fig. 1 Three shapes
(yellow) are blended to
produce variations (white).
Not only interpolation but
also extrapolation (with
weights >1 or <0) is
possible. The top-left shape
is obtained by extrapolating
the two yellow shapes in the
top row

used, it does not capture important geometric features of the mesh. For example, the
relation between adjacent triangles is neglected.

One of the main purposes of this paper is to introduce a new construction to asso-
ciate a tetrahedral structure to a triangular mesh, which we call tetrisation (Sect. 4).
Our method encodes inter-triangular properties such as the angle between adjacent
triangles so that one can keep track of global geometry such as curvature while
working locally on tetrahedra.

We also discuss an improvement of the ARAP (Sect. 3) in how to interpolate local
transformations (Sect. 5) and how to stitch fragmented tetrahedra by a new error
function (Sect. 6). We demonstrate our improvement by a shape blending application
(Fig. 1). Given an arbitrary number of isomorphic surfaces, our algorithm produces
inter/extrapolation of the shapes according to the weights given by the user. Roughly
speaking, we define a “linear combination” of shapes

w1Q1 + w2Q2 + · · · + wmQm,

where wi ∈ R are weights and Qi are shapes. In particular, when the number of
shapes is two, w1Q1 + (1− w1)Q2 for 0 ≤ w1 ≤ 1 gives a morphing between them.
Note that our algorithm is highly non-linear although we described the procedure
as taking the linear combination of shapes. We implemented the algorithm as the
Autodesk Maya plugin. Its MIT licensed source code is available at [6].

2 Notation

We begin with listing some notation. We assume all transformations are represented
by real matrices, acting on real column vectors by the multiplication from the left.
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• SO(3): the group of 3D rotations. Its element is a 3× 3 special orthogonal matrix.
• Sym+(3): the set of 3D shears. Its element is a 3 × 3 positive definite symmetric
matrix.

• GL(3): the group of (invertible) 3D linear transformations consisting of composi-
tions of rotation, shear, and reflection. Its element is a 3 × 3 regular matrix.

• Aff(3): the group of (invertible) 3D affine transformations consisting of compo-
sitions of rotation, shear, reflection, and translation. Its element is a 4 × 4 regular
homogeneous matrix.

• GL+(3),Aff+(3): the subgroups of the reflection free (positive determinant) ele-
ments in the corresponding groups.

• Â ∈ GL(3): the linear part (3 × 3 upper-left corner) of A ∈ Aff(3).
• At : the transpose of a matrix A.
• |A|2F = tr(AtA): the squared Frobenius norm of a matrix A.
• #U: the cardinality of a set U.

3 As-Rigid-As-Possible Deformation Framework

In this section, we recall the ARAP framework by describing an algorithm for shape
blending. Note that although we discuss shape blending as the primary application,
the framework and our improvement is not limited to it. Indeed, after being introduced
in [1] initially as a morphing algorithm, the ARAP technique has been serving as one
of the fundamental frameworks for various kinds of shape deformation applications
(see, for example, [3, 7, 14–16]).

Our problem setting is as follows. We are given a rest shape V0 and m its
deformations Vj (1 ≤ j ≤ m). That is, a vertex correspondence between V0 and
each of Vj (1 ≤ j ≤ m) is assumed. We would like to compute the deformation
V (w1, . . . ,wm) by blending the given shapes {Vj} according to the user specified
weights {wj ∈ R | 1 ≤ j ≤ m}. We insist that it interpolates the given shapes, i.e.,

V (0, . . . , 0) = V0, and V (w1, . . . ,wm) = Vk when wj =
{
1 (j = k)

0 (j �= k)
. Notice we

allow negative weights and weights greater than one so that the system can not only
interpolate but also extrapolate.

Remark 1 A basic shape blending is achieved by simply taking the linear combi-
nation of the coordinates of the vertices. This method is very fast and widely used
to produce variations of shapes, in particular, facial expressions. However, since
the geometry of shapes is disregarded, it does not always produce plausible outputs
(Fig. 2). The ARAP based method which we will describe below takes geometry into
account to obtain better results.

We assume that the rest shape is equipped with a non-degenerate tetrahedral
structure (V0,T ). We will discuss in Sect. 4 a method to associate one to a triangular
mesh.
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Fig. 2 Interpolation between yellow shapes. Left linear method. Right our method

Definition 1 A tetrahedral structure is a pair (V,T ), where the vertex set V consists
of three dimensional vectors and the set of tetrahedra T = {Ti | 1 ≤ i ≤ n} consists
of ordered tuples of four distinct vertices Ti = (vi1 , vi2 , vi3 , vi4). Each vertex in V
must be contained in at least one tetrahedron. A tetrahedral structure is said to be
non-degenerate when the vertices of each tetrahedron are not co-planar.

We emphasise that a triangle can be shared by three or more tetrahedra, and for this
reason, we use the terminology “tetrahedral structure” rather than tetrahedral mesh.

The information of a tetrahedral structure (V,T ) can be packed into a collection
of 4 × 4-matrices:⎧⎪⎪⎨

⎪⎪⎩Pi :=

⎛
⎜⎜⎝
vi1(x) vi2(x) vi3(x) vi4(x)
vi1(y) vi2(y) vi3(y) vi4(y)
vi1(z) vi2(z) vi3(z) vi4(z)
1 1 1 1

⎞
⎟⎟⎠

∣∣∣∣1 ≤ i ≤ n

⎫⎪⎪⎬
⎪⎪⎭ , (1)

where (vij (x), vij (y), vij (z))
t ∈ R

3 is the vector representing the position of the vertex
vij ∈ V .

We denote by {P0i | 1 ≤ i ≤ n} the matrices associated to the rest shape (V0,T ).
Since (V0,T ) is assumed to be non-degenerate, all the P0i are regular. For each
deformation Vj, we use the same set of tetrahedra T to obtain {Pji | 1 ≤ i ≤ n}.
Note that Pji need not be regular. We define a series of affine transformations

Aji := PjiP
−1
0i (1 ≤ i ≤ n) (2)

which maps the vertices V0 of the rest shape to the ones Vj in the deformed shape.
Obviously, Ajiv = Aji′v when v ∈ V0 is contained in two tetrahedra Ti and Ti′ . Thus,
{Pji | 1 ≤ i ≤ n} can be considered as a piecewise linear map defined on (V0,T )

with (Vj,T ) as its image.
Now, we have m piecewise linear maps

{
Pji | 1 ≤ i ≤ n

}m
j=1 and the problem is

rephrased as to blend them according to the user specified weights wj (1 ≤ j ≤ m).
We first consider locally and blend P̂ji (1 ≤ j ≤ m) for a single tetrahedron Ti
to obtain Ci ∈ GL+(3). Intuitively, Ci stipulates the local transformation for the
tetrahedron Ti. We discuss a method to compute Ci in Sect. 5. The last step is to find
a global piecewise linear map on (V0,T ), whose image we take as the output. Since
we cannot assume Civ agrees with Ci′v for a vertex v ∈ V0 which is contained in two
tetrahedra Ti and Ti′ , we have to “stitch” them. What we do is to find a piecewise
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linear map which is closest to the collection {Ci | 1 ≤ i ≤ n} with respect to an
error function. We discuss different error functions in Sect. 6. The deformed shape
V (w1, . . . ,wm) is computed as the minimiser of the error function.

In the following sections, we discuss each step in detail.

4 Tetrisation

In computer graphics systems, shapes are usually represented by surface meshes.
To apply the ARAP technique described in the previous section, we have to have
a tetrahedral structure. Here, we consider a method to build a tetrahedral structure
from a given triangular surface mesh.

Definition 2 For a triangular mesh, we denote an element of the vertex set V by a
three dimensional vector and an element of the set of (face) trianglesF by an ordered
tuple of three vertices (v1, v2, v3). For (v1, v2, v3) ∈ F , we call the ordered tuples
v1v2, v2v3 and v3v1 the oriented edges. A triangular mesh is said to be non-degenerate
when the vertices of each triangle are not co-linear.

Given a triangular mesh, we would like to associate a tetrahedral structure which
we can apply the ARAP framework to.

Definition 3 Given a non-degenerate triangular mesh (V,F ). A tetrisation of
(V,F ) is a tetrahedral structure which consists of the vertex set V̄ and the set
of tetrahedra T . We require (V̄ ,T ) to satisfy the following conditions:

1. V ⊂ V̄ . That is, V̄ is obtained by adding ghost vertices to V .
2. Each triangle in F has to be contained in at least one tetrahedron in T .
3. Each tetrahedron is non-degenerate, that is, the four vertices are not co-planar.

These conditions are exactly what are required in the ARAP framework.
We give three methods to produce tetrisation in the following. Recall that the

unit normal vector n(F) of a triangle F = (v1, v2, v3) is computed by
(v2 − v1) × (v3 − v1)

|(v2 − v1) × (v3 − v1)| , where the denominator |(v2 − v1) × (v3 − v1)| is twice

the area 2Area(F) of F.

4.1 Face-Normal Tetrisation

We begin with a simple method which has been commonly used in various applica-
tions. For each triangle F = (v1, v2, v3) inF , add the ghost vertex

v0 = (v1 + v2 + v3)

3
+ (v2 − v1) × (v3 − v1)√|(v2 − v1) × (v3 − v1)|
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Fig. 3 Left the original surface. Right its face-normal tetrisation. Ghost vertices are marked with
a red circle

and form a tetrahedron (v0, v1, v2, v3). The resulting tetrahedral structure has #T =
#F and #V̄ = #V + #T .

A problem with this tetrisation when applied to the ARAP framework is that
this does not capture the relation between adjacent triangles. For example, consider
two triangles sharing an edge as in Fig. 3. Any rotation invariant error function (see
Sect. 6) with C1 = C2 = Id will be minimised regardless of the angle between the
two triangles. In other words, folds do not cause any penalty in the error function.

4.2 Edge-Normal Tetrisation

We assume each oriented edge appears only once among all the triangles. In other
words, an unoriented edge should be contained at most two triangles with opposite
orientations. Also, we assume all the triangles have at least one shared edge, that is,
there is no “lone” triangle. (We can remove this assumption by adding ghost vertices
not only for shared edges but also for all edges. However, this is inefficient andmakes
no sense.)

For each shared edge v1v2, denote by F1 = (v1, v2, v3) and F2 = (v1, v4, v2) the
two triangles adjacent to it. Add a ghost vertex

v0 = v1 + v2
2

+ |v1 − v2| n(F1) + n(F2)

|n(F1) + n(F2)|
and form two tetrahedra (v0, v1, v2, v3) and (v0, v1, v4, v2). The resulting tetrahedral
structure (Fig. 4) has #T = 2 · #(shared edges) and #V̄ = #V + #(shared edges).
The idea of this tetrisation is to encode the angle between adjacent triangles, which
is neglected by the face-normal tetrisation.
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Fig. 4 Left the original surface. Right its edge-normal tetrisation. Ghost vertex is marked with a
red circle

4.3 Vertex-Normal Tetrisation

We assume that every vertex has a neighbourhood homeomorphic to the plane or
the half plane. In other words, the mesh is a manifold (with boundary). Also, we
assume all the triangles have at least one shared vertex. (Again, we can remove this
assumption as in the previous subsection.)

For each shared vertex v, denote the adjacent triangles by F1,F2, . . . , and Fk .
Add a ghost vertex

v0 = v +
√√√√ k∑

i=1

Area(Fi)
n(F1) + · · · + n(Fk)

|n(F1) + · · · + n(Fk)|

and form k tetrahedra by adding v0 to the triangles Fi (1 ≤ i ≤ k). The result-
ing tetrahedral structure (Fig. 5) has #T = 3#F − #(non-shared vertices) and
#V̄ = #V + #(shared vertices). An advantage of this method is that it extends
straightforwardly to general polyhedral meshes. The idea of this tetrisation is to
encode the angle around internal vertices, which is neglected by the face-normal
tetrisation.

Fig. 5 Left the original surface. Right its vertex-normal tetrisation. Ghost vertex is marked with a
red circle. Ghost vertices on the boundary are omitted for simplicity
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5 Blending Linear Maps

In this section, we discuss how to blend local transformations Â1i, Â2i, . . . , Âmi ∈
GL+(3) with regard to the weights w1, . . . ,wm ∈ R to obtain the blended local
transformation Ci ∈ GL+(3). For this purpose, we use a function Blend : R

m ×
(GL+(3))m → GL+(3) which satisfies the obvious requirement for interpolation.
Then, we set

Ci := Blend(w1, . . . ,wm, Â1i, Â2i, . . . , Âmi).

We investigate two such interpolation functions.
First, decompose each Âki by the polar decomposition (see, for example, [5, 12])

Âki = RkiSki

where Rki ∈ SO(3) is the rotation and Ski ∈ Sym+(3) is the shear. In [16], they
suggest

BlendP(w1, . . . ,wm, Â1i, . . . , Âmi) = exp

(
m∑

k=1

wk log(Rki)

) (
m∑

k=1

wkSki +
(
1 −

m∑
k=1

wk

)
I

)
,

where log is the principalmatrix logarithmand I is the identitymatrix.1 This coincides
with the one used in [1] when m = 1. On the other hand, we suggest

BlendC(w1, . . . ,wm, Â1i, . . . , Âmi) = exp

(
m∑

k=1

wk log
c(Rki)

)
exp

(
m∑

k=1

wk log(Ski)

)
,

(3)

where logc is the “continuous” logarithm such that it chooses the nearest branch of
logarithm to the adjacent tetrahedra when i varies (see [8] for details). The indetermi-
nacy of log for SO(3) is in the rotation angle and logc chooses the angle continuously
for adjacent tetrahedra. Note that [8] provides a direct and fast formula for BlendC
which does not require the polar decomposition.

They look similar but there are two significant differences; blending for the shear
part and logarithm for SO(3). The value of BlendP can fall out of GL+(3) due to the
linear blending of the shear part, which causes distortion in the output (Fig. 6). The
use of the continuous logarithm enables the system to produce a smoother morph
among shapes which performs large rotation in between (Fig. 7). Note that in [1]
which discusses morphing of two shapes, they suggest to use the quaternions and
SLERP ([11]) to interpolate the rotation part and the linear interpolation for the shear
part. (With three or more shapes, one can use the linear blending of the quaternions
for the rotation part as in [9].) However, this method shows similar deficiency as
BlendP.

1 The term involving I is for normalisation and it enforces BlendP(0, . . . , 0, Â1i, Â2i, . . . , Âmi) = I .
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Fig. 6 Interpolation/extrapolation of yellow shapes. Left with BlendP function in [16], the extrap-
olated shape on the left is degenerate. Right with our BlendC function, the extrapolated shape is
non-degenerate

Fig. 7 Interpolation of yellow shapes. Left with BlendP function in [16], some parts try to rotate
inconsistently. Right with our BlendC function, local rotations are appropriately handled to produce
a smooth interpolation

6 Error Function

In this section, we consider error functions to stitch fragmented tetrahedra. Fix the
vertex positions V0 of the rest shape and the local transformations {Ci | 1 ≤ i ≤ n}
of the tetrahedra. An error function is a function of the deformed vertex positions
V ′. By Eq. (2), a piecewise linear map {Ai | 1 ≤ i ≤ n} and V ′ are linearly related
and we identify them. In [1], they introduced

ET (V
′, {Ci}) =

n∑
i=1

|Âi − Ci|2F (4)

and it has been used in many of the ARAP based shape deformation applications
including [2, 15–17]. Note that the function is translation invariant but not rotation
invariant. Rotation invariance is sometimes preferable in shape deformation (see,
for example, [10, 14] and Fig. 9). We propose an alternative error function which is
rotation and translation invariant:

ES(V
′, {Ci}) =

n∑
i=1

|S(Âi) − S(Ci)|2F, (5)
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where S(X) for X ∈ GL(3) is the shear factor of the polar decomposition of X (see
[12]). Intuitively, this error functionmeasures howmucheach tetrahedron is distorted.
Despite the simplicity and its invariance property, ES has not been considered in the
literature as far as the author is aware. We believe this error function gives a good
alternative to ET in some applications (see Fig. 9).

Remark 2 We can assign a weight Wi ∈ R to each tetrahedron Ti to specify its
contribution to the error function. It is done simply by replacing the summation∑n

i=1 with the weighted one
∑n

i=1 Wi in the definitions of the error functions. For
notational simplicity, we omit them in this paper.

As we described in Sect. 3, we define the output as the minimiser of the error
function. In other words, we compute the piecewise linear function {Ai | 1 ≤ i ≤ n}
which is closest to {Ci | 1 ≤ i ≤ n} with respect to the error function. Computing
the minimiser for ET is reduced to solving a sparse linear system (see [1, 16]). For
ES , the computation is not linear. An iterative way similar to [14] is given as follows:

1. Compute the minimiser of ET (V ′, {Ci}) and set Âi.
2. Compute the polar decomposition Âi = RiSi.
3. Compute the minimiser of ET (V ′, {RiS(Ci)}) to update {Âi}.
4. Repeat (2) and (3) until {Âi} converge.

Note that there is some indeterminacy of theminimiser coming from the symmetry
of the error function. For example, any translation of a minimiser is also a minimiser.
To obtain a unique minimiser, one can impose additional constraints; for ET fixing
the position of the barycentre and for ES fixing the position of the barycentre and the
orientation of some tetrahedra.

7 Implementation

We implemented our algorithm as the Autodesk Maya plugin [6]. In our system, the
user can specify the weight for each shape with sliders, or the ball controller which
computes the weights by [4] from the configuration of the balls representing the
shapes (Fig. 8).

The ARAP framework was also applied to shape blending in [2] in the 2D setting
and in [16] in the 3D setting. We demonstrate our improvement discussed in Sects. 4
and 6 by comparing with [16]. First, we note that in [16], (i) the face-normal tetrisa-
tion, (ii) the error function ET , (iii) and the blending function BlendP are used. We
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Fig. 8 Our Maya plugin

have already seen the difference between the blending functions BlendP and BlendC
at the end of Sect. 5. We will turn our attention to (i) and (ii). Figure9 visually com-
pares different tetrisations in Sect. 4 and the error functions ET and ES in Sect. 6.
We observe that ES produces more natural results than ET but much slower as we
see in Table1. With ES , the face-normal tetrisation causes extra wrinkles compared
to the edge-normal and the vertex-normal tetrisations. As far as we experimented,
it depends on the character of shapes to be blended which tetrisation gives the best
result. In general, with ET the output is more or less similar regardless of the choice
of tetrisation. With ES , the vertex-normal tetrisation seems to be a good choice.

Table1 shows a timing comparison for different tetrisations and error functions.
We blended two 3D models each with 26k triangles on a Macbook Air with 1.7GHz
Intel Core i7 and 8GBmemory. Initialisation part involves the Cholesky decomposi-
tion of the space matrix necessary to solve the minimiser of the error functions. This
is computed only once in the initialisation process. Note that the matrix is dependent
on the tetrahedral structure but independent of the choice of the error function. Run-
time part consists of finding the minimiser of the error functions and the computation
of Blend functions.
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Fig. 9 Top row from left to right rest shape V0 and its two deformations V1 and V2 to be blended
with weightsw1 = 1.0 andw2 = 1.5. Second row from left to right results obtained by face-normal,
edge-normal, and vertex-normal tetrisation with ET . Third row same as the second row but with ES

Table 1 Timing comparison

Face ET Edge ET Vertex ET Face ES Edge ES Vertex ES

Initialisation (s) 0.1976 0.3080 0.3556 0.1976 0.3080 0.3556

Runtime with BlendP 45.45 fps 27.43 fps 30.86 fps 11.66 fps 4.132 fps 4.762 fps

Runtime with BlendC 48.46 fps 29.31 fps 31.46 fps 12.19 fps 4.576 fps 5.037 fps
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A Construction Method for Discrete Constant
Negative Gaussian Curvature Surfaces

Shimpei Kobayashi

Abstract This article is an application of the author’s paper (Kobayashi, Nonlin-
ear d’Alembert formula for discrete pseudospherical surfaces, 2015, [9]) about a
construction method for discrete constant negative Gaussian curvature surfaces, the
nonlinear d’Alembert formula. The heart of this formula is the Birkhoff decomposi-
tion, and we give a simple algorithm for the Birkhoff decomposition in Lemma3.1.
As an application, we draw figures of discrete constant negative Gaussian curvature
surfaces given by this method (Figs. 1 and 2).

Keywords Discrete differential geometry ·Pseudospherical surface ·Loop groups ·
Integrable systems

1 Introduction

The study of smooth constant negative Gaussian curvature surfaces (PS surfaces1

in this article) is a classical subject of differential geometry. It is known that the
Gauss–Codazzi equations (nonlinear partial differential equations) for a PS surface
become a famous integrable system, sine-Gordon equation:

∂y∂xu − sin u = 0.

One of the prominent features of integrable systems is that they can be obtained
by compatibility conditions for certain linear partial differential equations, the so-
called Lax pair. Moreover, the Lax pair contains an additional parameter, the spectral
parameter, and it is a fundamental tool to study integrable systems. On a PS surface,
the spectral parameter induces a family of PS surfaces, which will be called the

1A constant negative Gaussian curvature surface is sometimes called a pseudospherical surface,
thus we use “PS” for the shortened name.
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Fig. 1 A discrete PS surface of revolution with the parameters q = 0.8 and c = π/8. The right
figure is a wired model of the left one. The figures are made by using Wolfram Mathematica 10

Fig. 2 (Left) a discrete PS
surface is given by the same
data in Fig. 1 and the spectral
parameter has been chosen
as λ = 1.5 in Sym formula
(6). The surface has a screw
motion symmetry. (Right) a
discrete PS surface of
revolution with the
parameters q = 0.4 and
c = π/8

associated family, and the Lax pair is a family of moving frames (Darboux frames)
and it will be called the extended frame of a PS surface. The extended frame can be
thought as an element of the set of maps from the unit circle S1 in the complex plane
into a Lie group, the loop group, see Appendix for the definition.

In [10, 13], it was shown that loop group decompositions (Birkhoff decompo-
sitions, see Theorem3.3) of the extended frame F of a PS surface induced a pair
of 1-forms (ξ+, ξ−), that is, F = F+F− = G−G+ with ξ+ = F−1

+ dF+ and
ξ− = G−1

− dG−. Then it was proved that ξ+ and ξ− depended only on x and y,
respectively. Conversely it was shown that solving the pair of ordinary differential
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equations dF+ = F+ξ+ and dG+ = G+ξ− and using the loop group decomposition,
the extended frame could be recovered. This construction is called the nonlinear
d’Alembert formula for PS surfaces.

On the one hand a discrete analogue of smooth PS surfaces was defined in [1]
and the nonlinear d’Alembert formula for discrete PS surfaces was recently shown
in [9]. In this article we first review basic results for smooth/discrete PS surfaces
and the nonlinear d’Alembert formula for smooth/discrete PS surfaces according to
[1, 5, 9]. The heart of the formula is the Birkhoff decomposition. We next give a
simple algorithm (Lemma3.1) for the Birkhoff decomposition. As an application,
we finally draw figures of discrete pseudospherical surfaces given by this method
(Figs. 1 and 2).

2 Preliminaries

We briefly recall basic notation and results about smooth and discrete PS surfaces in
the Euclidean three space E3, that is R3 with the standard inner product 〈·, ·〉, see for
examples [1, 5, 10, 11, 13]. Moreover, we recall the nonlinear d’Alembert formula
for discrete PS surfaces [9].

2.1 Pseudospherical Surfaces

We first identify E3 with the Lie algebra of the special unitary group SU2, which will
be denoted by su2:

t (x, y, z) ∈ E
3 ←→ i

2
xσ1 − i

2
yσ2 + i

2
zσ3 ∈ su2, (1)

where σ j ( j = 1, 2, 3) are the Pauli matrices as follows:

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

Note that the inner product of E3 can be computed as 〈x, y〉 = −2 trace(XY ), where
x, y ∈ E

3 and X,Y ∈ su2 are the correspondingmatrices in (1). Let f be a PS surface
in E

3 with Gaussian curvature K = −1. It is known that there exist the Chebyshev
coordinates (x, y) ∈ R

2 for f , that is, they are asymptotic coordinates normalized
by | fx | = | fy| = 1. Here the subscripts x and y denote the x- and y-derivatives
∂x and ∂y , respectively. Then the first and second fundamental forms for f can be
computed as

I = dx2 + 2 cos u dxdy + dy2, II = 2 sin u dxdy,
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where 0 < u < π/2 is the angle between two asymptotic lines. Let

e1 = 1

2
sec(u/2)( fx + fy), e2 = 1

2
csc(u/2)( fx − fy) and e3 = e1 × e3

be the Darboux frame rotating on the tangent plane clockwise angle u. Note that it
is easy to see that {e1, e2, e3} is an orthonormal basis of E3. Under the identification
(1), {− i

2σ1,− i
2σ2,− i

2σ3} is an orthonormal basis of E3, and for a given F ∈ SU2

and x ∈ su2, Ad(F)(x)(:= FxF−1) denotes the rotation of x . Thus there exists a F̃
taking values in SU2 such that

e1 = − i

2
F̃σ1 F̃

−1, e2 = − i

2
F̃σ2 F̃

−1 and e3 = − i

2
F̃σ3 F̃

−1. (2)

Without loss of generality, at some base point (x∗, y∗) ∈ R
2, we have F̃(x∗, y∗) = Id.

Then there exists a family of frames F parametrized by λ ∈ R+ := {r ∈ R | r > 0}
satisfying the following system of partial differential equations, see [5] in detail:

Fx = FU and Fy = FV, (3)

where

U = i

2

(−ux λ

λ ux

)
, V = − i

2

(
0 λ−1eiu

λ−1e−iu 0

)
. (4)

The parameter λ ∈ R+ will be called the spectral parameter. We choose F such that

F |λ=1 = F̃ and F |(x∗,y∗) = Id .

The compatibility condition of the system in (3), that is Uy − Vx + [V,U ] = 0,
becomes a version of the sine-Gordon equation:

uxy − sin u = 0. (5)

It turns out that the sine-Gordon equation is the Gauss–Codazzi equations for PS

surfaces. Thus from the fundamental theorem of surface theory there exists a family
of PS surfaces parametrized by the spectral parameter λ ∈ R+. Then the family of
frames F will be called the extended frame for f .

From the extended frame F , a family of PS surfaces f λ, (λ ∈ R+) is given by
the so-called Sym formula, [12]:

f λ = λ
∂F

∂λ
F−1

∣∣∣∣
λ∈R+

. (6)
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The immersion f λ|λ=1 is the original PS surface f up to rigid motion. The one-
parameter family { f λ}λ∈R+ will be called the associated family of f .

2.2 Nonlinear d’Alembert Formula

Firstly, we note that the extended frame F of a PS surface f is an element of the loop
group for SU2, that is, it is a set of smooth maps from S1 into SU2, see Appendix for
the definition. In fact by (4) the extended frame is defined onC× = C\{0} and it can
be thought as an element in the loop group of SU2. Then the loop group becomes a
Banach Lie group with suitable topology, which is an infinite-dimensional Lie group
and thus it will be called the loop group. Then the Birkhoff decomposition of the
loop group is fundamental, which will be now explained. The loop group of SU2 will
be denoted by ΛSU2 and we consider two subgroups Λ+SU2 and Λ−SU2 of ΛSU2

as sets of maps which can be extended inside the unit disk and outside the unit disk,
respectively. In other words, maps F ∈ ΛSU2, F+ ∈ Λ+SU2 and F− ∈ Λ−SU2

have the following Fourier expansions:

F =
∞∑

j=−∞
Fjλ

j , F+ =
∞∑
j=0

F+
j λ j and F− =

0∑
j=−∞

F−
j λ j .

Then we consider the following problem: for a given map F ∈ ΛSU2, does there
exist F± or G± taking values in Λ±SU2 such that

F = F+F− or F = G−G+

holds? The Birkhoff decomposition theorem assures that this decomposition always
holds in case of the loop group of SU2, see Theorem3.3 in detail. By using the
Birkhoff decomposition theorem, we give a construction method for PS surfaces, the
so-called the nonlinear d’Alembert formula.

From now on, for simplicity, we assume that the base point is (x∗, y∗) = (0, 0)
and the extended frame F at the base point is identity:

F(0, 0, λ) = Id .

The nonlinear d’Alembert formula for smooth PS surfaces is summarized as follows,
[5, 10, 13].

Theorem 2.1 ([5, 13]) Let F be the extended frame for a PS surface f in E3. More-
over, let F = F+F− = G−G+ be the Birkhoff decompositions given in Theorem3.3,
respectively. Then F+ and G− do not depend on y and x, respectively, and the
Maurer–Cartan forms of F+ and G− are given as follows:



26 S. Kobayashi⎧⎪⎪⎨
⎪⎪⎩

ξ+ = F−1
+ dF+ = i

2
λ

(
0 e−iα(x)

eiα(x) 0

)
dx,

ξ− = G−1
− dG− = − i

2
λ−1

(
0 eiβ(y)

e−iβ(y) 0

)
dy,

(7)

where, using the angle function u(x, y), α and β are given by

α(x) = u(x, 0) − u(0, 0) and β(y) = u(0, y).

Conversely, let ξ± be a pair of 1-forms defined in (7) with functions α(x) and β(y)
satisfyingα(0) = 0. Moreover, let F+ and G− be solutions of the pair of the following
ordinary differential equations:

{
dF+ = F+ξ+,

dG− = G−ξ−,

with F+(x = 0, λ) = G−(y = 0, λ) = Id. Moreover let D = diag(e− i
2 α, e

i
2 α) and

decompose (F+D)−1G− by the Birkhoff decomposition in Theorem3.3:

(F+D)−1G− = V−V−1
+ ,

where V− ∈ Λ−∗ SU2 and V+ ∈ Λ+SU2. Then F = G−V+ = F+DV− is the extended
frame of some PS surface in E3.

Definition 1 The pair of 1-forms (ξ+, ξ−) in (7) will be called the pair of normalized
potentials.

Definition 2 In [5], it was shown that the extended frames of PS surfaces can be also
constructed from the following pair of 1-forms:

ηx =
1∑

j=−∞
ηx
jλ

j dx and ηy =
∞∑

j=−1

η
y
jλ

j dy, (8)

where ηx
j and η

y
j take values in su2, and each entry of ηx

j (resp. η
y
j ) is smooth on

x (resp. y), and det ηx
1 	= 0, det ηy

−1 	= 0. Moreover ηx
j and η

y
j are diagonal (resp.

off-diagonal) if j is even (resp. odd). This pair of 1-forms (ηx , ηy) is a generalization
of the normalized potentials (ξ+, ξ−) in (7) and will be called the pair of generalized
potentials, see also [4].

2.3 Discrete Pseudospherical Surfaces

Discrete PS surfaces were first defined in [1]. Instead of the smooth coordinates
(x, y) ∈ R

2, we use the quadrilateral lattice (n,m) ∈ Z
2, that is, all functions
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depend on the lattice (n,m) ∈ Z
2. The subscripts 1 and 2 (resp. 1̄ and 2̄) denote the

forward (resp. backward) lattice points with respect to n and m: For a map s(n,m)

of the lattice (n,m) ∈ Z
2, we define s1, s2, s1̄ and s2̄ by

s1 = s(n + 1,m), s1̄ = s(n − 1,m), s2 = s(n,m + 1) and s2̄ = s(n,m − 1).

A discrete PS surface f : Z2 → E
3 was defined by the following two conditions:

1. For each point f ∈ E
3, there is a plane P such that

f, f1, f1̄, f2, f2̄ ∈ P.

2. The length of the opposite edge of an elementary quadrilateral are equal:

| f1 − f | = | f12 − f2| = a(n) 	= 0, | f2 − f | = | f12 − f1| = b(m) 	= 0.

Then the discrete extended frame F , which takes values in ΛSU2, of a discrete PS

surface f can be defined by the following partial difference system, see [1] and [2,
Sect. 3.2]:

F1 = FU and F2 = FV, (9)

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U = 1

Δ+

(
e− i

2 (u1−u) i
2 pλ

i
2 pλ e

i
2 (u1−u)

)
,

V = 1

Δ−

(
1 − i

2qe
i
2 (u2+u)λ−1

− i
2qe

− i
2 (u2+u)λ−1 1

)
,

(10)

with Δ+ = √
1 + (p/2)2λ2 and Δ− = √

1 + (q/2)2λ−2. Here u is a real function
depending on both n and m, and p 	= 0 and q 	= 0 are real functions depending only
on n and m, respectively:

u = u(n,m), p = p(n) and q = q(m).

The compatibility condition of the system in (9), that is VU2 = UV1, gives the
so-called discrete sine-Gordon equation:

sin

(
u12 − u1 − u2 + u

4

)
= pq

4
sin

(
u12 + u1 + u2 + u

4

)
. (11)

The Eq. (11) was first found by Hirota in [7] and also called the Hirota equation.

Remark 2.2 Strictly speaking, the lengths of the edges for a discrete PS surface
should be small (less than 1). If the length is big (greater than or equal to 1), then
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the compatibility condition VU2 = UV1 gives a discrete analogue of mKdV equa-
tion, see [8] in detail. Since this restriction is fundamental for the discrete nonlinear
d’Alembert formula, we assume the conditions in (13).

Then the discrete PS surface f can be given by the so-called Sym formula, [1]:

f λ = λ
∂F

∂λ
F−1

∣∣∣∣
λ∈R+

. (12)

The original discrete PS surface f and f λ|λ=1 are the same surface up to rigidmotion.
It is easy to see that the map f λ defined in (12) satisfies two properties of a discrete
PS surface and { f λ}λ∈R+ gives a family of discrete PS surfaces, see [2, Theorem3].

2.4 Nonlinear d’Alembert Formula for Discrete PS Surfaces

In this subsection we assume that the base point is (n∗,m∗) = (0, 0) and the discrete
extended frame F at the base point is identity:

F(0, 0, λ) = Id .

Moreover, we also assume that the functions p and q in (10) satisfy the inequalities,

0 <

∣∣∣ p
2

∣∣∣ < 1 and 0 <

∣∣∣q
2

∣∣∣ < 1, (13)

see Remark2.2. Then the discrete nonlinear d’Alembert formula can be summarized
as follows.

Theorem 2.3 ([9]) Let f be a discrete PS surface and F the corresponding discrete
extended frame. Decompose F according to the Birkhoff decomposition in Theo-
rem3.3:

F = F+F− = G−G+,

where F+ ∈ Λ+∗ SU2, F− ∈ Λ−SU2,G− ∈ Λ−∗ SU2 and G+ ∈ Λ+SU2. Then F+ and
G− do not depend onm ∈ Z and n ∈ Z, respectively, and the discreteMaurer–Cartan
forms of F+ and G− are given as follows:

⎧⎪⎪⎨
⎪⎪⎩

ξ+ = F−1
+ (F+)1 = 1

Δ+

(
1 i

2 pe
−iαλ

i
2 pe

iαλ 1

)
,

ξ− = G−1
− (G−)2 = 1

Δ−

(
1 − i

2qe
iβλ−1

− i
2qe

−iβλ−1 1

)
,

(14)
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whereΔ+ = √
1 + (p/2)2λ2 andΔ− = √

1 + (q/2)2λ−2, the functions p and q are
given in (10), and α and β are functions of n ∈ Z and m ∈ Z, respectively. Moreover
using the function u(n,m) in (10), α(n) and β(m) are given by

{
α(n) = 1

2u(n + 1, 0) + 1
2u(n, 0) − u(0, 0),

β(m) = 1
2u(0,m + 1) + 1

2u(0,m).
(15)

Conversely, Let ξ± be a pair of matrices defined in (14) with arbitrary functions
α = α(n), β = β(m) with α(0) = 0 and p = p(n), q = q(m) satisfying the
conditions (13). Moreover, let F+ = F+(n, λ) and G− = G−(m, λ) be the solutions
of the ordinary difference equations

(F+)1 = F+ξ+ and (G−)2 = G−ξ−, (16)

with F+(n = 0, λ) = G−(m = 0, λ) = Id and set a matrix D = diag(e
i
2 k, e− i

2 k) ∈
U1, where k(0) = 0 and k(n) = 2

∑n−1
j=0(−1) j+nα( j) for n � 1. Decompose

(F+D)−1G− by the Birkhoff decomposition in Theorem3.3:

(F+D)−1G− = V−V−1
+ , (17)

where V− ∈ Λ−∗ SU2, V+ ∈ Λ+SU2. Then F = G−V+ = F+DV− is the discrete
extended frame of some discrete PS surface inE3. Moreover the solution u = u(n,m)

of the discrete sine-Gordon for the discrete PS surface satisfies the relations in (15).

Definition 3 The pair of matrices (ξ−, ξ+) given in (14) will be called the pair of
discrete normalized potentials.

Similar to the smooth case, we generalize the pair of discrete normalized potentials:

Definition 4 Let (ξ−, ξ+) be a pair of discrete normalized potentials and let ηm and
ηn be

ηn = Pl
−ξ+Pr

−, ηm = Pl
+ξ−Pr

+. (18)

Here we assume that P�± (� = l or r ) take values in Λ±SU2 and do not depend on m
and n, respectively, that is, P�− = P�−(n, λ) and P�+ = P�+(m, λ). Thus the ηn and ηm
do not depend on m and n, respectively:

ηn = ηn(n, λ), ηm = ηm(m, λ).

The pair (ηn, ηm) given in (18) will be called the pair of discrete generalized poten-
tials.

Remark 2.4 The pair of normalized potentials (ξ+, ξ−) and the corresponding pair
of discrete generalized potentials (ηn, ηm) in (18) give in general different discrete
PS surfaces.
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3 Algorithm for Birkhoff Decomposition

In this section, we give a simple algorithm performing the Birkhoff decomposition
used in Theorem2.3.

When one looks at the discrete extended frame F defined in (9), F+ and G−
defined in (16), one notices that they are given by products of two types of matrices:

e+ = 1√
1 + |a|2λ2

(
eiθ aλ

−āλ e−iθ

)
, e− = 1√

1 + |b|2λ−2

(
eiκ bλ−1

−b̄λ−1 e−iκ

)
, (19)

where θ, κ ∈ R, a, b ∈ C and |a|, |b| < 1. It is easy to see that e± take values in
Λ±SU2, respectively. Two matrices e+ and e− do not commute in general, however,
the following lemma holds.

Lemma 3.1 Let e± be matrices in (19). Then there exist matrices ẽ± which take
values in Λ±SU2 such that

e+e− = ẽ−ẽ+

holds. In particular ẽ± can be explicitly computed as follows:

ẽ+ = 1√
1 + |ã|2λ2

(
ei θ̃ ãλ

−¯̃aλ e−i θ̃

)
and ẽ− = 1√

1 + |b̃|2λ−2

(
ei κ̃ b̃λ−1

− ¯̃bλ−1 e−i κ̃

)
,

where ã, b̃, θ̃ and k̃ are explicitly chosen by the following equations:

ã = ae−i(κ+κ̃), b̃ = bei(θ+θ̃ ) and θ̃ + κ̃ = θ + κ + 2 arg(1 − ab̄e−i(θ+κ)).

Note that ẽ± are not unique and one can always choose θ̃ = 0 or κ̃ = 0.

Proof It is just a consequence of a direct computation of e+e− and ẽ−ẽ+, respectively.

Using Lemma3.1 iteratively, we obtain the following algorithm for the Birkhoff
decomposition.

Theorem 3.2 Let F be the discrete extended frame of a PS surface. Moreover let
F+,G− and D be the matrices defined in (16). Then the Birkhoff decompositions for
F and (F+D)−1G− can be explicitly computed.

As an example of the above theorem, we draw figures (Figs. 1 and 2) of discrete
PS surfaces of revolution according to the following potential, see also [9, Sect. 3].
Let ηn and ηm be ηn = η−1

m = A+L A− with

A± = 1

Δ±

(
1 ± i

2qλ±1

± i
2qλ±1 1

)
and L = diag(eic, e−ic),
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where Δ± = √
1 + (q/2)2λ±2, q (0 < |q/2| < 1) and c = π�−1 (� ∈ Z+) are

some constants. We note that (ηn, ηm) is a pair of discrete generalized potentials
in Definition4. The pair of solutions for ((Fn)1, (Gm)2) = (Fn,Gm)(ηn, ηm) with
Fn(0) = Gm(0) = Id is explicitly given by

Fn = (A+L A−)n, and Gm = (A+L A−)−m,

respectively. Then the Birkhoff decomposition

F−1
n Gm = V−V−1

+

is given by using Lemma3.1. In fact, F−1
n Gm can be rephrased as

F−1
n Gm = (A+L A−)−(n+m) =

n+m︷ ︸︸ ︷
(B−B+)(B−B+) . . . (B−B+),

where we set B+ = (A+L)−1 and B− = A−1
− . Then by using Lemma3.1, there exist

B+,1 and B−,1 such that B+B− = B−,1B+,1 holds. Thus we can compute F−1
n Gm as

follows:

F−1
n Gm = B−(B+B−) . . . (B+B−)B+ = B−(B−,1B+,1) . . . (B−,1B+,1)B+.

Next, we use recursively Lemma3.1 for B−,i B+,i (i = 1, 2, . . . , n + m − 1), that
is, there exist B+,i+1 and B−,i+1 such that B+,i B−,i = B−,i+1B+,i+1 holds. Finally,
F−1
n Gm can be computed as

F−1
n Gm = (B−B−,1 . . . B−,n+m−1) · (B+,n+m−1 . . . B+,1B+).

Note that since B− takes values in Λ−∗ SU2, all B−,i also take values in Λ−∗ SU2.
Thus V− = B−B−,1 . . . B−,n+m−1 and V−1

+ = B+,n+m−1 . . . B+,1B+. Then we do
not need to compute the diagonal matrix D as in Theorem2.3 for drawing figures,
since any λ-independent diagonal term goes away in Sym formula (12), that is, we
can use FnV− = GmV+ in stead of the discrete extended frame F which is given by
F = FnV−D = FnV−D.

Acknowledgments The author would like to thank an anonymous referee for helpful comments.
The author is partially supported by Kakenhi 26400059.

Appendix

In this appendix we give a definition of the loop group of SU2 and its subgroups
Λ±SU2. Moreover theorem of the Birkhoff decomposition will be stated.
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It is easy to see that F defined in (3) together with the condition F |(x∗,y∗) = Id is
an element in the twisted SU2-loop group:

ΛSU2 :=
⎧⎨
⎩g : R× ∪ S1 → SL2C

∣∣∣ g is smooth, g(λ) =
(
g(λ̄)

−1
)T

and σg(λ) = g(−λ)

⎫⎬
⎭ , (20)

where R
× = R\{0}, σ X = Ad(σ3)X = σ3Xσ−1

3 , (X ∈ SL2C) is an involution
on SL2C. In order to make the above group a Banach Lie group, we restrict the
occurringmatrix coefficients to theWiener algebraA = { f (λ) = ∑

n∈Z fnλn: S1 →
C | ∑

n∈Z | fn| < ∞}, where we denote the Fourier expansion of f on S1 by
f (λ) = ∑

n∈Z fnλn . Then the Wiener algebra is a Banach algebra relative to the
norm ‖ f ‖ = ∑ | fn| and the loop group ΛSU2 is a Banach Lie group, [6].

Let D+ and D− be the interior of the unit disk in the complex plane and the union
of the exterior of the unit disk in the complex plane and infinity, respectively. We
first define two subgroups of ΛSU2:

Λ+SU2 = {
g ∈ ΛSU2 | g can be analytically extended to D+}

, (21)

Λ−SU2 = {
g ∈ ΛSU2 | g can analytically be extended to D−}

. (22)

Then Λ+∗ SU2 and Λ−∗ SU2 denote subgroups of Λ+SU2 and Λ−SU2 normalized at
λ = 0 and λ = ∞, respectively:

Λ+
∗ SU2 = {

g ∈ Λ+SU2 | g(λ = 0) = Id
}
,

Λ−
∗ SU2 = {

g ∈ Λ−SU2 | g(λ = ∞) = Id
}
.

The following decomposition theorem is fundamental.

Theorem 3.3 (Birkhoff decomposition, [3, 6]) The multiplication maps

Λ+
∗ SU2 × Λ−SU2 → ΛSU2 and Λ−

∗ SU2 × Λ+SU2 → ΛSU2

are diffeomorphisms onto ΛSU2, respectively.
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Fabrication-Aware Geometry Processing

Daniele Panozzo

Abstract The advent of commodity 3Dmanufacturing is increasing the demand for
advanced design tools that make the designed shapes physically realizable. This is a
short overview of fabrication-aware algorithms to solve classical geometry process-
ing problems such as intersection-free mesh deformation, surface parametrization,
semi-regular meshing and vector field design.

Keywords Geometry processing · Digital fabrication · Self-supporting surfaces ·
Hydrographic printing · Quadrilateral meshing · Appearance-mimicking surfaces

The advent of commodity 3D printing is revolutionizing the way people think about
designing and prototyping: a designer can now hold in her hands a 3D object hours
after its design is complete, drastically reducing costs and enabling quick iterations
over many designs. Additive manufacturing enables new applications that were im-
possible with traditional production processes.

However, the majority of software tools and algorithms currently used to create,
manipulate and process digital geometry are not fabrication-aware: they model the
shape as an abstract entity that often does not satisfy practical requirements such as
stability, robustness or lack of self-intersections. This leads to a large gap between
the digital design and the physical fabrication, which is themajor obstacle preventing
digital fabrication to becomemainstream and to deeply change our working habits, in
a way similar to the introduction of inkjet and laser printers. This is a short overview
of a series of works that strive to fill this gap, providing computational design tools
that rely on numerical optimization to create fabrication-ready designs, which can
be directly fabricated using digital fabrication technologies.
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1 Avoiding Self-intersections

A 3D model must be free of self-intersections to be suitable for fabrication. Tech-
nically, this means that no elements should intersect (in the case of thin layers such
as cloth) and that no volumetric element has negative volume (in case of volumet-
ric representations). This requirement is surprisingly difficult to enforce, especially
during design [1], and it is often omitted in favor of simplicity and speed. While
this is not a critical problem for models used in movies or games (the overlaps will
often not be visible), it becomes mandatory to solve before models can be fabricated.
A 3D printer cannot print infinitesimally thin layers, and it thus needs to fill the
interior of the shape, which is not defined and impossible to compute in presence of
self-intersections (Fig. 1).

Avoiding self-intersections during deformation is particularly simple if each point
is restricted to move on a ray pointing the origin [2]. While this reduces consider-
ably the deformation space, this special deformation is ideal to automatically create

Fig. 1 Preventing self-intersections during modeling leads to more intuitive results that are ready
to be 3D printed

Fig. 2 A collection of appearance-mimicking surfaces
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appearance mimicking surfaces starting from triangle meshes (Fig. 2). The produced
surfaces are, by construction, free of self-intersection and ready to be fabricated via
3D printing.

2 Planar Panelization

Quadrilateral meshing algorithms are gaining popularity in the graphics community
to convert high resolution triangle meshes into coarse control grids for Catmull–
Clark subdivisions. They can also be applied to design planar tessellations, which
are ideal for glass and steel construction, due to the low cost of producing flat glass
panels. Starting from a planar tessellation, a building can be constructed by replac-
ing each face with a flat glass panel, that is much less expensive to manufacture.
Mathematically, the edges of a quadrilateral mesh with flat faces define a conjugate
field [3], which can be designed with a simple and efficient algorithm [4] that allows
architects to interactively experiment with different planar tessellations by simply
specifying a set of desired alignment constraints (Fig. 3).

3 Free-Form Masonry Structures

The automatic creation of quadrilateral meshes can be used to design and tessellate of
free-form masonry structures [5, 6]. These structures are composed of unsupported
stone blocks and they stand thanks to their special geometry where all blocks are in
static equilibrium.Theblockpattern used is a quadrilateralmesh,where an edge every

Fig. 3 Planar quadrilateral meshes are used in architectural geometry to design free-form glass
and steel structures. The designer specifies a set of alignment constraints (left), the constraints are
interpolated in a conjugate direction field (middle) that is automatically converted into a mesh with
planar faces (right)
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Fig. 4 An input surface is automatically transformed into a masonry 3D model. The equilibrium
of the surface is represented by two planar graphs that encode the directions and magnitudes of all
forces. The generated blocks are 3D-printed and assembled into a physical model of the surface
that stands in compression without using glue or reinforcements

two is removed to create a staggering effect that increases the interlocking between
the pieces, simplifying the construction and improving the structural properties of
the masonry building (Fig. 4).

4 Hydrographics Printing

In the digital world, assigning arbitrary colors to an object is a simple operation
thanks to texture mapping. However, in the real world, the same basic function of
applying colors onto an object is far from trivial. One can specify colors during
the fabrication process using a color 3D printer, but this does not apply to already
existing objects. Paint and decals can be used during post-fabrication, but they are
challenging to apply on complex shapes. We proposed a method [7] to enable texture
mapping of physical objects, that is, to allow one tomap an arbitrary color image onto
a three-dimensional object. The approach builds upon hydrographics, a technique to
transfer pigments printed on a sheet of polymer onto curved surfaces (Fig. 5).

Fig. 5 We start with a real-world object and a digital 3D model of this object. Using off-the-
shelf 3D modeling software, we define a color texture on the digital model. Our algorithm then
automatically generates a flat image that we print on a polymer film. We use hydrographics (water
transfer printing) to apply this texture onto the real-world object. Our approach compensates for
the deformation that happens during the transfer process, so that the final result looks like what we
specified on the 3D model
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Revisiting Vorticity: Pushing Fluid Solvers
to the Next Level

Robert Bridson

Abstract Although some of the earliest work in fluid simulation for computer
graphics exploited vorticity (e.g. Yaeger et al.’s work on Jupiter for the film 2010
[4]), by and large practical work over the last decade or two has focused on velocity-
pressure formulations. This talk looks at why vortex methods are worth coming back
to, the troubles that have steered practitioners away from them, and how we might
overcome them.

Keywords Fluid simulation · Physics-based animation · Vortex methods

1 Background

From vast oceans to air puffing dust around a footfall, fluids have become a staple of
visual effects work, and direct simulation of the underlying physics has emerged as
themost attractive approach to generate detailed and natural-looking fluid animation.
Current research in graphics on this field can loosely be divided into two parts: work
extending the range of phenomena that can be achieved (such as new materials and
new means of artist control), and work improving the quality and/or efficiency of
standard solves. We focus on the latter in this talk, and mostly on improving smoke
simulation in particular.

Measuring the “quality” of a simulation is in of itself a tough, open problem.
Accurately solving chaotic, high Reynolds number flow is essentially infeasible, so
errors are a given: the question is which sorts of error are acceptable? Backed by
experience, I will argue that accurately tracking vorticity and vortex structures is a
good goal for graphics.

Vorticity ω is the curl of velocity u,

ω = ∇ × u (1)
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which measures locally how the flow is rotating (as opposed to shearing). In rigidly
rotation regions, vorticity is exactly twice the angular velocity of the region. Velocity
can be reconstructed from vorticity via the Biot–Savart law, in a sense integrating to
undo the differentiation, as long as boundaries are also known: vorticity can serve as
the fundamental state of a solver just as well as velocity.

Why vorticity might be so important is best illustrated mathematically with the
equations of motion for a constant density fluid in two dimensions with negligible
viscosity. Recall the material derivative D/Dt = ∂/∂t +u · ∇ tracks how a quantity
attached to the fluid changes in time while it flows with the fluid. The usual velocity-
pressures equations are

Du
Dt

+ 1

ρ
∇ p = 0, (2)

∇ · u = 0, (3)

which showvelocity is always being changed by the pressure gradient, while pressure
is computed so as to keep the velocity incompressible. On the other hand, the vorticity
equation which describes exactly the same motion is this simple:

Dω

Dt
= 0. (4)

In other words, vorticity just moves with the flowwithout otherwise changing, which
is both striking mathematically and far easier to numerically solve.

Even better, in many flow scenarios vorticity is highly concentrated in small
structured regions, and basically is zero throughout most of the domain. This sparsity
in the representation can also be exploited numerically by tracking vorticity with a
small and sparse set of particles or other Lagrangian elements. Figure1 shows recent
smoke results using relatively lightweight vortex triangle meshes and particles.

The fly in the ointment, which I believe has steered people away from vortex
methods in the past, is the reconstruction of velocity from vorticity and boundaries.
Without boundaries, finding the velocity at a single point in space with the Biot–
Savart law requires integrating vorticity with a kernel over the entire fluid domain;
with boundaries additional integrals or PDEs are required to calculate their effect.
Even just formulating solid and free surface boundary conditions in terms of vorticity
can be very tricky indeed. On top of all this, in three dimensions there is an additional
term in the vorticity equation, for “vortex stretching,” which can be difficult to stably
approximate.

Velocity reconstructionneedn’t be sodifficult, however.While a purelyLagrangian
approach using the Biot–Savart lawmay require complex algorithms such as the Fast
Multipole Method to scale well, great results can be obtained with the Vortex-in-
Cell (VIC) method [2], where vorticity is splatted to a background grid and veloc-
ity is reconstructed there via solving the Poisson problem. Even greater detail can
be achieved with the Particle-Particle Particle-Mesh (PPPM) approach, without too
much more complication for graphics [5].
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Fig. 1 Left Brochu et al. tracked vorticity just on a triangle mesh dividing space between smoky
and clear air, producing highly detailed results [1]. Right Goldade et al. demonstrated a real-time
smoke simulator using a very small number of vortex particles (in purple) to nonetheless capture
detailed and lively fluid motion [3]

Fig. 2 Left Frame from a
velocity-pressure smoke
simulation using FLIP. Right
The same with the IVOCK
correction to more accurately
solve the vorticity equation
[6]
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While there is still much more to say about boundary conditions for vortex meth-
ods, recent work by Zhang et al. shows that it’s possible to augment a traditional
velocity-pressure solver with a correction to track vorticity like a vortex method,
while handling the boundary conditions directly with velocity and pressure [6].
Figure2 demonstrates the improvement in quality this correction gives with only
a small overhead.

There is still much left to do, especially in transferring these techniques to water
simulations; I hope this talk will provide a useful view forward on next steps in
research.
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Active Comicing for Freehand Drawing
Animation

Tsukasa Fukusato and Shigeo Morishima

Abstract This paper presents Active Comicing, a prototype sketching system that
provides enhanced frame interpolation capability for freehand drawing animation.
In this system, the user draws several 2D freeform strokes interactively on multi-
ple frames, and the system automatically constructs stroke-to-stroke interpolation
frames. To compose a comprehensive and coherent least-distorting interpolation, we
assume input stroke has ghost points, which are additional points defined on stroke
edges, and define affine transformations. In addition, the system semi-automatically
guides the template motion of each stroke. For example, if the user draws an arrow,
the system assigns the stroke moves in the direction of the arrow. To assign template
motion, we compute the stroke similarity between the user’s input and stroke infor-
mation from a database. With this method, it is possible to generate stroke animation
on each frame without stroke interpolation. By combining these techniques, the user
can generate freehand animations easily and quickly.

Keywords As-rigid-as-possible stroke interpolation · Stroke matching · Interactive
drawing

1 Introduction

2D freehand animation enables viewers to intuitively experience artistry and feeling.
Among these techniques, GIF animation (e.g., LINE’s stamp and Twitter icon) has
attracted worldwide attention in social networks. To present a worldview using 2D
freehand animation, anime-like techniques such as flip books and motion comics
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are employed. However, the creation of 2D freehand animations has always been a
time-consuming and skill-demanding process. Software such as Adobe Photoshop
provides some assistance by creating animations from a small number of key frames
and generating in-between frames automatically. For example, animation software
might deform a shape using handles or transform simple geometric primitives. How-
ever, creating the numerous key-frames of animation, such as those in a flip book,
requires significant skill and time.

Conversely, the cartoon animation industry tends to shift traditional hand-drawn
techniques to a pipeline using parameterized 3D models. Although a 3D model
technique reduces production costs, this approach comes at the expense of well-
established cartoon animation values, such as character and expression. Thesemodels
may diminish freedom, expressiveness, and the artist’s commitment to the characters.
It is difficult to parameterize the freedoms of pencil and paper. In short, many amateur
animators, including children, find it difficult to create freehand drawing animation.

Our goal is to create new shape from freehand drawing 2D shapes, sketched
onto a drawing interface. In this paper, we present Active Comicing, a sketch-based
interface that allows users to interpolate freehand drawing strokes without a skeleton
(i.e., graffiti animation). Figure1 shows a freehand stroke animation on a display-
integrated tablet. Specifically, we have implemented a freehand stroke interpolation
method based on As-Rigid-As-Possible Stroke Interpolation, which does not require
editing commands or special interactionmodes. To address the vertex correspondence
problem, in which correspondence between input strokes must be established, our
system constructs a simple layer structure. To reduce the distortion of the in-between
shapes, we compute the orientation information for stroke vertices. Moreover, this
system allows users to edit the animation path of each stroke using a template motion
database. As a result, we can easily create a simple 2D freehand drawing animation.

The reminder of this paper is organized as follows. Related works are reviewed
in Sect. 2. We discuss the user interface in Sect. 3, and describe the main ideas
underlying the proposed method’s algorithms in Sect. 4. In Sect. 5, we describe the

Fig. 1 Prototype drawing
system with Active
Comicing, on a
display-integrated tablet
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implementation details of our prototype system. We conclude the paper and discuss
limitations and future work in Sect. 6.

2 Related Works

Recently, 3D computer graphics researchers have proposed generating 3D models
from 2D drawings. In particular, Teddy [1] inflates the stroke region surrounded by a
silhouette. River et al. [2] and Yeh et al. [3] propose a method to create 2.5D models,
which are hand-drawn illustration style models. Although their method can automat-
ically estimate the depth information of each polygon section, users must configure
Z-ordering and create each section from scratch. It is difficult to parameterize free-
hand drawings created with pencil and paper.

Drawing is a simple tool that reflects the artist’s creative sense. Pencil lines or
brush coloring can express rich emotions or subtle charms. Live2D [4] can create
rich animations based on standard linear interpolation (point-to-point interpolation)
while keeping the original charms intact. However, it is necessary to determine the
character pose on the frameor redraw someor all of the strokes in themodelmanually.
In addition, significant time is required to create a mesh structure and edit mesh
deformations. In image morphing research, Cambell [5] and Baxter [6] propose
intuitive approaches, whereby line drawings are interpolated in a pose-space with
reduced dimensions. This method enables the subspace of a pose to be browsed.
Unfortunately, it is limited to line drawings with the same number of lines, and may
give unnatural results because curves are linearly interpolated.

While physically based simulations [7, 8] can also be used for this purpose, it
tends to be slow and produces unstable shapes. Wang’s approach [9] enables image
deformation based on meshless rigid shape matching [10, 11]. Moreover, Sykora
et al. [12] apply this approach to elasticity-inspired character registration. With this
method, it is possible to register images undergoing large free-form deformations
and appearance variations. Unfortunately, they cannot directly obtain pixel or sub-
pixel precision, because they embed the image into a coarse lattice. Although this
method can apply a multi-scale extension, increasing the number of squares makes
the overall iterative process ineffective.

In shape interpolation research, As-Rigid-As-Possible Shape Interpolation
approaches (ARAP) have been studied [13–19]. These methods enable the volume
of the stroke’s interior to be maintained and produce more plausible animations by
using triangle mesh structures. Furthermore, Baxter [20] has extended this method to
examples-way rigid interpolation. However, this system uses polygonal boundary-
based triangulation; that is, it focuses only on similarity shape morphing. In addi-
tion, it is difficult to edit the mapping of each stroke. Alexa [21] proposes Laplacian
coordinate for shape interpolation; however, the morphing results have shrinkage.
Sederberg [22] exploits intrinsic blending on a basis of interpolating the respective
vertex angles and edge length. Moreover, Whited [23] develops BetweenIT, a tech-
nique for stroke interpolation from two key frames. This technique combines stroke
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motions constructed from logarithmic spiral vertex trajectories with stroke defor-
mations based on curvature averaging and twisting warps. This system provides a
context in which the user can guide the system in a natural manner to produce quality
results efficiently. However, this system only focuses on tight in-betweens, which
are drawn between two key frames that are very similar in shape.

Other approaches have processed more general shapes by considering deforma-
tions of a template model. For example, Igarashi’s Spatial Keyframing [24] animates
3D objects composed of skeletons. Moreover, applying motion capture data to a sin-
gle character image based on a skeleton has been studied [25, 26]. However, the range
of deformation is limited with these approaches. In addition, these approaches do
not specify how handles should be interpolated to achieve plausible interpolations.
In contrast, Sumner’s [27] Mesh Inverse Kinematics system interpolates between
multiple meshes. However, a non-linear inverse kinematics approach is not browsed
directly.

To summarize, previous animation techniques and tools have restrictions on the
types of input strokes that can be used for similarity stroke morphing, and it is
necessary to redraw some or all of the strokes in the model. Therefore, we propose
a method to interpolate freehand-drawing strokes. The proposed method is of great
value, and can create a simple animation interactively.

3 User Interface

Active Comicing’s physical user interface utilizes traditional 2D input devices such
as a standard mouse and pen tablet. Figure2 shows an overview of our system. In
drawing mode, a user draws several 2D freeform strokes interactively on some key
frames. This system has various user drawing functions such as image (e.g., jpg
image file) loading function and key frame copy function. The user can also redraw
some or all of the strokes on each frame. Moreover, using onion skinning, the user
can make decisions on how to create key frames based on the previous key frames
in the sequence.

Fig. 2 System overview
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A stroke consists of a sequence of points on the plane, which we call stoke ver-
tices. The stroke vertices are interpolated using a centripetal Catmull–Rom spline.
In editing mode, the user can transform the strokes to edit the xy-coordinate of each
stroke vertex; this translation is performed by dragging the mouse. The system auto-
matically assigns labeling numbers (or layer number) to the strokes on each key
frame based on the stroke order. The input strokes on one frame spatially correspond
to those on another frame based on the labeling number; stroke-to-stroke correspon-
dences are defined. Moreover, the user can edit the layering order by dragging and
dropping layers with the mouse.

The user can easily generate a freehand stroke animation as a GIF image, using
the provided animation timeline in animation mode.

4 Algorithm

4.1 Stroke Interpolation Method

To interpolate two frames, the corresponding strokes have to have the same number
of stroke vertices. The source strokes are first resampled to the number of target
stoke vertices n equidistantly. Let P = (p0, . . . ,pn) be the source stroke and Q =
(q0, . . . ,qn) be the target stroke.

For 2D interpolation technique, Sederberg [28] proposes a solution to the vertex
correspondence problem, and the vertex path problem is dealt with in Sederberg’s
[22] method, which interpolates the edge lengths and the angles between consecu-
tive edges of polygonal curves. To ensure these blended strokes are closed without
local self-intersection, they set to an equality constraint of the end positions by
tweaking the edge length only; however, the final morphing results are dependent
on the computation order of dihedral angles and edge length. Moreover, they can-
not add some constraints, and extend this method to an invariant interpolation under
similarity transformation, i.e., rotation and scale.Most shape interpolation and defor-
mation studies have focused on 2D or 3D triangle and lattice [29, 30] because the
affine transformation of each triangle polygon can be computed easily. However, this
approaches do not determine a vertex path for stroke interpolation. Baxter et al. [20]
apply a Delaunay triangulation to 2D stroke vertices, and then deform the Delau-
nay triangles based on ARAP. Unfortunately, the Delaunay triangulation approach
is focused only on a closed stroke, and is less intuitive for interpolations between
closed strokes. Specifically, it is difficult to define an affine transformation based on
the source and the target stroke vertices only.

Therefore, we assume that each stroke vertex vi has a ghost vertex vgi ∈ R
2,

which is placed on a certain distance along normal direction of each adjacent edge
(as shown in Fig. 3). Representing the ghost vertex is mainly inspired by Umetani’s
ghost point approach [31] and Sumner’s surface tetrahedra [32]. Using the ghost
vertex, we generate the triangles of the source and the target strokes in order to
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Fig. 3 Configuration of stroke, vertex (red) and ghost vertex (cyan)

compute a unique affine transformation of each edge. For the corresponding triangle
in each stroke shape, the system first computes the ghost vertex vg of each stroke
vertex (R90 denotes rotation matrix by 90◦):

vgi = vi + R90

(
vi+1 − vi−1

2

)
(1)

where R90 =
(
0 −1
1 0

)

As the result, the source and the target stroke can consist of a chain of triangles.
Then, we focus on ARAP interpolation of local and global linear transformation.
An affine mapping represented by matrix A transforms the source into the target
triangle. The matrix A is parameterized by time t ∈ R such that A(0.0) = I (identity
matrix) and A(1.0) = A. We next deal with the 2D interpolation of the entire input
strokes (the source and the target triangles). To compute a global transformationBi(t)
based on local translation Ai(t), we use Kaji’s local error function using the polar
decomposition and the exponential map [16] as follows:

Ai(t) = Rt
θ · exp(t log S) (2)

ER
i (Ai(t),Bi(t)) = min

s,δ∈R
‖sRδAi(t) − Bi(t)‖2F (3)

where Rδ is a rotation matrix, and s is scale value. This equation measures how
different Ai(t) and Bi(t) are as affine transformations of ith triangle. With the local
error functions for each triangle, we combine them into a single global error function.
If a local affine transformation can be formed by reflections,we exclude an error value
of local triangle distortion from the global error function. The global error function
is a positive definite quadratic form. Instead, in-between parameter t requires the
solution of a linear system of equations.

In addition, using the ghost vertex, we can unify the stroke’s global orientation
into a counterclockwise orientation. We compute a sign area S as follows:
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Fig. 4 Comparison. a Intrinsic shape interpolation [22] with t = 0.5. b Laplacian morphing [21].
c Our method

S = 1

2

∑
i

(vixv(i+1)y − v(i+1)xviy) (4)

This computation gives a positive signed area S for a simple stroke (non-self-
intersecting polygon) (S > 0) when the vertices are oriented counterclockwise
around the polygon, and negative (S < 0) when oriented clockwise. However, this
equation cannot be applied to complex strokes (self-intersecting polygon). It is nec-
essary to split the complex strokes into several simple strokes.

For interpolating the line weight and RGBA color information of each stroke,
we use standard linear interpolation. The system allows us to set the in-between
parameter t for linear and interactive interpolation of each stroke shape. The accept-
ability of the computation time depends on the shape and the desired application.
Figure4 illustrates the resulting transformations from a source to a target shape. For
comparison, Fig. 4a shows Sederberg’s method [22] of each vertex coordinate with
t = 0.5, and Fig. 4b shows Laplacian morphing method [21]. Our transformation
(ARAP with ghost vertex) is depicted in Fig. 4c. The results show that we have suc-
cessfully reduced distortions in stroke shape transformations. In addition, we can
incorporate some constraints into the global error function.

4.2 Template Motion Blending

In this section, we describe a method to animate strokes based on template effects,
such as those in Microsoft PowerPoint. The template effects consist of affine trans-
formations (e.g., translation matrix T , scaling matrix S, and rotation matrix R) and
alpha blending. This system is formed with the origin at the centroid vertices of
each stroke. By setting the stroke motion matrix (e.g., the animation path), we can
interactively edit the results of the stroke animation.

In addition, we attempt to synthesize the template effects automatically. For exam-
ple, when the user draws an arrow shape, our system assigns the stroke moves in
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the direction of the arrow. First, we assume that the user assigns the same effect to
similar shape strokes. Therefore, we propose a technique to compute the similarity
between strokes, and recommend optimum template effects based on the stroke data-
base, which contains sets of stroke and template effect. We compute the degree of
similarity between the input stroke v and the database stroke d, and present template
effects of highly similar strokes from the database. In image processing research,
stroke similarity has been proposed [33–36]. Ip et al. [33] exploit affine-invariant
stroke features based on stroke area and angle information. Because a single shape
signature (in the form of a nineteenth-dimension histogram) records the stroke area
and angle information, their similarity between stroke shapes can be computed effi-
ciently using a signature difference. However, this approach, known as histogram
intersection, does not consider stroke’s global orientation, and has difficulty rep-
resenting complex stroke shapes. Therefore, to compute stroke similarities, we use
rigid shapematching [9, 10] based on the centroid position of the input stroke vcm and
the database stroke dcm. We define the quadratic error function between the stroke
vertices pi(= vi − vcm) and qi(= di − dcm) as follows:

E =
∑
i

|pi − sR · qi|2 (5)

R = ApqS
−1 = Apq

(√
AT
pqApq

)−1

Apq =
∑
i

pi · qT
i

where n is the number of stroke vertices, s is the normalized value (s = ∑
i |pi|/|qi|).

The optimal rotation R is the rotation portion of Apq = RS; we compute rotation

matrix R = ApqS−1, where the symmetric portion is S =
√
AT
pqApq. The output

value E provides the dissimilarity value because the value tends to be smaller if two
signatures are more similar. However, it is essential to work to have the same number
of vertices in a stroke. In this paper, the database strokes are resampled to the number
of input stoke vertices during pre-processing.

To evaluate the performance of our similarity for stroke retrieval, we perform
an experiment. The experiment is carried out to retrieve relevant strokes based on
the users’ sketching of the desired stroke with a stroke database of 20 strokes. The
evaluation of the approach is based on retrieval accuracy (precision rate). The stroke
retrieval results are shown in Table1. For comparison, we use Ip’s affine-invariant
histogram approach [33]. These results show that our similarity can determine highly
accurate animation template motions. Moreover, we add an editing function for
relearning moving guidance. By adding an editing data (a set of stroke and template
motion) to the stroke databases, it is possible to obtain a more suitable optimum
stroke motion.
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Table 1 Stroke classification
results

Number of strokes Our approach (%) Ip et al. 2002 (%)

10 90.0 50.0

15 75.0 40.0

20 70.0 35.0

5 Implementation

Our prototype system iswritten using openFrameworks, an open sourceC++ toolkit.
A 64bitWindows PC (Intel®CoreTM i7-3770 CPU@3.40GHz 8GBRAM;NVIDIA
GeForce GT 620M 1GB) is used. By drawing freehand strokes on some frames
(max number = 4), users can easily generate animation. Although all results are
generated at over 30.0 fps, it is difficult to accurately measure the performance of
each computation. Our results are presented in Figs. 5 and 6.

The display-integrated tablet version of Active Comicing has been used to cre-
ate different 2D freehand animations, mainly by computer graphics researchers and
students. Our prototype system was also evaluated by users who provided individual
feedback: One user stated that the hand drawing animation capabilities were more
impressive and expressive than normal CG animation techniques. Other users com-
mented that they wanted to upload information results to LINE or Twitter, and that
the system could benefit from amore elastic function for editing stroke shapes. In the

Fig. 5 Selected examples of deformable stroke animation, ‘muscle training’, produced by our
technique. a t = 0.0. b t = 0.25. c t = 0.5. d t = 0.75. e t = 1.0

Fig. 6 Selected examples of deformable stroke animation, ‘girl’s looking back motion’, produced
by our technique. a t = 0.0. b t = 0.25. c t = 0.5. d t = 1.0
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future, we plan to include shape deformation functions such as physical simulation
in the user interface to create richer animations.

6 Conclusions and Future Works

We have presented a method to interpolate and animate freehand drawing strokes.
The prototype system, Active Comicing, enables the easy creation of simple 2D GIF
animations. Moreover, the results of the stroke animation can be edited according
to user preferences by template effects. It is assumed that the stroke similarity tech-
nique could also be applied to character recognition to help users find and review
required freehand information.We intend to apply the proposed approach to character
recognition.

In future work, we plan to increase the number of key-frame, e.g., multi-stroke
morphing, and focus on color interpolation, e.g., color model or gradient color.
Moreover, we recognize that sampling technique based on stroke shape will help
users to create richer animations more efficiently. Therefore, we intend to study
these functions. Such functions are applicable to a wide range of situations in anime
production.
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AMultilayered Model for Artificial
Intelligence of Game Characters
as Agent Architecture

Youichiro Miyake

Abstract As all mathematics have a beautiful structure, an inner mind model of
Artificial Intelligence has a grand architecture. It consists of information flow and
software modules. In this twenty years, an agent’s inner intelligence model has been
studied and developed bymany gameAI programmers in game titles. Awhole image
of a current agent’s intelligent model is explained.

Keywords Agent architecture ·Blackboard architecture · Information flow ·Affor-
dance · Umwelt

1 Grand Design of an Agent’s Mind

Agame character lives in a gameworld. In these twenty years, a gameworld becomes
much larger and more complex drastically. AI of a game character (character’s mind)
is required to be more intelligent, so it also becomes to have a strong intelligent
structure in its mind. It is called “Agent Architecture”, which is originally developed
in robotics.

An agent architecture is a fundamental architecture which connects a game world
and an agent’s mind and body (Fig. 1). It consists of some modules which have a
specific function, such as a sensor module, knowledge-making (recognition) mod-
ule, decision-making module, motion-making module, and memory module. For
example, a sensor module gathers information of game world. A knowledge-making
module forms knowledge about the game world by using the information which a
sensor module delivers. A decision-making module make a decision by joining some
of knowledge together. A motion-making module makes a motion by following the
decision.
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Fig. 1 Agent Architecture
for a game agent [1]. It
shows a relation of an agent
and a world. It separates a
world and agent via sensors
and effectors. A big circle
means an information flow
through a game world and
agent inside, which connects
a world and an agent itself. A
small circle is an information
flow in agent architecture,
which organizes data in
agent architecture

2 Information Flow

An information flows through all modules and a game world as a process of an
agent architecture and a world (Fig. 1). The flow is called “Information flow”. An
information flow connects an agent and a gameworld. The information keeps flowing
while eachmodule stores temporary information onmemorymodule. So someblocks
of information are stacked on memory module with specific format. These stacked
memories are used by any module. An information flow has the information of the
game world such as enemy’s position, a terrain and some objects, and an event
which happens in the game world. They consist of some symbols and float numbers.
A form of data in information flow for an object, a terrain, or an event is called
Knowledge Representation (KR). For example, an enemy’s KR is a collection of the
coordinate, the velocity vector, the enemy type (symbol), the weapon type (symbol),
HP (numerical) andmagic power (MP, numerical). AnKR for an object is a structured
data including affordance (afforded actions to the object), the position, and the object
type. In a game, there aremany enemies and objects, so an information flow hasmuch
information. They keep transformed in an agent architecture. In an agent architecture,
information flow is abstracted to information flow in a higher level. Information
are written on the higher blackboard. This abstraction process is iterated, so an
information flow is repeatedly abstracted to higher level. By transforming data of
information flow to more abstract data, AI creates the abstract recognition of a game
world. The blackboard architecture becomes multi-layered system where some of
KS combines each blackboard layer and form an abstraction process (Fig. 3).

3 Blackboard Architecture in Agent Architecture

A blackboard architecture is a simple architecture with one blackboard, some of
KS (Knowledge Source), and an arbiter (Fig. 2, left image). The system is such
as that some KSs write and read information on a blackboard, and the action tim-
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Fig. 2 The left figure is blackboard architecture with a blackboard, several KSs, and one arbiter
[2]. The right figure is agent architecture applied blackboard architecture. It has 6 KS processing
modules in the right part and two blackboards in the left part [3]

Fig. 3 A multilayered
Blackboard architecture. It
has four blackboards. The
lowest blackboard represents
a physical body, and it is
strongly connected with a
game world via sensors and
effectors. There are three
higher layers which have
abstracted information of the
lower layer. Each layer has a
decision-making module. It
has a different role and scale
to the game world

ing is controlled by the arbiter. An agent architecture of a game character uses the
blackboard architecture. The design is to separate all processing modules (such as
knowledge-making, decision-making, and motion-making module) independently
from memory module (Fig. 2, right image). A multi-layered blackboard architecture
consists of some blackboards and KSs (Fig. 3). For example, four layered blackboard
architecture is like this: In the lowest layer, detailed information of the game world
is directly written on the lowest blackboard by KSs (sensor modules). In the second
layer, more abstract information is written by abstracting detailed information of the
lowest layer on the second by KS. In the third layer, more abstract information is
written by abstracting the information of the second layer on the third blackboard by
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Fig. 4 An object
representation. Each layer
has a different representation
for an object in the world.
Through a multi-layer
architecture, an object is
recognized with multiple
knowledge representations in
a hierarchical structure

KS. The lowest layer expresses a physical body. This lowest layer is connected with
a game world with a physical body and sensors. The information flow on the lowest
layer is most fundamental flow connecting a character body and a game world. In
each layer, decision-making is processed, but each role of decision-making is differ-
ent. For example, a top layer decides an abstract goal while a lowest layer decides a
physical body movement. Each layer has a specific role for decision-making. There
are two kinds of KS; some KSs belong to each layer and some KSs abstract black-
board information to higher blackboard information. The lowest body layer has a
strong connection with a game world, and the lowest blackboard forms an agent
primitive recognition of a game world. This recognition is called “Umwelt”, which
means a subjective world [4]. An environmental world representation depends on
a character body structure, character motions, and the life-style. And an object in
the world is recognized throuh multilayers, and each layer forms a different abstract
representation for the object (Fig. 4).
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Visual Media Culture Supported by Illusion
of Depth

Kokichi Sugihara

Abstract There is an enormous difference between the real world and its images;
the real world has three dimensions, whereas images have only two. In spite of this
difference, we can enjoy visual media without the need to put forth any special
effort. Why can we do this? This question can be partly answered by studying the
illusion of depth. It seems that human brains try to recover the depth from images
with strong preference for special subclasses of objects, such as rectangular solids.
This also suggests that visual media culture is fragile. We discuss this point using
various depth illusions, such as impossible objects and impossible motions.

Keywords Depth perception · Impossible object · Impossible motion · Optical
illusion · Visual media

1 Introduction

We use two eyes to observe objects in the real world, and this allows us to determine
the distances to those objects. This is based on the mathematical fact that each point
on an object can be located in three-dimensional space as the point of intersection
of the two rays of sight from our eyes to the target point. This function is called
binocular stereo vision [1, 3, 4].

However, when we observe images, such as photographs and movies, the visual
data include information obtained through only one eye, because a camera has only
a single lens center. Thus, there is no explicit information about the distance to an
object. Nevertheless, we usually perceive a distance. This function is sometimes
called monocular stereo vision [1, 7].

Of course, we use two eyes to observe an image, but this will just give us infor-
mation about the distance to the image, not to the objects contained in the image.
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Nowadays, we are surrounded by various visualmedia, andwe are apt to forget the
differences between seeing objects directly and seeing them through images. How-
ever, there are enormous differences between binocular stereo vision and monocular
stereo vision. The former is based on a mathematical principle, while the latter is not.

Monocular stereo vision is based on guessing the distances, and consequently,
the results are very fragile. We will investigate this fragility by considering the
optical illusions induced by impossible objects, impossible motions, and ambiguous
cylinders.

2 Degrees of Freedom in Object Reconstruction

If we are given an object, a viewpoint E, and an image plane I , the image of the
object projected on the image plane with respect to the center of projection at E is
uniquely determined. However, even if we are given E, I , and the image, the original
object is not unique. There is freedom in reconstructing the object from the image.
This freedom can be mathematically specified in the following way [6].

We assume that the object is a polyhedron, that is, a solid bounded by planar
faces. Suppose that the viewpoint E is at the origin of an (x, y, z) coordinate system,
and that the image is fixed on the plane z = 1. Assume that the object in the image
contains n vertices and m faces. Let vi ′ = (xi, yi, 1) be the ith vertex on the image.
The original counterpart vi of this vertex should be on the ray of sight emanating at
the origin and passing through vi ′. Hence, the original vertex can be expressed by
vi = (xi/ti, yi/ti, 1/ti), where ti is an unknown variable.

Let fj be the plane containing the jth face of the object, and let

ajx + bjy + cjz + 1 = 0 (1)

be the equation for fj, where aj, bj, and cj are unknown variables.
Suppose that the vertex vi is on the face fj. Then, we can substitute the coordinates

of vi into Eq. (1), and we get

ajxi + bjyi + cj + ti = 0. (2)

This is linear in the unknowns ti, aj, bj, and cj.
For each pair of a vertex and the face in which it is contained, we have an equation

similar to Eq. (2), and hence we have a system of linear equations, which we denote
by

Aw = 0, (3)

where w = t(t1, . . . , tn, a1, b1, c1, . . . , am, bm, cm) is a vector of unknown variables,
and A is a constant matrix.
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This system of equations contains n+3m unknown variables, and hence there are

n + 3m − rank(A) (4)

degrees of freedom when interpreting an object from the image.

3 Depth Illusions

For a thick object, Eq. (4) specifies at least four degrees of freedom. This freedom
enables us to design unfamiliar objects that will appear to be familiar ones; that is,
this freedom enables us to create various optical illusions [6]. We will discuss some
of these illusions below.

3.1 Impossible Objects

There is a class of pictures called “pictures of impossible objects” [5, 14]. This
class of pictures gives us the impression that we are observing a three-dimensional
structure, but at the same time, that structure is impossible. An famous example of
this is the endless loop of stairs in the print “Ascending and Descending” (1960) [2]
by the Dutch artist M.C. Escher; a simplified drawing of this staircase is shown in
Fig. 1a.

The impression of impossibility comes from our knowledge that stairs consist of
horizontal and vertical plates. However, the freedom specified in Eq. (4) suggests
that there are other objects that can produce the same image, and we can construct
a three-dimensional solid whose projection coincides with the drawing. Figure1b
shows an example of a solid that looks the same as Fig. 1a, c is another view of the
same solid.

Another example is given in Fig. 2, where (a) shows a drawing of an impossible
object, (b) shows a solid, and (c) shows another view of that solid.

These examples show that the impossible objects portrayed in pictures are not
necessarily impossible; some of them can be realized as actual three-dimensional
solids. This phenomenon shows that the human brain cannot always correctly extract
solids from images.

3.2 Impossible Motions

The freedom in the choice of objects represented in images also enables us to design
solids that appear to be ordinary but motions inserted to the solids seem to be phys-
ically impossible [10].
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Fig. 1 Impossible object “Endless Loop of Stairs”: a drawing; b a three-dimensional realization
of the drawing shown in a; c another view of the solid shown in b

Fig. 2 Impossible object “Two L’s”: a drawing; b a three-dimensional realization of the picture
shown in a; c another view of the solid shown in b
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Fig. 3 Impossible motion “Magnet-Like Slopes”: a view from which balls appear to be rolling
uphill; b another view of the same solid

Fig. 4 Impossible motion “Four Perches and a Ring”: a a ring hangs from the perches in a strange
way; b another view of the same solid

An example is shown in Fig. 3. In Fig. 3a, we see what appears to be a solid that
consists of four sloped ramps, each sloping downward in a different direction from
the center, which appears to be the highest point. However, if balls are placed on any
of the ramps, they will roll toward the center, as if they are defying the law of gravity.
Actually, the center is the lowest point, as shown in Fig. 3b, and the balls simply roll
downhill, as expected [8].

Another example is shown in Fig. 4. In Fig. 4a, the solid appears to consist of a
pole and four horizontal perches that cross at right angles. However, a flat ring hangs
in such a way that it passes behind the pole but in front of all four perches. The actual
shape of the solid is shown in Fig. 4b; the four perches are all behind the pole [9].

A solid that generates an impossible motion illusion can be constructed in the
following way. First, we generate a description of an ordinary three-dimensional
object; this can be done using a solid modeling system. Next, we select a viewpoint
and an image plane, and we generate the projected picture of the object; this can
be done using computer graphics techniques. Finally, we generate and solve the
associated system of Eq. (3). Due to the degrees of freedom specified by Eq. (4),
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there are infinitely many solutions, among which we can choose an object that can
create a motion that appears to be impossible.

One interesting observation is that the impossible motion is perceived even if the
observer is told the true shape of the object. This implies that the impossible motion
illusion cannot be removed, even if we know the truth.

3.3 Ambiguous Cylinders

The third class of depth illusion is a class of ambiguous cylinders, whose appearance
changes drastically when they are reflected in amirror [11–13]. An example is shown
in Fig. 5a. The roof of the garage appears to be round when it is seen directly, but
when viewed in a mirror, it appears to be corrugated. Figure5b shows the same solid
seen from another angle. From this image, we see that the true shape of the roof is
neither of the appearances seen in Fig. 5a.

Another example is given in Fig. 6. As seen in Fig. 6a, the object appears to be a
cylinder for which the cross-section is a flower shape, while its mirror image shows
a butterfly shape. Figure6b is another view of the same cylinder.

Both of these objects can be produced by sweeping a line segment through space
without changing its orientation. Let us call this type of surface a cylindrical surface;
the solid in Fig. 6 is a closed cylinder, while the garage roof in Fig. 5 is an open cylin-
der. The length of the cylinder measured along the axis direction (i.e., the direction
of the sweeping line segment) is the same at every point on the surface. The human
brains seem to interpret the edge of the cylinder as the intersection of the cylinder and
a plane perpendicular to the axis of the cylinder. This causes the ambiguous cylinder
illusion.

Ambiguous cylinders can be created because of the freedom in the reconstruction
of objects. This freedom enables us to design solids whose projections onto two

Fig. 5 Ambiguous cylinder “Ambiguous Garage Roof”: a a solid and its mirror image seen from
a special viewpoint; b the same solid seen from a general viewpoint
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Fig. 6 Ambiguous cylinder “Flower and Butterfly”: a a solid and its mirror image, as seen from a
special viewpoint; b the same solid seen from a general viewpoint

Fig. 7 Computation of a
space curve that realizes two
given planar curves

prespecified directions give desired pair of two-dimensional shapes, as explained
below.

LetA(s) andB(s) be two planar curves, where s is a parameter such that 0 ≤ s ≤ 1.
As shown in Fig. 7, we assume that the two curves are embedded in a vertical plane
T , they aremonotone in the horizontal direction, and the left and right terminal points
coincide, that is, A(0) = B(0) and A(1) = B(1).

Let E and F be two points that are not included in T . We want to construct a space
curve C(s) that appears to be A(s)when it is seen from viewpoint E and that appears
to be B(s)when it is seen from viewpoint F. For this purpose, we choose sufficiently
many values of s ∈ [0, 1], and for each P = A(s), we do the following.

Step 1. Construct plane S that contains the three points E,F, and P.
Step 2. Find point Q, which is at the intersection of the curve B with the plane S.
Step 3. Find point R on the intersection of the line EP with the line FQ, and set

C(s) = R.

In practice, we choose a finite number of points s1 = 0 < s2 < · · · <

sn−1 < sn = 1, compute the values C(si), and then connect them to get a poly-
line (C(s1),C(s2), . . . , C(sn)) that approximates the space curve C(s).
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Note that the point Q in Step 2 can always be found, and it will be unique,
becauseB(s) is monotone in the horizontal direction,A(0) = B(0), andA(1) = B(1).
Furthermore, the pointR in Step 3 can always be found, and it will be unique, because
the two lines EP and FQ are both on the plane S.

Next, we choose a line segment, sayL, that is perpendicular to the plane S.Without
changing its orientation, we move the line segment L in such a way that one of the
terminal points of L moves along the curve C(s), and thus we obtain the swept
surface.

The resulting surface is a template for constructing the ambiguous cylinder.
Indeed, if we view this surface from E, the cross-section coincides with A(s), and if
we view it from F, the cross-section coincides with B(s). Because the human brain
is apt to interpret this as the intersection of the cylinder with a plane perpendicular
to the axis of the cylinder, we can expect that humans will perceive A(s) from E and
B(s) from F.

4 Fragility of Visual Media

The depth illusions considered here suggest that it is difficult to interpret images
as three-dimensional objects. However, it seems that the visual media in our daily
lives, such as photographs, television, movies, and other videos, are used with the
assumption that the users will perceive the correct depths. Therefore, there is a gap
between this assumption and human abilities.

A primary use of visual media is to portray reality, but we can intentionally create
visual media that result in incorrect impressions of the real world.

One common example of this is the photographs used in advertisements for real
estate, which frequently give the impression that the rooms in a house are much
larger than their actual size.Wemight say this is also an illusion. However, it portrays
something that does not differ from reality except in the perceived size.

On the other hand, the optical illusions presented in Sect. 3 are more extreme,
because the perceived shapes of the objects are very different from the actual shapes
of the real objects. For example, ramps are perceived to slope in the opposite direction
in the “Magnet-Like Slopes” illusion, and with ambiguous cylinders, the appearance
is completely changed in the mirror image. These depth illusions suggest that visual
media, such as photographs and movies, run serious risks of miscommunicating the
shapes of objects. In particular, this implies the following two risks.

First, we are apt to think that there is little difference between seeing objects
directly and viewing images of them. However, there is an important difference: in
the former, we use binocular stereo vision, while in the latter, we use monocular
stereo vision. Therefore, shape information may be distorted by visual media, even
if this is not intentional.

Second andmore seriously, visual media can be used to intentionally distort shape
data, as we have seem in the various depth illusions in Sect. 3. We can intentionally
cause viewers to perceive the orientation of a slope to be the opposite direction from
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the actual slope, as we saw in the impossible motion illusion. We can intentionally
cause two viewers who see an object from different viewpoints to have very different
perceptions of it.

Creatures got pairs of eyes during themiddle ofCambrian period,whichwas about
500 million years ago. Since then, our brains have had a long time to learn binocular
stereo vision. On the other hand, visual media technology, such as photographs and
movies, have appeared within the past few hundred years. If we change the scale so
that pairs of eyes evolved one year ago, then visual media technology was developed
only 30s ago. Therefore, we have not yet had time to evolve monocular stereo vision.
This then leads to the serious illusions in depth perception that can result from images.
It is thus necessary to be aware of this aspect of visual media technology.

5 Concluding Remarks

Wehave shownvarious depth illusion phenomena, such as impossible objects, impos-
sible motions, and ambiguous cylinders. They all suggest that the monocular stereo
function in our brains is fragile and that it can sometimes make a serious mistake
in perceiving the depth to a surface, and consequently, the shape of an object. This
might be due to the rapid and recent development of visual media technology, which
has occurred during a period that is too short for our brains to evolve monocular
stereo vision.

It is important to recognize this shortcoming when using visual media technology,
and to be careful to avoid errors in depth perception.
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Wang Tile Modeling of Wall Patterns

Alexandre Derouet-Jourdan, Yoshihiro Mizoguchi
and Marc Salvati

Abstract Wall patterns are essential in the creation of textures for visually rich
buildings. Particularly, irregular wall patterns give an organic and lively feeling to
the building. In this chapter, we introduce a modeling method for wall patterns using
Wang tiles which are known for creating aperiodic tiling of the plane under certain
conditions. We introduce a class of Wang tiles and prove that any rectangle with
border constraints and bigger than a 2 × 2 rectangle can be tiled. We use this proof
to derive a tiling algorithm that is in linear time. Finally, we give some results of our
algorithm and compare the computation time with previous Wang tiling algorithms
introduced in computer graphics.

Keywords Texture synthesis · Wall patterns · Wang tiles · Tiling algorithms

1 Introduction

Designing interesting and visually rich buildings requires the creation of complex
wall or ground textures. Particularly, it requires the creation of wall patterns. To give
a lively feeling to its creation, the artist may need to add a stochastic aspect to the
distribution of bricks, so that the wall appears less regular and more organic. An
example of such a texture is given in Fig. 1.
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Fig. 1 Example of a wall texture created by an artist from OLM Digital, Inc.

The process of creating such patterns is tedious but can be achieved without a
high level of human control. Basically, the artist proceeds by selecting the borders
constraints, then fill the inside of the wall by adding rectangles and correcting the
distribution until satisfaction. It is a long process that cannot be used to create very
large texture. In this situation, in order to texture large building, the artist creates an
auto-tileable pattern that is repeated on the building, introducing a visual periodicity.

In this chapter, we propose to replace this tedious process by an algorithm that
designs wall patterns automatically. To this intent, we model the bricks intersections
with Wang tiles as a specific class of Wang tiles. Accounting for border constraints
is important to create repeatable patterns or to stitch together different patterns. We
prove that any rectangle with border constraints and bigger than a 2 × 2 square can
be tiled with our Wang tiles as soon as the number of colors in the Wang tiles is
greater than 2. This proof is inductive and provides a tiling algorithm that is fast
(linear time) and accounts for border constraints.

2 Related Works

Tiling a rectangle (or a plane) means filling it with elementary shapes, the tiles, such
that the interior of tiles do not overlap and every point of the rectangle belongs to at
least one tile. Tiling is a very powerful tool to create visually rich 2d structures. For
more details on tiling and tiling in computer graphics, please consult [5].

2.1 Wang Tiles

In this chapter, we are interested in a special class of tiles, Wang tiles [9]. A Wang
tile is a unit square with colored edges. Tiling with Wang tiles requires that the tiles
are placed on a regular grid, edges to edges. Tiles from the tile set can be used as
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Fig. 2 Examples of Wang
tiles. The middle tile can
share an edge with the left
tile because the colors match.
It can not share an edge with
the right one because the
colors don’t match

many times as required, but two tiles can share an edge only when they have the
same color on the shared edge. We give three examples of Wang tiles in Fig. 2.

The Wang tiles have the interesting property of creating irregular patterns.
Although Wang conjectured that if a finite Wang tile set were tiling the plane, then it
was possible to tile the plane with the same tile set but periodically, this conjecture
was disproved by Robert Berger in [1] when he introduced a Wang tile set that could
only tile the plane aperiodically. Since then, several other aperiodic tile sets have
been introduced [3, 6]. In computer graphics, Wang tiles have been used to create
non periodic textures or points distributions automatically [2, 7].

2.2 Tiling Algorithms

In the computer graphics community, in the context of texture synthesis, two tiling
algorithms have been elaborated to tile a rectangle with a given set of Wang tiles.

2.2.1 Sequential Tiling Algorithm

The easiest approach to tile a rectangle with a set of Wang tiles is to tile sequentially,
row by row (or column by column) the rectangle, choosing at random a tile that
matches the tiles already inserted in the rectangle. This algorithm was introduced in
[2] for textures and point distribution generation. It has one important requirement
on the tiles, that is every color-combination for left edge and top edge must exist in
the tiles.

Advantages of this algorithm is to be easy to implement and fast, since it operates in
linear time. One major drawback is that it can be hard to satisfy boundary constraints
with this algorithm, as they introduce strong requirements on the tile set—that our
tile sets do not satisfy.

2.2.2 Stochastic Tiling Algorithm

Another tiling algorithm for Wang tiles, the stochastic tiling algorithm, has been
introduced in [7] to account for border constraints. The idea of the algorithm is very
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simple. First, the rectangle is filled with random Wang tiles, without accounting for
edge color matching. Then the wall is randomly “corrected” until all edge colors
match. More precisely, the algorithm minimizes the number of errors (non matching
edge colors) by picking at random a tile with non matching edges, then replacing it
with a better tile, that is a tile with at most the same number of errors. By iterating
this process, the algorithm converges to a distribution of tiles with all edge colors
matching.

One big advantage of this algorithm is that it produces a tiling satisfying the border
constraints. Although in practice this algorithm works well, it is not proven that it
will always converge. It is also difficult to estimate the number of iterations until
convergence. In a production context, it is very important to give some guarantee of
convergence and some estimation of computation time.

3 Wang Tiles for Walls

In our approach, the Wang tiles are containing the corners of the bricks in our wall.
In other terms, the Wang tiles are all the way 4 bricks can connect in the wall. We
suppose that the edges of the bricks are axis-aligned and we add the constraints that

• for aesthetics reasons, the 4 bricks do not share a vertex—they do not make a cross,
• each tile is traversed with a straight line, either vertically or horizontally.

TheWang colors are then the positions where the bricks intersect the tile edge, see
Fig. 3 for an example. For instance, in the results presented in Sect. 4, we consider a
color set C containing five Wang edge colors, corresponding to bricks intersecting
the tile edge at lengths 0.25, 0.45, 0.5, 0.55, 0.75.

Such a tile set has a very interesting property. It is indeed easy to show that given
a surrounding with two or three tiles, it is possible to find a tile in the tile set that has
no erroneous edges shared with this surrounding. In other words, if we fix up to three
edges colors, we can always find at least one tile in the tile set that matches those
colors. This property does not hold for 4 edge colors constraints because for instance,

Fig. 3 We use Wang tiles to
model the brick corners. The
Wang tiles colors, that is the
colors of the edges of the
Wang tiles, represent the
position of the intersection of
the bricks edges with the
edges of the tile
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a tile with all its edges colors equal does not exist because it would introduce a cross
in the tiles.

3.1 Definitions and Notations

Let C be a finite set of colors. AWang tile is a function w : {t, l, b, r} → C. Values
w(t), w(l), w(b), and w(r) denote colors of top, left, bottom and right of a tile
w respectively, as illustrated in Fig. 4. A Wang tile w is said in the class W , the
class of brick corners Wang tiles, if ((w(t) �= w(b)) ∧ (w(l) = w(r))) or ((w(t) =
w(b)) ∧ (w(l) �= w(r))).

We define the set W = {w |w ∈ W } of all Wang tiles in class W . Let Pnm be
a rectangle with size n × m, that is Pnm = {(i, j) ∈ N × N | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
The set of edges is E = {ei,j | 1 ≤ i ≤ n, 0 ≤ j ≤ m} ∪ {e′

i,j | 0 ≤ i ≤ n, 1 ≤ j ≤ m}.
A boundary coloring is a function Bnm : {ei0, eim ∈ E | 1 ≤ i ≤ n} ∪ {e′

0j, e
′
nj ∈

E | 1 ≤ j ≤ m} → C. A tiling is a functionT : Pnm → W and we denoteT (i, j) by
Ti,j. Given a tilingT and a tilew ∈ W , we denoteTi,j←w the tiling obtained fromT
by replacingTi,j withw.We call S(Ti,j) = {ei,j−1, ei,j, e′

i−1,j, e
′
i,j} surrounding edges

of a tiling T at a position (i, j), see Fig. 5. A validation map c : E → {true, false}
is defined by

c(ei,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
true (Ti,1(t) = B(ei0) ∧ (j = 0)) or

(Ti,j(b) = Ti,j+1(t) ∧ (1 ≤ j ≤ m − 1)) or

(Ti,m(b) = B(ein) ∧ (j = m)),

false otherwise,

c(e′
i,j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
true (T1,j(l) = B(e′

0j) ∧ (i = 0)) or

(Ti,j(r) = Ti+1,j(l) ∧ (1 ≤ i ≤ n − 1)) or

(Tn,j(r) = B(e′
nj) ∧ (i = n)),

false otherwise.

Fig. 4 Notations on one
Wang tile as defined in
Sect. 3.1
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Fig. 5 Notations for a tiling T and its edges

A tiling T is valid if c(ei,j) = true and c(e′
i,j) = true for all for edges ei,j and e′

i,j
in E. We call an edge e erroneous if c(e) = false. We denote e(Ti,j) the number of
erroneous edges in S(Ti,j). The total number of erroneous edges for a tiling T is
denoted by ET .

Definition 1 (Tileable) Let n and m be natural numbers. A rectangle Pnm is tileable
if there exists a valid tiling T for any boundary coloring Bnm.

Definition 2 Let n and m be natural numbers and n,m ≥ 2. A boundary coloring
Bnm is a torus boundary coloring if Bnm(e′

0j) = Bnm(e′
nj) and Bnm(ei0) = Bnm(eim)

for any 1 ≤ i ≤ n and 1 ≤ j ≤ m. A valid tiling T for a torus boundary is called a
periodic tiling.

3.2 Satisfiability of Border Constraints

The stochastic tiling algorithm accounts for border constraints but requires an impor-
tant computation time. The sequential tiling algorithm is faster but does not account
for border constraints. In this section, we prove that the border constraints can always
be satisfiedwith ourWang tiles when the rectangle contains a 2 × 2 square. The proof
induces a new algorithm, similar to the sequential tiling algorithm and that accounts
for border constraints.

Proposition 1 Let C be a color set.

1. P12 is not tileable (i.e. there exist boundary colorings that can not be satisfied).
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2. P22 is not tileable if |C| = 2 (we show later that P22 is tileable when |C| > 2).

Proof Let c1, c2 ∈ C and c1 �= c2.

1. We show an example of a boundary coloring B12 for which there is no valid tiling
T . IfB12(e′

01) = c1 ,B12(e′
02) =B12(e′

11) =B12(e′
12) =B12(e10) =B12(e12) = c2

then there is no valid tiling. If T is a valid tiling, then T11(l) = c1 and T11(t) =
T11(r) = T12(l) = T12(b) = T12(r) = c2. Since T11(b) = c2 and T12(t) �= c2,
we have T is not a valid tiling.

2. We define a boundary coloring B22 by B22(e10) = B22(e′
01) = B22(e12) =

B22(e22) = B22(e20) = c1 and B22(e′
02) = B22(e′

21) = B22(e′
22) = c2. It is easy

to check there is no valid tiling T if |C| = 2.

Lemma 1 Let C be a color set, B a boundary coloring of P12.

1. Let B(e10) = B(e12). There exists a valid tiling T if and only if

(B(e′
01) = B(e′

11) ⇐⇒ B(e′
02) = B(e′

12)). (1)

2. Let B(e10) �= B(e12). There exists a valid tiling T if and only if

(B(e′
01) = B(e′

11) ∨ B(e′
02) = B(e′

12)). (2)

Proof 1. Assume B(e′
01) = B(e′

11). If Eq. (1) holds then B(e′
02) = B(e′

12) and P12

admits a valid tiling. That is we choose tiles T11 and T12 with T11(l) =
T11(r) = B(e′

01) andT12(l) = T12(r) = B(e′
02).We note thatT11(b) = T12(t) �=

B(e10) and T11(b) = T12(t) �= B(e12). Conversely, if P12 admits a valid tiling
then T11(l) = T11(r), T11(t) �= T11(b), T11(t) = B(e10), T12(b) = B(e12) and
T12(t) �= T12(b). Sowe haveB(e′

02) = T12(l) = T12(r) = B(e′
12). That is Eq. (1)

holds.
Assume B(e′

01) �= B(e′
11). The Eq. (1) means B(e′

02) �= B(e′
12). It is easy to show

that if B(e′
02) �= B(e′

12) then there exists a valid tiling. And if B(e′
02) = B(e′

12)

then there is no valid tiling.
2. Assume that Eq. (2) holds. It is easy to show there exists a valid tiling. Conversely,

assume there exists a valid tiling. SinceB(e10) �= B(e12) andT11(b) = T12(t), we
have T11(t) �= T11(b) or T12(t) �= T12(b). That is B(e′

01) = T11(l) = T11(r) =
B(e′

11) or B(e
′
11) = T12(l) = T12(r) = B(e′

12).

Proposition 2 Let C be a color set and (|C| ≥ 3). A rectangle Pnm with a border
coloring Bnm is tileable for all natural numbers n, m (n,m ≥ 2).

Proof (i) P22 is tileable.
We divideP22 into twoP12 and the tileability is proved bymatching a given boundary
coloring to conditions of Lemma1.
(ii) If Pnm is tileable then Pn(m+1) is tileable.
Let Bn(m+1) be a given boundary coloring for Pn(m+1). We define a tiling T of
Pn(m+1) as follows. We can define Ti(m+1) (1 ≤ i ≤ n − 1) satisfying T1(m+1)(l) =
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Bn(m+1)(e′
0(m+1)), T(i+1)(m+1)(l) = Ti(m+1)(r) and Ti(m+1)(b) = Bn(m+1)(ei(m+1)).

Since each tile Ti(m+1) has only two conditions, we can choose a Wang tile
Ti(m+1) satisfying conditions easily. Next we define Tn(m+1) satisfying the follow-
ing three conditionsTn(m+1)(l) = T(n−1)(m+1)(r),Tn(m+1)(b) = Bn(m+1)(en(m+1)) and
Tn(m+1)(r) = Bn(m+1)(e′

n(m+1)). Finally, we reduce the tiling problem of Pn(m+1) to
the problem of Pnm. Define a boundary coloring Bnm for the problem of Pnm by
Bnm(ei0) = Bn(m+1)(ei0),Bnm(eim) = Ti(m+1)(t),Bnm(e′

0j)=Bn(m+1)(e′
0j) andBnm(e′

nj)= Bn(m+1)(e′
nj), (1 ≤ i ≤ n, 1 ≤ j ≤ m). Since we are assuming Pnm is tileable, we

have a tiling T for Pnm with boundary coloring Bnm and finally we have a tiling T
for Pn(m+1) with boundary coloring Bn(m+1).
(iii) If Pnm is tileable then P(n+1)m is tileable.
It is similarly proved with the result of (ii).
(iv) Pnm is tileable.
It is proved inductively using the results of (i), (ii) and (iii).

3.3 Boundary-Constrained Sequential Tiling Algorithm

Theproof of Proposition2 induces naturally a tiling algorithm for a rectanglePnm with
a constrained boundary coloring Bnm. This algorithm, called boundary-constrained
sequential (BCS) tiling algorithm consists in picking at random a boundary coloring
Bnm and then recursively tile the rectanglePnm untilwe have (n = m = 2). In practice,
the recursivity is replaced by a sequential loop that visit the columns and then the
rows to reduce the tiling to P22. Then, the square P22 is tiled using Lemma1. This
tiling algorithm has a computation time linear with respect to nm, the total number of
tiles in the considered rectangle, and accounts for boundary constraints. Particularly,
the BCS tiling algorithm accounts for torus boundary condition, which is useful
in practice to create auto-tileable patterns that allows to texture a mesh with a low
memory footprint.

4 Results

In the following, we evaluate the performance of the new algorithm and compare
it with the two algorithms from previous work. In this section, the Wang tiles are
built with a color set C containing five Wang edge colors, corresponding to bricks
intersecting the tile edge at lengths 0.25, 0.45, 0.5, 0.55, 0.75.

4.1 Performance

Figure6, we display the result of running the combination of sequence and stochastic
relaxation algorithm to create a tiling of 49 × 30 tiles. Using Wang tiles allows to
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Fig. 6 Example of wall pattern created by the boundary-constrained sequential tiling algorithm.
This tiling contains 49 × 30 = 1470 tiles and was computed in 1ms. 1609 tiles were visited during
this computation. The bricks colors are added in a post-process

create structures without visible repeated patterns. We added colors to the bricks in
a post-process, for aesthetics reasons.

Table1, we report the computation time of the three algorithm for the creation
of a small size tiling (49 × 30) and a big size one (1000 × 1000). As we can see,
the sequential algorithm is fast but does not create auto-tileable patterns since it
can not account for border constraints. The stochastic algorithm accounts for the
border constraints but is slower, as it visits more tiles during the computation (in
this example, it visits 10 times more tiles). Using the combination of both algorithm
allows to account for border constraints, while benefiting from the speed of the
sequential algorithm, with only a limited overhead.

4.2 Limitations

Modeling the wall pattern structure using Wang tiles allows the creation of rich non-
repeated patterns. The tiling algorithm are fast and it is possible to account for border
constraints.

The next step to make it available in a production environment is to create shaders
from those patterns, by adding a texture to the bricks and a proper gap between
them. To this end, it is important to be able to use the tiling structure to have a
direct control over the shapes of the bricks and the gaps between them. Moreover,
artists often need control over the creative process. For instance, they may need to
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Table 1 Results of the three algorithms for a rectangle of size 49 × 30 (middle column) and
2000 × 2000 (right column, given as an average on 20 runs)

If the sequential tiling algorithm is fast, it does not produce a tileable pattern. The stochastic tiling
algorithm produces such pattern but is slower. The boundary-constrained sequential tiling algorithm
(BCS), with only a small overhead on the sequential tiling algorithm, create quickly tileable patterns

control the distribution of bricks, having bigger bricks in some region of the wall, or
a regular pattern in another one. In terms of Wang tiles, it means that we need to add
the possibility of using different Wang tiles for different region of the tiling. In that
case, it becomes necessary to be able to create some transitions tiles between the tile
sets to guarantee the tileability of the wall.

If the creation of wall patterns is automatic, it is still needed to create Wang
tiles manually. It then becomes important to check that the new tiles can tile the
rectangle and that the algorithms can be used to produce the tiling. In addition, while
convergence of the stochastic algorithm is empirically verified, we do not have any
proof of this claim. It is an important development aswe need the stochastic algorithm
to account for border constraints.
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5 Conclusion

In this chapter, we introduced the modeling method for wall patterns using Wang
tiles. Such a modeling approach allows us to use tiling algorithm to create efficiently
wall patterns usable for texturing.

As future works, besides those we discussed above, we would be interested in
creating 3d walls, by using 3d Wang tiles, Wang cubes [4]. We would then like to
investigate how such a tool could be useful for volume rendering or 3d textures. In
2d, we proved that any rectangle with a boundary constraint is tileable if it is bigger
than a 2 × 2 square. We believe that this property remains true for more complex
polygon when they contain a 2 × 2 square. We would like to study this assumption
and prove it, formally and using a theorem prover such as Coq [8].
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Abstract This paper describes development of visualization library, which is named
asLexADV_VSCG, for very large scale on the next generation supercomputer.At this
moment, the next generation supercomputer, which is called as exa-scale computer, is
not designed clearly. We predict the exa-scale computer and research the possibility
of new software which is optimized for the exa-scale computer. In this work, we
show how to visualize and deal with ultra large scale FE and particle based data
with very fine resolution. LexADV_VSCG provide only simple API for drawing
and rendering triangles and lines including transparent and solid colors. Since cross
section generation is well required by engineers, additional advanced features, which
are cross section generation and miscellaneous drawing functions, are provided by
LexADV_VSCG.

Keywords Exa-scale computing · Parallel finite element method · Parallel particle-
based method · Ultra high resolution

Y. Wada (B)
Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, Japan
e-mail: wada@mech.kindai.ac.jp

K. Murotani
University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, Japan
e-mail: muro@sys.t.u-tokyo.ac.jp

M. Ogino
Nagoya University, Furo-cho, Chikusa, Nagoya, Japan
e-mail: masao.ogino@cc.nagoya-u.ac.jp

H. Kawai
Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino, Nagano, Japan
e-mail: kawai@rs.tus.ac.jp

R. Shioya
Toyo University, 2100 Kujirai, Kawagoe, Saitama, Japan
e-mail: shioya@toyo.jp

© Springer Science+Business Media Singapore 2016
Y. Dobashi and H. Ochiai (eds.), Mathematical Progress in Expressive
Image Synthesis III, Mathematics for Industry 24,
DOI 10.1007/978-981-10-1076-7_10

83



84 Y. Wada et al.

1 Introduction

The large scale FE analysis would be bottleneck using supercomputer systems [1–4].
However a commodity computer system becomes popular and faster than ever and
graphic accelerator becomes 20 times faster than 10 years before at moderate estima-
tion. The Kei supercomputer can generate numerical computation result of over tera
bytes. Even if using data compression technique, network bandwidth is not enough
for data transmission through the Internet. In the next generation supercomputer,
the data transmission problem will be obvious and we will not be able to handle
post processing, which is an examination task using visualization software system
after simulation, on outside computers. There are two ways to solve the problem.
One is the data compression which is reduced data set composed by coarse volume
data or coarse facet data using parallel computer environment [5–8]. The data set
becomes much smaller than the original data and we can handle the post processing
with interactivity. The other is the direct visualization on the supercomputer which
is sequential post processing after numerical simulation [9–11]. However computer
visualization as a post processing in the finite element analysis provides important
user experience. From a point of this view, visualization on the computer could not
provide experience well in the past. In addition, the architecture of the next genera-
tion supercomputer is just determined. In the background, the authors have developed
scientific visualization library: LexADV_VSCG [9, 12–14] with high portability for
any computer environment. In this study, several results are shown and a design and
an actual implementation for the library through the visualized results are discussed.

2 LexADV_VSCG Library

2.1 Fundamental Ideas of Design and Implementation

Fundamental ideas of LexADV VSCG are as follows [3].

• Simple implementation for any environment: independent from OS.
• Multiple images to be one image using z-buffer: parallel processing.
• No other special hardware and libraries: independent from specific environment
issue.

• Handling very fine resolution by well-designed software: key idea for ultra large
scale data.

• Impressive image by well-designed algorithm and implementation: key idea using
very fine resolution.

These ideas are important keys for high reliability on the future supercomputer. As
mentioned above, we do not know the actual next generation supercomputer very
well. In order to ensure those ideas, we have decided rendering processes conducted
by software without any other software library. LexADV_VSCG is a simple library
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software which provides application programming interface for scientific visualiza-
tion. In short, LexADV_VSCG is usually integrated into a simulation code and does
not use any specific hardware accelerators and software librarieswhich are developed
by other research group and companies.

Image data structure has additional several bits to represent depth information and
dot product by surface normal and view direction. The structure possess extended
z-buffer information. The advantages of the extended z-buffer are suited for parallel
computers onwhich the images are rendered in parallel. The images are usually stored
at the local node storage or stay in local memory. For example, if a supercomputer has
totally 50,000 cores, FE mesh also is subdivided into 50,000 parts. View camera is
fixed at 200 locations, 10,000,000 images are rendered at least. We should merge all
of these images into 200 images in this case. As a result, the merging process needs
huge data transmission between nodes. Merging tasks are sequentially processed as
shown in Fig. 1. If the tasks are processed for 16 times, 216 images can be merged
into one.

Visualization technique of LOD (Level Of Detail) is a practical idea to deal with
a very fine FE mesh. Simplicity of handling the visualized results is important. LOD
requires several level of data set for one analysis model. In case of massively parallel
data, we have to manage hundreds of thousands of data sets. Furthermore, very
large scale FE data can be generated on only a supercomputer. If computation from
modeling to visualization is conducted on a supercomputer, computing cost would
be larger than we expected at first. In order to overcome these difficulties, we have
decided to generate 105 × 105 pixels image in parallel and we just merge hundreds
of thousands of images into one on the supercomputer.

Fig. 1 Image merging process in parallel environment
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2.2 Implementation and Functions

LexADV_VSCG is implemented in C language which is compatible with C99 stan-
dard. Any kind of compiler on supercomputers usually does not provide the latest

Table 1 Implemented fundamental functions for scientific visualization

Functions Explanation

vscg_draw_traingle
functions

draw_triangle_line Draw triangle line with same
color and have no depth info

draw_triangle_solid Draw solid triangle with same
color and have no depth info

draw_triangle_line_with_depth (z-buffer) Draw triangle line with color and
have depth info

draw_triangle_solid_with_depth
(z-buffer)

Draw solid triangle with same
color and have depth info

draw_triangle_gradated_with_depth Draw solid triangle with
gradated color and have depth
info

draw_triangle_gradated_transparent Draw transparent triangle with
gradated color and have no depth
info

vscg_XXXX
utility functions

allocate_image Allocate image buffer for
drawing

set_color_XXXX (setting default color) Generate colors for basic colors
and color legend

vector_XXXX (vector operations) 2 and 3 dimensional vector
operations

accumrate_image (image operations) Merge two or more z-buffer
images into one image

vscg_draw_particle
functions

draw_particle_solid (regular icosahedron) Draw regular icosahedron as a
sphere with depth info

draw_particle_transparent_solid (regular
icosahedron)

Draw transparent regular
icosahedron as a sphere with
depth info

– –

vscg_XXXX
utility functions

draw_vector_with_arrow Draw vector using arrow shape
with depth info

paint_color_legend Paint color legend for physical
quantity distribution

paint_color_legend_2_physical_quantities Paint color legend for 2 physical
quantity distributions



High-Resolution Visualization Library for Exascale Supercomputer 87

Fig. 2 Particle
representation by a
polyhedron: coarse
polyhedron in left side and
fine polyhedron in right side

standard, because reliability and performance are required to compilers. Since a reli-
ability is strongly demanded in scientific visualization, LexADV_VSCG needs no
other library except for standard C library defined in C99 standard. Functions in
the library are shown in Table1. The library provides very fundamental functions to
draw and render triangles with gradated colors in accordance with specified physical
quantity, i.e. von Mieses stress σ and principal stresses σ1, σ2 and σ3 and so on. One
of the target application of the library is particle based method, i.e. Moving Parti-
cle Semi-implicit (MPS) and Smoothed-Particle Hydrodynamics (SPH). A sphere is
represented by a polyhedron which consists of 80 or 320 triangles. An example of
particle visualization is shown in Fig. 2. Total numbers of polygons affect total time
to get an image, however it is important for users to choose fine or coarse visualiza-
tion result. In the very fine image, differences between fine and coarse polyhedron
do not make large difference of both of images.

3 How to Get Interactivity Using the Library

In the development of LexADV_VSCG library, the objective is clearly limited to
applications to very large scale fine mesh and huge number of particles. The library
does not provide such usual techniques for high quality rendering image, which are
ray casting and glow shading. As a result of these limitation, the implementation
goes back to fundamental techniques by drawing triangle facet and shading on the
flat triangle. However, huge number of fine facet and particle which represented by
triangle facets, the quality of the image rendered by the library is enough for scientific
visualization with the supercomputer.

Interactivity of visualization is one of the most important issue in the scientific
post processing.Regretfully the latest supercomputer does not provide any interactive
connection with user’s computer. All of programs are controlled by job controlling
system on the supercomputer. LexADV_VSCG library is able to generate very fine
image with 105 × 105 pixels resolution. The image has enough information with
regards to fine FE mesh. Usual image viewer can easily handle the large image
by shrinking to appropriate size as an engineer needs. We require interactivity of
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Fig. 3 Multiple view points
for off-line interactive
visualization

Fig. 4 Notation rule for
camera position in spherical
surface

rotation of an object too. The system provides multiple viewpoints image generation
as shown in Fig. 3. Simple spherical polar coordinate system and the description rule
of the file name including the coordinate system are defined as described in Fig. 4.
The rule is easily extended to other coordinate system, i.e. Euler’s angle definition.
There are two ways to describe rotation of an object in the library. First way directly
describes rotation matrix. Second way is Rodrigues vector (k1, k2, k3). Rodrigues’
rotation formula is described as follows

K =
⎛
⎝ 0 −k3 k2

k3 0 −k1
−k2 k1 0

⎞
⎠ (1)

R = I + (sin θ)K + (1 − cos θ)K2 (2)

where θ is length of Rodrigues vector. Camera position is notated in spherical polar
coordinates. The distance from the center of an object to camera is constant, which
is 1. Amplitude θ is an angle between z-axis and radius vector. Amplitude ϕ is an
angle between x-axis and projected vector of radius vector to x–y plane. In actual
implementation, the camera is fixed at (0, 0,−1). In order to describe the notation,
camera positions should be calculated by
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⎩
x
y
z

⎫⎬
⎭ = R−1

⎧⎨
⎩

0
0

−1

⎫⎬
⎭ (3)

⎧⎪⎨
⎪⎩
cos θ = z√

x2 + y2 + z2
(0 ≤ θ ≤ π)

cosϕ = x√
x2 + y2

, sin ϕ = y√
x2 + y2

(0 ≤ ϕ ≤ 2π)
(4)

where x , y and z are camera position in orthogonal coordinate system; θ and ϕ are
camera position in spherical polar coordinate system.

4 Results in Numerical Examples

4.1 Application to Finite Element Analysis in Structural
Problem

Visualization techniques are well designed and developed using GPGPU hardware
and those can present impressive artificial images. However, usual design process
and analysis process does not demand for such an impressive image but accurate and
easy to understand. From a practical point of view, the library supports polygon with
flat shading including alpha blending which represent transparency effect.

Figure5 shows an example of high resolution FE analysis image, which is resized
image from 105 × 105 pixels. In the image, black lines with 1 pixel width are drawn
for representing finite elements, however no element lines cannot be seen in Fig. 5a.
The 105 × 105 pixels image shows element lines as shown in Fig. 5b. Figure5b is
magnified image from the 105 × 105 pixels image. Gradated color is very smoothly
distributed in spite of linear interpolation of gradated color. Engineers want to see
finite elements even if a very large scale mesh. Since manipulations of 2-dimensional
image is processed very fast, magnification and reduction processes are done for a
short time.

4.2 Application to Finite Element Analysis for Cross Section
Generation

One of the important requirement is cross section generation with gradated color
for a large scale problem. In the large scale finite element analysis, the complexity
become higher and higher. For example,Yoshimura et al. [15, 16], analyzed full-scale
nuclear power plant simulation for seismic dynamics response. In the analysis, the
plantmodelwas createdwith 200millionD.O.F. in detail. For such an application, we
have to watch arbitrary sections very carefully for evaluation of FE analysis result. A
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Fig. 5 Visualized results for finite element model with 105 × 105 pixel resolution: a whole view
and b magnified view

Fig. 6 Flow chart of cross
section generation for
tetrahedrons and triangles of
finite element
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Fig. 7 Section generation
on triangle surface and
tetrahedral volume: a
Triangle surface subdivision
and b Tetrahedral volume
subdivision

Fig. 8 Two sections and
transparent model surface
with equivalent stress
distribution



92 Y. Wada et al.

tetrahedral element is utilized for large scale analysis, because fully automatic mesh
generation system is only established in tetrahedral element mesh generation. For
this reason, LexADV_VSCG employ simple algorithm of section generation from
tetrahedral elements. Figure6 shows the flow chart of section surface generation
algorithm and Fig. 7 shows how to subdivide triangle surface and tetrahedral volume.
There are only 15 unique cases of triangle generation in Marching cube algorithm.
In the LexADV_VSCG, only 5 unique cases of triangle generation for tetrahedral
volume are employed. Several cross sections can be simultaneously generated by
the algorithm as shown in Fig. 8. Transparent model surface is rendered by alpha
blending to draw cross sections and the surface at the same time.

Fig. 9 Visualized results for MPS analysis with 30,000 × 20,000 pixels resolution: a whole view
of velocity and vorticity, b magnified view of velocity field at the same time step
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4.3 Application to Particle Based Method in Fluid Dynamics

Figure9 shows another example of very high resolution analysis by explicit MPS
method. The visualization is conducted using transparent object and solid colored
particles. Figure9a shows 16,000 × 12,800 pixels image which is enough resolution
to examine fluid flow velocity and vorticity. Figure9b is magnified image of velocity
from the original image. A large number of particles forms the 3-dimensional con-
figuration of fluid surface in Fig. 9b, since the sufficient resolution of images keeps
shadow of each particle and automatically makes the surface formed.

5 Conclusions

We have developed library software to visualize scientific computation results on
the next generation supercomputer. LexADV_VSCG generates very fine images on
the parallel environment efficiently. Interactivity is one of the important issue for
examination of analysis result. We have also proposed interactive operation way by
simple representation of spherical polar coordinate system. In particular structural
analysis engineers usually examine the result using interactive visualization software.
Basic visualization techniques are already implemented in the library. Huge amount
of data, cannot be downloaded through network, is computed by supercomputers.
Automated process to obtain the best visualization results is required for the next
generation visualization software. The library just provides fundamental functions
and reliability. The library is now developed in progress and is evaluated for more
modifications to ensure reliability.
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Drawing Curves

Toshio Oshima

Abstract We propose a method to determine piecewise cubic Bézier curves passing
through given points. Our main purpose is to draw accurate graphs of mathematical
functions with smaller data. A program drawing such graphs using our method is
realized in a computer algebra and outputs the graphs in a source file of TEX and then
transforms it into a PDF file. Our method is also useful for numerical calculation of
a given area enclosed by a curve and for numerical integration of functions.

Keywords Bézier curve · Cubic spline · Computer algebra · Risa/Asir · TEX ·
TikZ · 3D graph · Numerical integration

1 Introduction

Since the last year I have a class of calculus in my university and show graphs of
functions such as f (x, y) = x2 − y2. I have been developing a library os_muldif.rr
[1] of a computer algebra Risa/Asir [2] to realize my research explained in [3] and
then I added some functions in the library for such educational purpose including
calculus, linear algebra and elementary number theory. The library is an open source
and can be equally executed by a personal computer with any one of the operating
systems Windows, Mac and UNIX.

In fact, a function in the library executes the procedure in Fig. 1 to get the graphs.
Since the PDF file supports cubic Bézier curves, the size of the PDF file obtained
in the procedure is usually small and it is independent of the final resolution of the
graph.
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Fig. 1 Procedure

2 Curves

Consider a curve

C : [a, b] � t �→ γ (t) = (
x(t), y(t)

) ∈ R
2. (1)

We choose points in [a, b], namely, Pj = γ (t j ) ∈ C with a = t0 < t1 < t2 <

· · · < tN = b and draw a certain curve C ′ starting from P0, exactly passing through
P1, . . . , PN−1 in this order and ending at PN . We request the following conditions.

• C ′ is determined only by {P0, P1, . . . , PN }.
• C ′ is a good approximation of C and it is free from its final resolution in drawing.
• Smaller size of data (i.e. the number N ) and an output in a popular format are
desirable.

• The curve can be described in a usual TEX sourceTEX file.

One of the way to realize it is to connect the points by cubic Bézier curves and use
TikZ and/or XY-pic which are in a package of a TEX system (cf. Fig. 1).

2.1 Smooth Curves

A Bézier curve of degree n is

[0, 1] � t �→ P(t) = P(B0, . . . , Bn; t) =
n∑

i=0

(
n

i

)
t i (1 − t)n−i Bi (2)

determined by (n + 1) points B0, . . . , Bn .
Note that P(B, B ′; t) is the point internally dividing the line segment BB ′ by

t : 1 − t . Since P(B0, . . . , Bn; t) = P(P(B0, B1; t), P(B1, B2; t), . . . , P(Bn−1,

Bn; t); t), the point P(t) is geometrically described. For example, the cubic Bézier
curve is

P(t) = P(B0, B1, B2, B3; t) = P
(
P(B0, B1; t), P(B1, B2; t), P(B2, B3; t); t

)
= P

(
P

(
P(B0, B1; t), P(B1, B2; t); t

)
, P

(
P(B1, B2; t), P(B2, B3; t); t

); t).
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Fig. 2 Cubic Bézier curves

The curve starts from B0 to the direction
−−→
B0B1 and ends at B3 to the direction

−−→
B2B3.

It does not necessarily pass through B1 nor B2.
Consider a curve C passing through P0, P1, P2, P3 in this order. We simulate the

curve segment ofC connecting P1 to P2 by the cubic Bézier curve P(P1, Q, R, P2; t)
with the control points Q and R defined in Fig. 2. The number c is determined by

c = 4P1P2
3(P0P2 + P1P3)

1

1 +
√

1
2

(
1 + (

−−→
P0P2,

−−→
P1P3)

P0P2·P1P3

) . (3)

To explain (3) we assume that P0P1 = P1P2 = P2P3 and moreover that
P0, . . . , P3 are on a circle with the center O . We define a Bézier curve with the
control points Q and R which approximates the arc connecting P1 and P2. Putting
∠P1OP2 = θ , OP1 = r , P1Q = P2R = a, the point T on the Bézier curve
corresponding to t = 1

2 is given as follows under a suitable coordinate system.

O : (0, 0), P1 : (
r cos θ

2 , r sin
θ
2

)
, P2 : (

r cos θ
2 ,−r sin θ

2

)
Q : (

r cos θ
2 + a cos θ−π

2 , r sin θ
2 + a sin θ−π

2

)
= (

r cos θ
2 + a sin θ

2 , r sin
θ
2 − a cos θ

2

)
R : (

r cos θ
2 + a sin θ

2 ,−r sin θ
2 + a cos θ

2

)
T : (

r cos θ
2 + 3

4a sin
θ
2 , 0

)

O

P1

P2

Q

R

r

a

θ ×T
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Put OT = OP1 to approximate the arc. Then

r cos θ
2 + 3

4a sin
θ
2 = r

and therefore

a = 4

3

1 − cos θ
2

sin θ
2

r = 4

3

sin θ
2

1 + cos θ
2

r.

In this case we have

Q :
(
r cos θ

2 + 4

3
1−cos

θ
2

sin
θ
2

sin θ
2r, r sin θ

2 − 4

3
sin

θ
2

1+ cos
θ
2

cos θ
2r

)

=
((

4
3 − 1

3 cos
θ
2

)
r,

(
1 − 1

3 cos
θ
2

) sin
θ
2

1+ cos
θ
2

r
)
,

P1Q

P1P2
= 4

3

sin θ
2

1 + cos θ
2

1

2 sin θ
2

= 2

3(1 + cos θ
2 )

. (4)

Put r = 1 and c = cos θ
2 . We examine the distance between O and the point

B(t) = (
x(t), y(t)

) = P1(1 − t)3 + 3Qt (1 − t)2 + 3Rt2(1 − t) + P2t
3

on the Bézier curve. Denoting t = s + 1
2 , we have

L(s) := x
(
s + 1

2

)2 + y
(
s + 1

2

)2
= 16(1 − c)3

1 + c
s6 − 8(1 − c)3

1 + c
s4 + (1 − c)3

1 + c
s2 + 1

= (1−c)3

1+c s2(4s2 − 1)2 + 1

and when 0 ≤ s ≤ 1
2 ,

3
√
8s2(1 − 4s2)2 ≥ 8s2 + (1 − 4s2) + (1 − 4s2)

3
= 2

3
.

The equality in the above holds if and only if 8s2 = 1−4s2, namely, s2 = 1
12 . Hence

L(s)with |s| ≤ 1
2 takes the minimal value 1 when s = 0, ± 1

2 and the maximal value
when s = ± 1

2
√
3
.
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L
(
± 1

2
√
3

)
− 1 = 1

27

(1 − c)3

1 + c
,

√
L

(
± 1

2
√
3

)
− 1 � 1

54

(
1 − cos θ

2

)3
1 + cos θ

2

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
648

(
θ = 2π

3 = 120◦) ,
1

3668

(
θ = π

2 = 90◦) ,
1

41900

(
θ = π

3 = 60◦) ,
1

235541

(
θ = π

4 = 45◦) ,
1

2683400

(
θ = π

6 = 30◦) .

(5)

In view of (4), we determine that the segment between P1 and P2 in the curve
interpolating general P0, P1, P2, P3 is the cubic Bézier curve with the control points
Q and R so that

−−→
P1Q = c

−−→
P0P2,

−−→
P2R = c

−−→
P3P1, (6)

P1Q + P2R

P1P2
= 4

3
(
1 + cos θ

2

) . (7)

Thus

cos θ = (
−−→
P0P2,

−−→
P1P3)

P0P2 · P1P3
, cos

θ

2
=

√
1 + cos θ

2
=

√√√√1

2

(
1 + (

−−→
P0P2,

−−→
P1P3)

P0P2 · P1P3

)

and
cP0P2 + cP1P3

P1P2
= 4

3
(
1 + cos θ

2

)
and therefore we have (3).

The cubic Bézier curve is given by

B(t) = P1(1 − t)3 + 3Qt (1 − t)2 + 3Rt2(1 − t) + P2t
3

= (−P1 + 3Q − 3R + P2)t
3 + (3P1 − 6Q + 3R)t2 + (−3P1 + 3Q)t + P1.

The Catmull-Rom spline curve is defined by

C(t) = (− 1
2 P0 + 3

2 P1 − 3
2 P2 + 1

2 P3
)
t3 + (

P0 − 5
2 P1 + 2P2 + 1

2 P3
)
t2

+ (− 1
2 P0 + 1

2 P2
)
t + P1

and therefore the corresponding control points Q and R in this case are defined by

{
Q = P1 + 1

6 (P2 − P0),

R = P2 + 1
6 (P3 − P1),

which means that we fix c = 1
6 in (6).
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Fig. 3 Bézier curves

In our case, the relative error
∣∣∣ OB(t)

OP1
− 1

∣∣∣ is less than 1
640 (resp.

1
3600 ) if∠P1OP2 ≤

120◦ (resp. ≤ 90◦). Note that a Bézier curve never coincides with an exact arc.
For a closed curveC passing through points R0, R1, . . . , RN = R0 in this orderwe

draw a curve segment between R j and R j+1 by putting Pi = Ri+ j−1 for i = 0, 1, 2
and 3 as in the above and Rν±N = Rν (ν = 1, . . . , N ). Then the resulting curve C ′
we draw is a smooth closed curve (of class C1) which simulates C .

When the number c is fixed to be 1
6 in (6), the corresponding curve is known

as the (uniform) Catmull-Rom spline curve (cf. [4]). It is invariant under affine
transformations and our curve is invariant under conformal affine transformations.

The following first example in Fig. 3 is the curve drawn by the three points
(cos t, sin t) with t = ±π

3 , π indicated by •. The other 6 points calculated by
using (3) are indicated by ×. In the final PDF file the positions of these 9 points
are only written and the real rendering of the Bézier curve is done by a viewer of
the file and therefore the size of the PDF file is small. The second example is the
(uniform/centripetal) Catmull-Rom spline curve passing through these three points.

The other examples in Fig. 3 are the Lissajous curve γ (t) = (sin 2t, sin 3t) drawn
by the points corresponding to t = 2π j

N for j = 0, . . . , N .
If the points Pj = γ (t j ) are not suitably chosen, the resulting curve drawn by the

points may be not good. Even in this case our curve is better than the corresponding
Catmull-Rom spline curve as in the following example.

Suppose we draw a graph of the parabola defined by y = x2. Taking the points on
the curve γ (t) = (t, t2) corresponding to t = −2, −1, 0, 0.2, 1, 2, we draw curve
for −1 ≤ t ≤ 1 by these 6 points in Fig. 4.

To avoid a singularity or a loop in a Bézier segment, a generalization of Catmul-
Rom spline is introduced (cf. [5]):

γ (t) = t2 − t

t2 − t1
B1 + t − t1

t2 − t1
B2 (t ∈ [t1, t2]),

B1 = t2 − t

t2 − t0
B1 + t − t0

t2 − t0
B2, B1 = t3 − t

t3 − t1
B1 + t − t1

t3 − t1
B2,

A1 = t1 − t

t1 − t0
P0 + t − t0

t1 − t0
P1, A2 = t2 − t

t2 − t1
P1 + t − t1

t2 − t1
P2,
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Fig. 4 Parabola

A3 = t3 − t

t3 − t2
P2 + t − t2

t3 − t2
P3, t j = (Pj−1Pj )

α + t j−1 ( j = 1, 2, 3).

If α = 0, the above curve equals the standard (uniform) Catmul-Rom spline. When
α = 1, the curve is called chordal Catmul-Rom spline. When α = 0.5, the curve is
called centripetal Catmull-Rom spline and has more desirable properties compared
to the original one (cf. [6]). It will not form loop nor cusp within a curve segment.

But these Catmul-Rom splines produce the same result as in Fig. 3 for the points
equally distributed on a circle because Pj−1Pj does not depend on j .

2.2 Singularities

We consider a curve γ (t) (t ∈ [a, b]) which has singular points or discontinuous
points. We assume that the curve is a finite union of smooth curves but we do not
know the singular points of the curve.

First we choose points Pj = γ (t j ) with t0 = a < t1 < · · · < tN = b on the
curve. We put t j = a + j (b−a)

N in most cases (or as default)1.

For every j , add the point γ (
t j−1+t j

2 ) if

• (
−−−−−−→
Pj−2Pj−1 ,

−−−−→
Pj−1Pj )

Pj−2Pj−1 · Pj−1Pj
< C1 or

(
−−−−→
Pj−1Pj ,

−−−−→
Pj Pj+1)

Pj−1Pj · Pj Pj+1
< C1

or

• Pj−1Pj > C2

Repeat the above up to m times,

Pj−2

Pj−1

Pj

Pj+1

×

1 Moreover if the curve is defined outside [a, b], we use the points P−1 and PN+1 to define Bézier
curves).
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If the length Pj−1Pj still exceeds a given threshold value C2 after this procedure,
we cut our curve between two points Pj−1 and Pj .

The default threshold values are C1 = cos 30◦, C2 = diameter of Window
16 and m = 4.

We examine the graph of the function

y = |2 sin x | − [|2 sin x |] (0 ≤ x ≤ 5).

Here for a real number t ,
[
t
]
denotes the largest integer which does not exceed t .

Note that this function is discontinuous at x = π
6 , 5π

6 , 7π
6 and not smooth at

x = π .
If we do not care the singularities, we have Fig. 5.
The procedure explained in this subsection gives Fig. 6 and the number of seg-

ments of Bésier curves increases from 32 to 70.
The graph of the absolute value of Riemann’s zeta function ζ(z) for Re z = 1

2 is
given in Fig. 7. Risa/Asir takes less than a second to get it in a PDF file.

Fig. 5 y = ∣∣|2 sin x | − [|2 sin x |]∣∣ (0 ≤ x ≤ 5, m = 0 and N = 32)

Fig. 6 y = ∣∣|2 sin x | − [|2 sin x |]∣∣ (0 ≤ x ≤ 5, m = 4 and N = 32 → 70)

Fig. 7 y = ∣∣ζ ( 1
2 + x

√−1
)∣∣ (m = 6 and N = 96 → 355)
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Fig. 8 Fourier series (m = 6 and N = 192 → 1020)

The final example in this subsection is the finite Fourier series

y = sin x + 1
3 sin

x
3 + 1

5 sin
x
5 + · · · + 1

21 sin
x
21

which approximates a square wave in Fig. 8.

3 Applications

3.1 Circles, Arcs and Ovals

The relative error of our approximation of an arc by a cubic Bézier curve becomes
smaller when its central angle becomes smaller. If the angle is smaller than 120◦
(resp. 90◦), then it is smaller than 0.16% (resp. 0.028%) as is shown in the previous
section. The relative error here is measured by the distance from the center of the
circle containing the arc.

Hence the central angle of an arc is not large, it is sufficient for us to approximates
it by a single cubic Bézier curve or at most three cubic segments for most purposes.

Moreover since the Bézier curve is compatible with affine transformations, we
can also draw an oval and an arc of an oval with the same accuracy by using an
affine transformation of our approximation of a circle or an arc of a circle. These are
realized in [1].

3.2 Integration

The area enclosed by a curve is numerically calculated by our approximation since
an area enclosed by a curve with cubic Bézier segments is easily calculated (Fig. 8).

Suppose an area is enclosed by segments of cubic Bézier curves

[0, 1] � t �→ γ j (t) = (
x j (t), y j (t)

)
( j = 0, . . . , N ).

Then the absolute value of the line integral
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I (γ ) =
N∑
j=0

∫ 1

0
y j (t) dx j (t) =

N∑
j=0

∫ 1

0
x ′
j (t) · y j (t) dt

gives the area. Here x ′
j (t) · y j (t) are polynomials of degree 5 and therefore the above

value is easily calculated.
If the curve is an approximation of the graph of y = f (x) with x ∈ [a, b], the

above value is an approximation of
∫ b
a f (x) dx .

In the following table we show examples of the relative errors of the numerical
integrations using this method. In the table, circle and cardioid are parametrized by

(cos θ, sin θ) and
(
(1 + cos θ) cos θ, (1 + cos θ) sin θ

)
,

respectively. For example, in the case of cardioid in the table, “32parts”means that the
cardioid is approximated by 32 cubic Bézier segments determined only by the points(
(1 + cos θ j ) cos θ j , (1 + cos θ j ) sin θ j

)
with θ j = jπ

16 − π and j = 0, 1, . . . , 32
and the approximated area is calculated by the segments.

Integrations using Bézier curves

Curve Interval 16 parts 32 parts 96 parts 384 parts 1536 parts

Circle 0 ≤ θ ≤ 2π 6.8 × 10−8 1.1 × 10−9 1.5 × 10−12 3.2 × 10−17 8.7 × 10−20

Cardioid −π ≤ θ ≤ π 5.4 × 10−4 3.1 × 10−5 3.8 × 10−7 1.5 × 10−9 5.8 × 10−12

x sin x 0 ≤ x ≤ π 2.9 × 10−4 1.8 × 10−6 2.2 × 10−8 8.7 × 10−11 3.4 × 10−13

sin x
x 0 < x ≤ π 1.5 × 10−6 9.5 × 10−8 1.2 × 10−9 4.6 × 10−12 1.7 × 10−14

1
x2+1

−∞ < x < ∞ 1.3 × 10−5 1.3 × 10−7 8.5 × 10−10 4.7 × 10−12 2.1 × 10−14

e−x2 −∞ < x < ∞ 7.1 × 10−4 1.3 × 10−4 2.6 × 10−6 1.1 × 10−8 4.3 × 10−11

x− 3
2 1 ≤ x < ∞ 3.0 × 10−4 3.8 × 10−5 1.4 × 10−6 6.6 × 10−9 2.6 × 10−11

1
x2+√−1

−∞ < x < ∞ 2.3 × 10−3 1.7 × 10−4 2.6 × 10−6 1.9 × 10−8 8.1 × 10−11

e
1
z |z| = 1 7.6 × 10−5 4.1 × 10−6 4.8 × 10−8 1.9 × 10−10 7.3 × 10−13

If the interval of integration is infinite,we compactify it to [0, 1] for the calculation.
For example, if the interval is (−∞,∞), the transformations

φC : (0, 1) � t �→ x = 1
C

(
1

1−t − 1
t

) ∈ (−∞,∞),

ψC : (0, 1) � t �→ x = 1
C

(
e

1
1−t − e

1
t
) ∈ (−∞,∞).

are used in [1]. In the above examples, the positive constant C is the default value
in [1]. If | f (x)| = O(x−2), the transformation by φC usually gives a better approxi-
mation than by ψC .

In Fig. 9 we show the change of integrand of
∫ ∞

−∞
dx

x2 + 1
under the compactifi-

cation.
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Fig. 9 Compactification

3.3 3D Graphs

Our original main purpose is to draw graphs of surfaces defined by z = f (x, y)
with mathematical functions f (x, y). Using our method Fig. 1, we draw curves on
a surface defined by the condition that x is constant or y is constant. It takes 10–
30s to get a required PDF file after a command in Risa/Asir if f (x, y) is a simple
rational function. We can use TikZ and XY-pic. In contrast to XY-pic the source text
in TikZ is more readable, easy to be edited and has stronger abilities such that it
supports coloring and filling region by a pattern but is takes a little longer time to be
transformed into a PDF file. Hence our library [1] supports both of them (Fig. 10).

We give two examples z = | sin(x + y
√−1)| and z = xy2

x2+y4 .

Fig. 10 3D graphs
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Aesthetic Design with Log-Aesthetic Curves
and Surfaces

Kenjiro T. Miura and R.U. Gobithaasan

Abstract Bézier, B-Spline and NURBS are de facto flexible curves developed for
various design intent. However, these curves possess complex curvature function
complicating the process of aesthetic shape design. In order to shorten the process,
we introduce the fundmental equations of aesthetic curves and surfaces. This paper
elaborates on the technicalities of Log-Aesthetic (LA) curves and surfaces along with
its practical application for industrial design. It is anticipated that the emerging LA
curves and surfaces have good prospects to be the standards for designing aesthetic
shapes.

Keywords Fair curves and surfaces · Log-aesthetic curve and surface · General
equations of aesthetic curves · Logarithmic curvature graph

1 Introduction

Fairness metric is a conventional term used to describe the quality of curves and
surfaces. According to Farin, a planar curve is fair if it has continuous curvature
and consists of few monotonic curvature pieces [1]. In the past, researchers formu-
lated high-quality curves and surfaces using polynomial representation i.e. Bézier,
B-spline and NURBS. The underlying principle was to obtain suitable functionals
in order to minimize the oscillation of a curvature. Numerous principles are elabo-
rated as chapters in a book edited by Sapidis entitled “Designing Fair Curves and
Surfaces” [2].

A well defined Cesáro equation can be employed to produce high quality curves
and surfaces. This equation expresses intrinsic properties of curves and surfaces
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Fig. 1 Classifications of the
researches on fair and
aesthetic curves

Fairness metrics

using 
Bézier
B-spline
NURBS
etc.

Aesthetic curves

Logarithmic spiral
Clothoid curve
Quaternion IC
GCS
Log-aesthetic curve 
GLAC

Construction
Bézier polygon
Typical curve
Class A Bézier 

without the presence of traditional polynomials. In this paper, we follow suit to
distinguish the terms “fair” and “aesthetic”. In brief, free-form curves and surfaces
are constructed with specific formulations rather than polynomials or rationals to
represent high quality shapes denoted as aesthetic curves and surfaces.

In recent years, researchers are perfecting the works on aesthetic curves con-
tributing to exponential increase of findings and publications in this arena. However,
research pertaining to the formulation of aesthetic surfaces are still at an early stage
and offers bright opportunity for CAD community to contribute significantly. Figure 1
shows an Euler diagram depicting the classifications of fair and aesthetic curves. The
members in the green circle comprises of the family which involves traditional curves.
The orange circle encloses aesthetic curves including the log-aesthetic (LA) curves;
which is one of the main focus of this paper. In this paper, we define aesthetic curves
as non-polynomial functions used for aesthetic shape designs. The intersection of
these circles represent the curves expressed by traditional formulations as well as
specific methods of construction.

Recent advancement on the LA curve has been promising and it has now matured
for industrial and graphical design practices. In 2009, Levien and Séquin [3] indicated
that LA curves are the most promising curve for aesthetic design. Gobithaasan and
Miura [4] formulated the generalized log-aesthetic curve (GLAC) in a standard form
by representing the gradient of the logarithmic curvature graph (LCG) as a function
of its arc length. They also reported that the LCG gradient of Generalized Cornu
spiral [5] can be written as a linear function of the LCG gradient [6]. In 2012, Miura
et al. reformulated the LA curve using variational principles to obtain minimized
functionals for free-form surface design [7]. In the same year, Ziatdnov et al. [8]
showed that some LA curves can be expressed by incomplete Gamma functions
which shortens the computation time up to 10 times. Recently Meek et al. [9] proved
that an unique solution exists for G1 interpolation by using an LA curve segment
when α < 0. In 2015, Miura et al. [10] proposed another type of aesthetic curve
called polar-aesthetic curve for scissors blade design.
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2 Log-Aesthetic Curves

This section discusses about the details of LA curves and surfaces in a greater depth.
We show that the formulation of LA curves has been perfected along with its funda-
mental properties. In the following sections we further illustrate that its applications
for industrial design which proven to be promising. Albeit, the formulation and repre-
sentation of aesthetic surfaces has been progressing and much efforts are anticipated
for practical design. Next section is dedicated to dissect the foundation of LCG which
led to the general equations of aesthetic curves.

2.1 Logarithmic Curvature Graphs

Harada’s formulation of the Logarithmic Distribution Diagram of Curvature (LDDC)
is based on a quantitative approach which involves tedious curvature radius and its arc
length frequency calculation. They highlighted that an aesthetic curve has a linear
LDDC plot. However, the length frequency of the curve can not be evaluated at
certain positions on the curve or for arbitrary radius of curvature. Thus, it was not
given much attention as a shape interrogation tool.

In 2003, Kanaya et al. [11] proposed the generation of Logarithmic Curvature
Histogram, abbreviated LCH, to substitute LDDC and showed that for a given curve
C(t) = (x(t), y(t)), the derivative of the arc length s with respect to the logarithm of
the radius of curvature R = log ρ is given by

ds

dR
= (x′y′′ − x′′y′)(x′2 + y′2) 3

2

3(x′x′′ + y′y′′)(x′y′′ − x′′y′) − (x′2 + y′2)(x′y′′′ − x′′′y′)
(1)

where ′ denotes the derivative with respect to parameter t. The quantitative LDDC
approach is mathematically equivalent to Eq. (1) where horizontal and vertical coor-
dinates represent R and log |ds/dR|, respectively. Thus, Eq. (1) is sufficient to ana-
lytically define the LDDC plot. However, it does not provide concrete conditions
in order to approximate LDDC with a straight line or it does indicate the slope of
the approximated line to represent aesthetic shapes. Furthermore, for a curve whose
shape is obtained from its image data, only discrete data are available and the partial
arc length sj must be a finite value to calculate the length frequency.

Hence algebraic manipulation was carried out to reformulate the LCH of Eq. (1).
Since the LDDC graph is expressed by log |ds/d(log ρ)| and both s and ρ are func-
tions of the parameter t, we can further simplify as follows

log

∣∣∣∣ ds

d(log ρ)

∣∣∣∣ = log

∣∣∣∣
ds
dt

d(log ρ)

dt

∣∣∣∣= log

∣∣∣∣ρ
ds
dt
dρ

dt

∣∣∣∣
= log ρ + log sd − log

∣∣∣∣dρ

dt

∣∣∣∣ (2)
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where sd = ds/dt. Equation (2) is defined by the radius of curvature and its derivative.
It describes the relationship between the radius of curvature and the derivative of the
arc length more explicitly as compared to Eq. (1). This new analytical approach is
denoted as Logarithmic Curvature Graph (LCG).

2.2 First and Second Fundamental Equations of Aesthetic
Curves

In this section, we derive the equation of a curve that produces LCG strictly as a
straight line. The curves obtained satisfying such a condition are defined as aesthetic
curves and it is the fundamental equations of aesthetic curves [12].

If we assume that the LCG of a given curve is strictly expressed by a straight line,
on the LCG of Eq. (2) there is a constant α and

log

∣∣∣∣ρ ds

dρ

∣∣∣∣ = α log ρ + C (3)

where C is a constant. By transforming Eq. (3), we obtain

1

ρα−1

ds

dρ
= eC = C0 (4)

Hence,

ds

dρ
= C0ρ

α−1 (5)

If α �= 0,

s = C0

α
ρα + C1 (6)

In the above equation, C1 is an integral constant. Therefore

ρα = C2s + C3 (7)

where C2 = α/C0 and C3 = −(C1α)/C0. Here we rename C2 and C3 to c0 and c1,
respectively. Then

ρα = c0s + c1 (8)
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The above equation indicates that the αth power of the radius of curvature ρ is
given by a linear function of the arc length s. The above equation is named the first
fundamental equation of aesthetic curves [12].

For the case of α = 0,

s = C0 log ρ + C1 (9)

Hence,

ρ = C2e
C3s (10)

whereC2 = e−C1/C0 andC3 = 1/C0. We renameC2 andC3 as c0 and c1, respectively.
We get

ρ = c0e
c1s (11)

The ρ is given by an exponential function of s. The above equation is named as the
second fundamental equation of aesthetic curves [12].

It is known that logarithmic spiral and clothoid are regarded as high quality curves
as explained in the next section. One of the principal characters of the logarithmic
spiral is that its radius of curvature and arc length are proportional. Hence, the
logarithmic spiral satisfies Eq. (8) and its α is equal to 1. Additionally, the main
property of clothoid is that its radius of curvature is inversely proportion to its arc
length. Thus, Eq. (8) is satisfied for the clothoid if α is given by −1.

In summary, the general equations of aesthetic curves expressed by Eq. (8) encom-
passes beautiful curves such as logarithmic spirals and clothoids. In fact Nielsen’s
spiral [13] is also expressed by Eq. (11). The curves which satisfies the first and
second fundamental equations of aesthetic curves are denoted as Log-aesthetic (LA)
curves, which was coined by Professor Carlo H. Séquin from University of California,
Berkeley during the presentation of this work at the International CAD Conference
& Exhibition 2007 at Honolulu, Hawaii.

2.3 Parametric Expression of LA Curve

In this section, we describe the parametric expressions of the fundamental equations
for aesthetic curves as Eqs. (8) and (11). Let a curve C(s) satisfy Eq. (8). Then

ρ(s) = (c0s + c1)
1
α (12)

Since s is the arc length, |sd | = 1 (refer to, for example, [1]) and there exists θ(s)
satisfying the following two equations:

dx

ds
= cos θ,

dy

ds
= sin θ (13)
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Since ρ(s) = 1/(dθ/ds),

dθ

ds
= (c0s + c1)

− 1
α (14)

Hence, if α �= 1,

θ(s) = α(c0s + c1)
α−1
α

(α − 1)c0
+ c2 (15)

If the starting point of the curve is given by P0 = C(0), thus LA curve can be
represented in a complex plane as follows

C(s) = P0 + exp(ic2)

∫ s

0
exp

{
i
α(c0u + c1)

α−1
α

(α − 1)c0

}
du (16)

The above expression can be regarded as an extension of the clothoid curve where
power of e in its definition is changed from 2 to α + 1 and its LCG gradient can be
specified to be equal to any value except for 0.

Similarly, the second fundamental equation of aesthetic curves are expressed by
Eq. (11),

dθ

ds
= 1

c0
e−c1s (17)

θ = − 1

c0c1
e−c1s + c2 (18)

Therefore the curve is given by

C(s) = P0 + eic2

∫ s

0
e− i

c0c1
e−c1s

ds (19)

Figure 2 shows LA curves with various α values which are plotted with horizontal
and vertical axes as real and imaginary values, respectively.

3 Log-Aesthetic Spline

In this section, we describe a method to simultaneously specify endpoints, tangent
vectors and its curvatures (G2 Hermite data) using an LA spline which consists three
LA segments. The idea was obtained from Lan et al.’s work [14] where they solve
the G2 Hermite interpolation problem using triple clothoids. Miura et al. [15] used
the shape parameter α as an additional parameter to make the end curvature as 0.
Since α is related to impressions of the shape [16], hence α is fixed as a constant
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Fig. 2 LA curves whose
LCG gradients are given by
various α, top curves with
negative α, bottom those
with positive α and two
negative values −2 and −1
for comparisons

α
α

α
α

α

α

ααα
αα

α

to produce G1 Hermite interpolation using a single LA curve segment and a C3

continuous compound-rhythm LA curve is connected with two LA segments.
α is usually regarded as a shape parameter which can be controlled by designers.

Thus, we do not use it to satisfy any geometric constraints to shape LA curves. Note
that the degree of freedom (DoF) of the LA spline with three segments is similar
to triple clothoids. It is a common practice to fix the value of α to design aesthetic
shapes using LA curves. An LA spline consists of three LA curve segments with
different α values which are joined with G2 continuity [17].

3.1 Initial Value Estimation

We need initial values for parameters to define an LA spline. To obtain these initial
values, we estimate curvatures at the two joints of the LA curve segments. We may
use a Bézier curve of degree 5 for the estimation of the initial values to shape an LA
spline. Let the total length of the Bézier curve as h. In general, Bézier curves are
not uniquely determined by endpoints, tangent directions and its curvatures; these
conditions do not necessarily yield a suitable curve for the initial value estimation.
Hence we use an objective function which is modified to be independent from the
total length h as proposed by Miura et al. [17]:

JLAC = 1

h

3∑
i=1

∫ Sih

Si−1h

√
1 + α2

i ρ
2αi−2ρ2

s ds (20)

where S0 = 0, S1 = 0.25, S2 = 0.75 and S3 = 1. The above function is minimized
to generate an appropriate initial Bézier curve. Figure 3a shows a Bézier curve of
degree 5 and its initial control points in green and those after optimization in blue
for αi = −0.5, i = 1, 2, 3.

Upon using the Bézier curve after optimization, an LA spline curve with three
segments shown in red is determined. To be precise, the LA spline curve does not
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l
0

l
1

l
2

l
3

(a) (b)

Fig. 3 Optimization of the approximation curve for initial values. a A triple LA curve. b Parameters
for optimization

Fig. 4 A generation of G2

continuous Bézier curve of
degree five satisfying
traditional G2 Hermite data
by a built-in command with
and an LA spline in red color
with the same G2 Hermite
data

LA spline

Bezier curve

strictly minimize the objective function in Eq. (20), but note that the shapes of the
Bézier curve and LA spline are almost in a similar shape. In this example, parameters
calculated from the input of Bézier curve are not appropriate, hence the numerical
calculation diverges because the total length h becomes negative. If we use the Bézier
curve after optimization, we may obtain these values without calculation failure and
generate an LA spline successfully. Since an optimization process is necessary only
for the initial value estimation, we propose a simpler method as shown in Fig. 3b. Let
the lengths between the 1st and 2nd control points and the 5th and 6th control points
be l0 and l3, respectively. Furthermore let parameters to determine the positions of
the 3rd and 4th be l1 and l2, respectively. We change these parameters independently
in the range of 0.05 ≤ li/h ≤ 0.5 for i = 0, 1, 2, 3 by 0.05 where h is the total arc
length of the input Bézier curve. We may now obtain parameter values easily which
minimize the objective function in Eq. (20).

Figure 4 depicts Bézier curve of degree 5 (black) and an LA spline (red) generated
using the proposed method. The Bézier curve is generated and deformed by built-in
commands of a commercial CAD system to satisfy G2 Hermite data posed at its
endpoints. The LA spline is generated with similar G2 Hermite data to achieve G2
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Fig. 5 A car model designed by using LA spline and its mock-up. a Iso-lines and zebra mapping.
b Rendering. c Mock-up

continuity at the joints. These curves are also shown separately for visual clarity. The
curvature plot of these curves is drawn in blue. It is visually clear that the curvature
of the Bézier curve varies drastically in order to satisfy G2 continuity at its endpoints
whereas the LA spline joins gradually.

Figure 5 shows a practical design of a car using LA splines. Figure 5a shows
iso-parametric lines of the free-form surface generated using LA splines and its
corresponding zebra maps. Figure 5b depicts the CAD model with a special lighting
condition and Fig. 5c are photos of its mock-up manufactured based on the CAD
model. To note, the roof of the car is designed by a LA spline curve with three
segments and its zebra maps indicates the surface is of high quality. Based on our
experience on various aesthetic shape design, LA splines can be used to satisfy any
G2 Hermite data.

4 Variational Formulation of Aesthetic Shapes

In this section, we show on approximating aesthetic shapes with regard to the func-
tional which LA curve minimizes [18]. Then, we extend the functional to formulate
log-aesthetic surfaces [7].

4.1 Variational Formulation of LA Curves [18]

If we substitute ρα with σ in Eq. (8), the equation is then given by

σ = cs + d (21)

The above equation indicates that LA curves are the representation of a straight line
in the s − σ plane where the horizontal and vertical axes are the arc length s and
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σ = ρα respectively which connects two given points (s1, β1) and (s2, β2). In this
case, the following objective functional is minimized.

JLAC =
∫ s2

s1

√
1 + σ 2

s ds =
∫ s2

s1

√
1 + α2ρ2α−2ρ2

s ds (22)

4.2 Variational Formulation of LA Surfaces [7]

Here, we apply the variational principle to the surface formulation. We let the curva-
ture of the curve κ and the arc length s correspond to the Gaussian curvature K and
the surface area S, respectively. From Eq. (22), when α = −1, κs = −ρs/ρ

2 and we
obtain the following equation.

JLAC =
∫ s2

s1

√
1 + κ2

s ds (23)

By reparameterizing the above equation with s = s(t), it becomes

JLAC =
∫ t2

t1

√
x2
t + y2

t + κ2
t dt =

∫ t2

t1

√
λC + κ2

t dt (24)

where s1 = s(t1), s2 = s(t2), and λC = √
x2
t + y2

t . Note that ds/dt = λC .
By extending Eq. (24) into the surface, we define the objective functional for the

surface JLAS as follows:

JLAS =
∫ u2

u1

∫ v2

v1

√
det(I) + K2

u + K2
v dudv (25)

where I is a matrix expressed with the first fundamental form by

I =
[
E F
F G

]
(26)

where E = Su · Su, F = Su · Sv and G = Sv · Sv. Note that the area of the surface S
is given by

S =
∫ u2

u1

∫ v2

v1

√
det(I)dudv (27)

We assume local parameterization (s, t) around a point on the surface so that the
tangent vectors with respect to the parameters are orthogonal to each other, their
directions are the same as the principal direction, and the norm of each tangent
vector is equal to 1. With this parameterization, I becomes the 2 × 2 unit matrix. By
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performing integration around the point S(s1, t1), Eq. (25) can be rewritten as

ΔJLAS =
∫ s1+Δs

s1

∫ t1+Δt

t1

√
1 + K2

s + K2
t dsdt (28)

According to the general principle of variational principle, to minimize the following
functional

J =
∫ s2

s1

∫ t2

t1

g(K,Ks,Kt, s, t)dsdt (29)

the following equation should be satisfied.

∂g

∂K
− ∂

∂s

∂g

∂Ks
− ∂

∂t

∂g

∂Kt
= 0 (30)

Note that g =
√

1 + K2
s + K2

t does not explicitly depend on K . Equation (30) yields

(1 + K2
t )Kss − 2KsKtKst + (1 + K2

s )Ktt = 0 (31)

The above equation is called the minimal surface or Lagrange’s equation and the
surface S(s, t) = (s, t,K(s, t)) is given by a minimal surface. Therefore, in a case
where the Gaussian curvature on the boundary is specified, the Gaussian curvature
should be given by a minimal surface interpolating the boundary values. The above
discussion assumes local isometric parameterization whereby global isometric para-
meterization does not exist in general. It is not possible to deal with the case where
the functional is defined globally as in Eq. (25). In such cases, some optimization
technique should be adopted to minimize the functional to generate a desired surface.

According to Bernstein’s theorem [19], if the boundary of the surface is located
infinitely far, the minimal surface is given by a plane. Therefore, the Gaussian cur-
vature is given by

K(s, t) = c0s + c1t + c2 (32)

where c0, c1, and c2 are constants.
For further extension, we may use the mean curvature H instead of the Gaussian

curvature K . In this paper we do not elaborate the effects of the power α. To take into
account the effects of the power, we may use κα

maxκ
β

min where κmax and κmin are the
maximum and minimum normal curvatures, respectively. For example, an objective
functional may be defined by

JLAS =
∫ u2

u1

∫ v2

v1

√
det(I) + {(κα

maxκ
β

min)u}2 + {(κα
maxκ

β
max)v}2dudv (33)

These extensions are proposed as topics for future research.
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5 Conclusions

This paper reviews on fair curves and surfaces leading towards the formalization of
aesthetic curves and surfaces. LA curves depict promising properties for practical
applications and we hope it will be used as one of the standard curves for industrial
and graphical design in the near future. Much effort for theoretical as well as practical
researches are anticipated in order to define and utilize LA surface for various design
feats.
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Attractive Plane Curves in Differential
Geometry

Jun-ichi Inoguchi

Abstract The purpose of chapter is to discuss plane curves from differential geo-
metric point of view and applications of plane curves to computer aided designs.
Plane curves are determined uniquely by curvatures up to Euclidean motions. Thus
geometry of plane curves are formulated by the Euclideanmotion group SE(2). From
industrial point of view, other transformation groups aremore appropriate for charac-
terizing certain classes of plane curves. For instance, under equiaffine transformation
group, conics are characterized as plane curves with constant equiaffine curvatures.
Plane curves with monotonous curvature function have been paid much attention in
industrial shape design and computer aided geometric design. In this chapterwe study
plane curves with monotonous curvature function, especially log-aesthetic curves,
in terms of similarity transformation group.

Keywords Transformation group · Log-aesthetic curve · Similarity geometry ·
Similarity curvature

1 Introduction

Plane curves are fundamental objects in differential geometry. In industrial shape
design or computer aided geometric design, curves of particular property have been
used as a parts of figures. In particular, plane curves with monotonous curvature
function have been paid much attention (see e.g., [30]).

For later use here we recall basic notations for Euclidean plane geometry. We
denote by R2 the Cartesian plane with orthogonal coordinates (x, y). The Euclidean
distance function d : R2 × R

2 → R is defined by

d(P,Q) =
√

(x − v)2 + (y − w)2, P = (x, y),Q = (v,w).
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Cartesian plane R2 equipped with Euclidean distance is called the Euclidean plane
and denoted by E

2.
A transformation f on E

2 is said to be an isometry if it preserves the distance
function d. Two figures X and Y in E

2 are said to be congruent each other if there
exits an isometry which sends X to Y .

It is a fundamental fact of Euclidean plane geometry, that every isometry on E
2

has the form:
p �−→ Ap + b,

where A is a real 2 by 2 orthogonal matrix and b is a vector.
The set of all isometries on E

2 forms a Lie group with respect to composition.
The resulting Lie group is called the Euclidean group and denoted by E(2). The
Lie subgroup SE(2) of all orientation preserving isometries is called the Euclidean
motion group. An element of SE(2) is called a Euclidean motion. Plane curves are
determined by curvatures unique up to Euclidean motions.

In this chapter we replace SE(2) by other transformation groups and study attrac-
tive plane curves in terms of “curvatures” derived from transformation groups strictly
larger than SE(2).

In particular, we discuss plane curves with monotonous curvature function via
similarity transformation group.

2 Curves in Euclidean Plane Geometry

Aplane curve p(t) = (x(t), y(t)) is said to be regular if its derivative ṗ(t) = dp/dt(t)
never vanishes. Every regular plane curve can be reparametrized by the arc length
parameter s. With respect to the arc length parameter s, the derivative p′(s) :=
dp/ds(s) is a unit vector field along the curve.Moreover the vector fieldT(s) := p′(s)
and N(s) = R(π/2)T(s) constitutes an orthonormal frame field {T(s),N(s)} along
the curve. HereR(θ) denotes the rotationmatrix of rotation angle θ . The orthonormal
frame field is regarded as an orthogonal matrix valued function F(s) = (T(s)N(s)).
The matrix valued function F(s) takes value in the rotation group SO(2) and called
the Frenet frame of the curve. Here the rotation group SO(2) is a group of all rotation
matrices, i.e., real 2 by 2 orthogonal matrices of determinant 1.

For an arc length parametrized curve p(s), its Frenet frame satisfies the Frenet
equation:

F ′(s) = F(s)

(
0 −κ(s)

κ(s) 0

)
.

The function κ(s) is called the curvature of p(s).
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Theorem 1 (Fundamental theorem of plane curves) Let p and q be regular plane
curves defined on the same interval I. Assume that p and q have the same curvature.
Then there exists a Euclidean motion mapping p to q. Hence p is congruent to q.

For any function κ = κ(s) : [0,L] → R, there is an arc length parametrized curve
p : [0,L] → E

2 with arc length parameter s and curvature κ unique up to Euclidean
motions. In fact p(s) = (x(s), y(s)) is given explicitly by the following formula:

Theorem 2 (Representation formula)

x(s) =
∫ s

0
cos θ(s) ds + x0, y(s) =

∫ s

0
cos θ(s) ds + y0,

θ(s) :=
∫ s

0
κ(s) ds + θ0,

where x0, y0 and θ0 are integral constants. The function θ(s) is called the turning
angle function.

Example 1 (Logarithmic spirals) A logarithmic spiral is a curve parametrized as

p(t) = a(ebt cos t, ebt sin t).

Here a and b are positive constants (see Fig. 1). This logarithmic spiral has curva-
ture κ(s) = 1/(bs + a

√
1 + b2) with s = a

√
1 + b2(ebt − 1)/b. Thus logarithmic

spirals are characterized as arc length parametrized curves whose curvature radius
ρ(s) = 1/κ(s) is a linear function of the arc length parameter. We shall give another
characterization of logarithmic spirals in Sect. 4.

Example 2 (Clothoids) The clothoid (also called the Cornu spiral) is defined as

p(s) =
(∫ s

0
cos

ks2

2
ds,

∫ s

0
sin

ks2

2
ds

)

by using the Fresnel integral. Here k is a positive constant (Fig. 2). Clothoids have
been used in highway design for many years. The clothoid has curvature κ(s) = ks.
See also [18]. For some applications of Cornu spirals in CG, we refer to [3, 16, 17].
Bertails-Descoubes introduced the notion of super clothoid in [4]. See also [5].

By observing the explicit parametrization of the clothoids or the curvature function,
the following two generalizations are proposed by differential geometers.

Example 3 (Pseudo-spirals) Gray suggested the following generalization of
clothoids [9]:
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Fig. 1 Logarithmic spiral

Fig. 2 Clothoid
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Fig. 3 Pseudo-spiral (n = 2)

x(t) = k
∫ t

0
sin

un+1

n + 1
du, y(t) = k

∫ t

0
cos

un+1

n + 1
du.

Here k is a positive constant and n is a positive integer (Fig. 3).
The arc length parameter is s(t) = kt. The curvature is κ(s) = −sn/kn+1. This

curve has explicit parametrization

x(t) = ktn+2

(n + 1)(n + 2)
2F1

(
1

2
+ 1

2(n + 1)
,
3

2
; 3
2

+ 1

2(n + 1)
;− t2(n+1)

4(n + 1)2

)
,

y(t) = kt 2F1

(
1

2(n + 1)
,
1

2
; 1 + 1

2(n + 1)
;− t2(n+1)

4(n + 1)2

)

in terms of Gauss hypergeometric function 2F1. An arc length parametrized curve
is said to be a pseudo-spiral if its curvature function is given by κ(s) = sn/α. Here
α is a positive constant and n is an integer. Pseudo-spirals have been considered
by Savelov. Moreover Savelov pointed out that the involutes of pseudo-spirals are
pseudospirals, too [26, p. 264, Eq.6].

Remark 1 The hypergeometric function 2F1(a, b, c; t) is a solution to Gauss hyper-
geometric differential equation:

t(1 − t)
d2z

dt2
+ {c − (1 + a + b)t}dz

dt
− abz = 0, (1)

where a, b and c are constants. The hypergeometric function 2F1(a, b; c; t) has the
following expansion around 0:

2F1(a, b; c; t) :=
∞∑
n=0

(a)n(b)n
(c)n n! tn, |t| < 1,

where c is not a nonpositive integer. Here we used the so-called Pochhammer symbol

(a)n :=
{
a(a + 1)(a + 2) . . . (a + n − 1), n ≥ 1
1, n = 0.
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Example 4 (Polynomial spirals) Dillen [7] studied arc length parametrized curve
whose curvature is a polynomial function of the arc length parameter (called poly-
nomial spirals). See Fig. 4.

These two generalizations are derived fromDifferential Geometric interests. Here
is another generalization suggested byAli et al. [1] from computer designmotivation.

Example 5 (Span generation problem) For any given data:

(p0,T0, κ0, θ0), (p1,T1, κ1, θ1),

we look for arc length parametrized curve p(s), (0 ≤ s ≤ L) such that

Fig. 4 Polynomial spiral
with κ(s) = s2 − 2.19
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p(0) = p0, ṗ(0) = T0, κ(0) = κ0, θ(0) = θ0,

p(L) = p1, ṗ(L) = T1, κ(L) = κ1, θ(L) = θ1.

Ali et al. considered p(s) defined by the curvature function:

κ(s) = p + qs

L + rs
,

where p, q, r and L are constants (Fig. 5). An arc length parametrized curve p(s)
determined by this rational curvature is called a generalized Cornu spiral in [1].

This family includes clothoids for q 	= 0 and r = 0. In addition, log-spirals are
generalized Cornu spirals with q = 0 and r 	= 0.

Generalized Cornu spirals in the sense of [1] give solutions to the above span
generation problem. In fact, if we choose

p := κ0 L, q := κ1 − κ0 + rκ1, r > −1

and integrating κ(s) under the above initial conditions, we obtain an arc length
parametrized curve p(s).

Fig. 5 Generalized Cornu
spiral
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3 Transformation Groups

From industrial point of view, we may replace the Euclidean motion group SE(2)
by other transformation groups strictly larger than SE(2). Here is a mathematically
rigorous definition of “plane geometry” in the spirit of Felix Klein (see [12]).

Definition 1 Let G be a Lie group acting transitively on R
2. The pair (G,R2) is

called a plane geometry with transformation group G.

The Euclidean plane geometry is formulated as a plane geometry (SE(2),R2).

Example 6 (Affine geometry) Let us consider the Lie group A(2) of all affine trans-
formations onR2. Affine transformations play fundamental roles in computer graph-
ics. The plane geometry with transformation group A(2) is called the affine plane
geometry. As is well known, every affine transformation on R

2 has the form:

p �−→ Ap + b,

where A is a real 2 by 2 nonsingular matrix and b is a vector. See [2, 24].

Example 7 (Equiaffine geometry) An affine transformation: p �−→ Ap+b is said to
be equiaffine if | det A| = 1. The Lie group SA(2) of all equiaffine transformations
is called the equiaffine transformation group. The plane geometry with equiaffine
transformation group is called the equiaffine plane geometry.

Take a regular curve p(t). Assume that p(t) is nondegenerate, that is, det(ṗ(t)p̈(t)) 	=
0. Then there exists a parameter u (called the equiaffine parameter or unimodular
parameter) such that

FSA(u) =
(
dp
du

(u)
d2p
du2

(u)

)

has determinant 1. Namely FSA takes value in the special linear group SL2R. Here
SL2R is the Lie group of all real 2 by 2 matrices with determinant 1. The matrix
valued function FSA is called the equiaffine frame and satisfies the equiaffine Frenet
equation:

d

du
FSA(u) = FSA(u)

(
0 −κSA(u)
1 0

)
.

The function κSA(u) is called the equiaffine curvature of p(u).
Analogus to Euclidean plane geometry, equiaffine parametrized plane curves are

determined uniquely by equiaffine curvature up to orientation preserving equiaffine
transformations.

Consider a parabola p(t) = (t, t2/2). Although parabolas are fundamental exam-
ples of plane curves in Euclidean plane geometry, their curvature is not simple form.
In fact, one can check that κ(t) = (1 + t2)−3/2. On the other hand in equiaffine
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Fig. 6 Equiaffine clothoid

plane geometry, parabolas are characterized as equiaffine plane curves with vanish-
ing equiaffine curvature. In addition, ellipses and hyperbolas are characterized as
equiaffine curves with positive and negative constant equiaffine curvatures, respec-
tively (see [23]).

Example 8 (Equiaffine clothoid) An equiaffine clothoid is an equiaffine plane curve
whose equiaffine curvature is a linear function of the equiaffine parameter (Fig. 6).
Equiaffine clothoid can be parametrized as

p(u) = √
π

(∫ u

0
Ai(t) dt,

∫ u

0
Bi(t) dt

)
.

Here Ai and Bi are Airy functions.

4 Similarity Geometry

Hereafter, we concentrate our attention to plane curves under similarity transfor-
mations. The Lie group Sim(2) of all similarity transformations is generated by
isometries and scalings.

The plane geometry under similarity transformations is called the similarity plane
geometry. In similarity plane geometry, two geometric figures are said to be equiv-
alent if they are related by similarity transformations each other.

Two circlesC1 andC2 are congruent, that is, equivalent in Euclidean plane geom-
etry if and only if they are related by isometries. Thus C1 is congruent to C2 if
and only if the radii of two circles coincide. On the other hand, any two circles are
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equivalent in similarity plane geometry. Any two parabolas are mutually equivalent
in similarity plane geometry.

As is well known, the logarithmic spiral is a self-similar curve. It is an interesting
andnatural question to characterize logarithmic spiral in termsof similarity geometry.

In similarity plane geometry, any regular plane curve with non-vanishing
Euclidean curvature can be reparametrized by the turning angle function θ = θ(s).
Note that dθ/ds = κ(s). Analogues to Euclidean plane geometry, p(θ) admits a
matrix valued function FSim(θ) which takes value in the matrix group

CO+(2) = {Ar | r > 0, A ∈ SO(2)}.

The similarity frame FSim(θ) satisfies the similarity Frenet equation

d

dθ
FSim(θ) = FSim(θ)

(−S(θ) −1
1 −S(θ)

)
.

The function S(θ) is called the similarity curvature (cf. [6]). One can see that p(θ) has
vanishing similarity curvature if and only ifp(θ) is a circle. Regular plane curveswith
non-vanishing Euclidean curvature with non-zero constant similarity curvature are
equivalent to logarithmic spirals. The similarity curvature S(θ) is related to Euclidean
curvature κ(s) by the formula:

S(θ) = 1

κ(s)2
dκ

ds
(s).

Thus a Euclidean plane curve p(s) has monotonous Euclidean curvature if and only
if its similarity curvature has constant sign as a similarity curve.

For more informations on similarity plane geometry, we refer to [13–15].

5 Log-Aesthetic Curves

Harada et al. [10, 11] considered logarithmic distribution diagrams of curvature
(LDDC) for plane curves. They discovered that attractive plane curves drawn by
car designers have approximately linear LDDC’s. Note that logarithmic distribution
diagrams of curvature are also called logarithmic curvature graphs (LCG).

The LDDC of an arc length parametrized curve p(s) is

(X(s),Y(s)) = (log ρ(s), log |ds/d log ρ(s)|).

Miura [19] has given the following mathematical formulation of log-aesthetic curve
(see also [21]). A log-aesthetic curve (of slope α) is an arc length parametrized curve
p(s) whose LDDC is a straight line Y = αX + C.
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More explicitly, a log-aesthetic curve of slope α is an arc length parametrized
curve p(s) whose curvature radius ρ(s) is given by

ρ(s)α = as + b, α 	= 0

for some constants a and b. In case α = 0, a log-aesthetic curve is defined by the
equation:

ρ(s) = exp(as + b)

for some constants a and b (see Fig. 7). Note that the class of log-aesthetic curves
contains log-spirals (α = 1), clothoids (α = −1) and Nielsen spirals (α = 0). The
slope α is also called the shape parameter.

Some applications of log-aesthetic curves to car body design, we refer to a con-
tribution [20] in this volume by Miura and Gobithaasan.

We notice that the Y -coordinate of the LDDC is rewritten as Y = X − log |S(θ)|.
As a result, the slope α = dY/dX is a similarity invariant, in fact, we have:

α = 1 + 1

S2
dS

dθ
. (2)

Fig. 7 Log-aesthetic curve
with α = −1/4
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This fact motivates us to study log-aesthetic curves in terms of similarity geometry.
Computing the similarity curvature of log-aesthetic curves we obtain the following
fundamental result.

Theorem 3 Log-aesthetic curves are characterized as plane curves whose recipro-
cal similarity curvature 1/S(θ) is a linear function of θ .

From (2), the similarity curvature S(θ) of log-aesthetic curves satisfies the ordinary
differential equation:

dS

dθ
= −(1 − α)S2.

Solving this ordinary differential equation, we have the general solution:

S(θ) = − λ

(α − 1)λθ + 1
=: L(α, λ, θ), λ ∈ R.

Every solution L(α, λ, θ) defines a log-aesthetic curve unique up to similarity trans-
formations.

The curvature radius of a log-aesthetic curve is rewritten as ([27]):

ρ(θ) =
{
exp(λθ), α = 1
{(α − 1)λθ + 1}1/(α−1), α 	= 1.

Here is an application of similarity geometric procedure for log-aesthetic curves.

Definition 2 For a plane curve p(θ) in similarity plane geometry, its similarity nor-
mal shift p̂ of p is defined by

p̂ := p(θ) + Nsim(θ),

where Nsim(θ) is the similarity normal vector field.

One can see that the similarity normal shift p̂ coincideswith the evolute of the original
curve p in Euclidean language. Note that the original curve p is called the involute
of p̂. The similarity normal shift of a log-aesthetic curve is also a log-aesthetic curve.
For simplicity here we only treat the case α 	= 1, 2. Then the similarity curvature of
the similarity normal shift is

Ŝ(θ̂) = L

(
1

2 − α
, (2 − α)λ, θ − π

2

)
, θ̂ = θ − π/2.

Hence the similarity normal shift of a log-aesthetic curves is also a log-aesthetic
curve. In other words, similarity normal shifts preserve the class of log-aesthetic
curves. This fact is a similarity geometric reformulation of a result due to Saito and
Yoshida [28]. Thus the similarity normal shift is the similarity geometric transfor-
mation:
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L(α, λ, θ) �−→ L

(
1

2 − α
, (2 − α)λ, θ − π

2

)

between log-aesthetic curves.
Conversely, assume that Ŝ(θ̂) satisfies the Riccati equation

dŜ

dθ̂
= Ŝ(θ̂)2 − L

(
1

2 − α
, (2 − α), θ̂

)
Ŝ(θ̂).

Then the general solution of this ordinary differential equation is

Ŝ(θ̂) = L(α, λ, θ̂)

1 + 1

Cλ{(α−1)λθ̂+1} 1
α−1

, C ∈ R. (3)

We look for similarity plane curves determined by the similarity curvature Ŝ(θ̂). To
this end we recall here the notion of ρ-shift generalized log-aesthetic curve (ρ-shift
GLAC) introduced by Gobithaasan and Miura [8].

The ρ-shift GLAC pν with slope α 	= 1 is a Euclidean plane curve determined by
the curvature radius

ρν(θ) = {(α − 1)λθ + 1} 1
α−1 + ν, ν ∈ R.

The similarity curvature Sν of a ρ-shift GLAC pν is

Sν(θ) = L(α, λ, θ)

1 + ν

{(α−1)λθ+1} 1
α−1

. (4)

Choose ν = 1/(Cλ) in the formula (4) and comparing it with (3), we obtain

Theorem 4 ([25]) ρ-shift GLACs are involutes of log-aesthetic curves.

In addition Miura et al. obtained a similarity geometric reformulation/interpretation
of κ-shift generalized aesthetic curves [22].

These facts actually show that similarity geometry is really useful for the study of
aesthetic curves. More examples of log-aesthetic curves can be obtained from certain
Riccati equation for similarity curvature.

We close this chapter with exhibiting Euclidean plane curves whose similarity
curvature satisfies the Riccati equation of the form:

dS

dθ
= S2 + a1θ + a0

b2θ2 + b1θ + b0
S + d

c2θ2 + c1θ + c0
.

Example 9 (Parabola) The similarity curvature of a parabola (t, t2/2) is S(θ) =
−3 tan θ with θ = tan−1 t. This similarity curvature is a solution to
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dS

dθ
= S2 − 3.

Example 10 (Superspiral) A superspiral in the sense of Ziatdinov [29] is an arc
length parametrized curve whose curvature radius ρ(s) is given by

ρ(s) = 2F1(a, b; c;−θ(s)),

where a > 0 and 0 < b < c. For θ ≥ 0, the curvature of a superspiral is monotonous.
One can check that the similarity curvature of a superspiral satisfies the Riccati

equation:
dS

dθ
= S2 + (a + b + 1)θ + c

θ(1 + θ)
S − ab

θ(1 + θ)
.

Discussions in this chapter motivate us to study attractive curves used in computer
graphics or computer aided geometric design in terms of plane geometry under
transformation groups strictly larger than Euclidean motion groups.
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Abstract The local induction equation, or the binormal flow on space curves is a
well-known model of deformation of space curves as it describes the dynamics of
vortex filaments, and the complex curvature is governed by the nonlinear Schrödinger
equation (NLS). In this paper, we present its discrete analogue, namely, a model of
deformation of discrete space curves by the discrete nonlinear Schrödinger equation
(dNLS). We also present explicit formulas for both NLS and dNLS flows in terms
of the τ function of the 2-component KP hierarchy.
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1 Introduction

The local induction equation (LIE)

∂γ

∂t
= ∂γ

∂x
× ∂2γ

∂x2
, (1)

is one of the most important models of deformation of space curves, where γ (x, t) ∈
R

3 is a smooth space curve parametrized by the arc-length x and t is a deformation
parameter [6, 13, 16]. In a physical setting, it describes the dynamics of vortex
filaments driven by the self-induction in the inviscid fluid under the local induction
approximation [6].

It is well-known that if γ obeys LIE, then the curvature and the torsion, or equiva-
lently, the complex curvature of γ solves the nonlinear Schrödinger equation (NLS)
which is one of the most typical equations in the integrable systems. To show this,
we use the Frenet frame Φ = Φ(x, t) = [T(x, t), N(x, t), B(x, t)] ∈ SO(3), where
T , N , B are the tangent, the normal, and the binormal vectors defined by

T = γ ′, N = γ ′′

|γ ′′| , B = T × N, ′ = ∂

∂x
, (2)

respectively. Note that it follows that |T | = ∣∣γ ′∣∣ = 1 since x is the arc-length. Then
we have the Frenet–Serret formula

∂Φ

∂x
= ΦL, L =

⎡
⎣ 0 −κ 0

κ 0 −λ

0 λ 0

⎤
⎦ , (3)

where κ = ∣∣γ ′′∣∣ and λ = −〈B′, N〉 are the curvature and the torsion, respectively. In
this setting, LIE (1) is expressed as the deformation by the binormal flow

∂γ

∂t
= κB, (4)

and the corresponding deformation equation of the Frenet frame is given by

∂Φ

∂t
= ΦM, M =

⎡
⎣ 0 κλ −κ ′

−κλ 0 − κ ′′
κ

+ λ2

κ ′ κ ′′
κ

− λ2 0

⎤
⎦ . (5)

The compatibility condition of the system of linear partial differential equations (3)
and (5)

∂L

∂t
− ∂M

∂x
= LM − ML, (6)
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yields

∂κ

∂t
= −2

∂κ

∂x
λ − κ

∂λ

∂x
,

∂λ

∂t
= ∂

∂x

(
κ ′′

κ
+ κ2

2
− λ2

)
. (7)

Introducing the complex curvature u = u(x, t) ∈ C by the Hasimoto transforma-
tion [6]

u = κe
√−1Λ, Λ =

∫ x

λ dx, (8)

we see that u satisfies NLS

√−1
∂u

∂t
+ ∂2u

∂x2
+ 1

2
|u|2u = 0. (9)

Also, one can show that this deformation is isoperimetric, namely |γ ′| = 1 for all t.
Discretization of curves and their deformations preserving underlying integrable

structures is an important problem in the discrete differential geometry. For example,
the isoperimetric deformation of plane discrete curves described by the discrete
mKdV equation (dmKdV) has been studied in [10, 12, 14]. For discrete space curves,
the deformations by the discrete sine-Gordon equation (dsG) and dmKdV has been
studied in [4, 11, 12], and the deformation by dNLS is formulated in [9, 17].

The dsG and dmKdV describe torsion-preserving isoperimetric and equidistant
deformation of the space discrete curves with constant torsion. However, formulation
of discrete deformation of space discrete curves with varying torsion is a difficult
problem. The only example so far is presented by Hoffmann [8, 9], where he has
claimed that composition of certain two isoperimetric equidistant deformations can
be regarded as a discrete analogue of LIE. Also, it was used for numerical simulation
of fluid flow [17, 19]. This formulation uses quaternions and its geometric mean-
ing is clear, but description of the deformation parameters in terms of the complex
curvature, thus the relation to dNLS are rather indirect.

In this paper, we present a formulation of the dNLS flow on discrete space curves
from different approach; the deformation of curves is expressed in terms of the
discrete Frenet frame with the coefficients given by the curvature and torsion of
the curves explicitly. In this approach, dNLS arises as the equation governing the
complex curvature of curves, which is the same as the case of smooth curves. Based
on this formulation, we present explicit formulas for the NLS flow for smooth curves
and the dNLS flow to discrete curves in terms of τ functions of the two-component
KP hierarchy by applying the theory of integrable systems. We expect that our dNLS
flow can be an alternative to Hoffmann’s formulation when it is used to simulate the
dynamics of fluids. Also, explicit expression of the scheme and exact solutions may
promote further development of theoretical studies of discrete dynamics of discrete
curves from both mathematical and physical point of view.
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2 dNLS Flow on Discrete Space Curves

Let γn ∈ R
3 be a discrete space curve with

|γn+1 − γn| = ε, (10)

where ε is a constant. We introduce the discrete Frenet frame Φn = [Tn, Nn, Bn] ∈
SO(3) by

Tn = γn+1 − γn

ε
, Bn = Tn−1 × Tn

|Tn−1 × Tn| , Nn = Bn × Tn. (11)

Then it follows that the discrete Frenet frame satisfies the discrete Frenet–Serret
formula

Φn+1 = ΦnLn, Ln = R1(−νn+1)R3(κn+1), (12)

where

R1(θ) =
⎡
⎣ 1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦ , R3(θ) =

⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ , (13)

and νn, κn are defined by

〈Tn−1, Tn〉 = cos κn, 〈Bn, Bn−1〉 = cos νn, 〈Bn, Nn−1〉 = sin νn,

− π ≤ νn < π, 0 < κn < π. (14)

In order to formulate a “good” discrete deformation (discretization of time), we resort
to the theory of discrete integrable systems to preserve integrable nature of the NLS
flow (4). As a discrete analogue of NLS (9), we consider

(√−1
ε2

δ
− 1

)
um+1

n −
(√−1

ε2

δ
+ 1

)
um

n + (um
n+1 + um+1

n−1 )(1 + ε2|um
n |2)Γ m

n = 0,

Γ m
n+1

Γ m
n

= 1 + ε2|um
n |2

1 + ε2|um+1
n |2 ,

(15)

which we refer to as the discrete nonlinear Schrödinger equation (dNLS) [1, 2, 18].
Here, um

n ∈ C, Γ m
n ∈ R, n is the space discrete variable which corresponds to the

label of vertices of discrete curves, m is the discrete variable corresponding to the
step of deformation, ε and δ are constants which are the lattice intervals of n and m,
respectively. Moreover, um

n is the complex discrete curvature defined by

um
n = 1

ε
tan

κm
n

2
e
√−1Λm

n , Λm
n − Λm

n−1 = −νm
n , (16)
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We impose the boundary condition as

um
n → 0 (n → ±∞), Γ m

n → Γ±∞ (const.) (n → ±∞). (17)

Then one of the main statements of this paper is given as follows:

Theorem 1 (dNLS flow) For a fixed m, let γ m
n ∈ R

3 be a discrete space curve
satisfying

|γ m
n+1 − γ m

n | = ε, (18)

and Φm
n = [Tm

n , Nm
n , Bm

n ] ∈ SO(3) be the discrete Frenet frame defined in (11)
satisfying the discrete Frenet–Serret formula

Φm
n+1 = Φm

n Lm
n , Lm

n = R1(−νm
n+1)R3(κ

m
n+1). (19)

Let um
n be a complex discrete curvature of γ m

n . We determine um+1
n by dNLS (15)

under the boundary condition (17) and put um+1
n = 1

ε
tan κm+1

n
2 e

√−1Λm+1
n . We define a

new curve γ m+1
n ∈ R

3 by

γ m+1
n − γ m

n

δ
= 2

ε3
(Pm

n Tm
n + Qm

n Nm
n + Rm

n Bm
n ), (20)

Pm
n = δ

(
−1 + Γ m

n

cos2 κm
n
2

)
,

Qm
n = δ

[
tan

κm
n

2
− tan

κm+1
n−1

2
cos(Λm+1

n−1 − Λm
n )

Γ m
n

cos2 κm
n
2

]
, (21)

Rm
n = ε2 tan

κm
n

2
− δ tan

κm+1
n−1

2
sin(Λm+1

n−1 − Λm
n )

Γ m
n

cos2 κm
n
2

.

Suppose that Γ∞ and Γ−∞ are either 1 or 1 + ε4

δ2
. Then, it follows that

1. |γ m+1
n+1 − γ m+1

n | = ε. Namely, γ m+1
n is an isoperimetric deformation of γ m

n .

2. um+1
n gives the complex discrete curvature of γ m+1

n (Fig.1).

Remark 1 1. The deformation (21) is not an equidistant deformation in contrast
with the deformation described by dmKdV [11]. In fact, one can show that

∣∣∣∣γ m+1
n − γ m

n

δ

∣∣∣∣
2

= 4

ε2

(
−1 + Γ m

n

cos2 κm
n
2

)
. (22)
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Fig. 1 Numerical simulation of dNLS flow

Equation (22) also implies that the solution of dNLS (15) should satisfy the con-
dition Γ m

n ≥ cos2 κm
n
2 in order to be consistent with the curve deformation. Note

that this property does not contradict with Hoffmann’s formulation where the
deformation is constructed as composition of two isoperimetric and equidistant
deformations.

2. Continuous limit with respect to time can be simply taken as t = mδ and δ → 0.
Then dNLS (15) and corresponding deformation equation (20) and (21) yields
the semi-discrete NLS equation or the Ablowitz–Ladik equation [1, 2]

√−1
dun

dt
+ un+1 − 2un + un−1

ε2
+ (un+1 + un−1)|un|2 = 0, (23)

and the deformation equation of discrete space curves [3, 7, 15]

d

dt
γn = 2

ε
tan

κn

2
Bn. (24)

The dNLS flow (20) and (21) implies the deformation of Frenet frame as

Φm+1
n = Φm

n Mm
n ,

Mm
n = 1

Γ m
n+1

⎡
⎢⎣

∣∣αm
n

∣∣2 − ∣∣βm
n

∣∣2 2� (
αm

n βm
n

∗) −2 (
αm

n βm
n

∗)
−2� (

αm
n βm

n

) � (
αm

n
2 − βm

n
2
) − (

αm
n
2 + βm

n
2
)

−2 (
αm

n βm
n

)  (
αm

n
2 − βm

n
2
) � (

αm
n
2 + βm

n
2
)

⎤
⎥⎦ ∈ SO(3), (25)
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where αm
n , βm

n ∈ C are given by

αm
n = √−1

δ

ε2

[(
1 − √−1

ε2

δ

)
− (

1 + ε2um
n+1um+1

n
∗)Γ m

n+1

]
e

√−1
2 (Λm+1

n −Λm
n ),

βm
n = √−1

δ

ε

(
um+1

n − um
n+1

)
Γ m

n+1e−
√−1
2 (Λm

n +Λm+1
n ), (26)

respectively. Here, ∗ means the complex conjugate. The Frenet–Serret formula (19)
and the deformation equation (25) can be transformed to the SU(2) version by the
standard correspondence of SO(3) and SU(2) as

φm
n+1 = φm

n Lm
n , Lm

n =
⎡
⎣cos

κm
n+1

2 e−
√−1
2 νm

n+1 − sin
κm

n+1

2 e−
√−1
2 νm

n+1

sin
κm

n+1

2 e
√−1
2 νm

n+1 cos
κm

n+1

2 e
√−1
2 νm

n+1

⎤
⎦ ,

φm+1
n = φm

n Mm
n , Mm

n = 1√
Γ m

n+1

[
αm

n βm
n

−βm
n

∗ αm
n

∗

]
, (27)

which is known as the Lax pair of dNLS [1, 2]. In fact, one can verify that the
compatibility condition Lm

n Mm
n+1 = Mm

n Lm+1
n yields dNLS (15).

Outline of the Proof of Theorem1

The first statement may be verified directly in principle, by computing γ m+1
n+1 − γ m+1

n
and its length from (20) and (21) and the discrete Frenet–Serret formula (19) under
the assumption that um+1

n is determined by dNLS (15). However, this computation is
hopelessly complicated to carry out. To make it feasible, we change the Frenet frame
to a different frame used in [6, 13], which we call the complex parallel frame in this
paper. Let Fm

n = [Tm
n , Um

n , Um
n

∗] ∈ U(3) be the complex parallel frame defined by

Um
n = e

√−1Λm
n√

2

(
Nm

n + √−1Bm
n

)
. (28)

Note that it is related to the discrete Frenet frame Φm
n as

Fm
n = Φm

n

⎡
⎣1 0 0
0 1 1
0

√−1 −√−1

⎤
⎦

⎡
⎢⎣
1 0 0

0 e
√−1Λm

n√
2

0

0 0 e−√−1Λm
n√

2

⎤
⎥⎦ . (29)

Then the complex curvatureum
n naturally arises in this framework; the discreteFrenet–

Serret formula (19) and the deformation of the discrete curve are rewritten in terms
of um

n as
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Fm
n+1 = Fm

n Xm
n , Xm

n = 1

1 + ε2
∣∣um

n+1

∣∣2
⎡
⎢⎣
1 − ε2

∣∣um
n+1

∣∣2 −√
2εum

n+1 −√
2εum

n+1
∗

√
2εum

n+1
∗ 1 −ε2(um

n+1
∗)2

√
2εum

n+1 −ε2(um
n+1)

2 1

⎤
⎥⎦,

(30)
and

γ m+1
n = γ m

n + 2δ2

ε3
Fm

n

⎡
⎢⎢⎢⎢⎣

−1 +
(
1 + ε2

∣∣um
n

∣∣2) Γ m
n

ε√
2

{(
1 − √−1

ε2

δ

)
um

n
∗ − um+1

n−1
∗
(
1 + ε2

∣∣um
n

∣∣2) Γ m
n

}
ε√
2

{(
1 + √−1

ε2

δ

)
um

n − um+1
n−1

(
1 + ε2

∣∣um
n

∣∣2) Γ m
n

}

⎤
⎥⎥⎥⎥⎦ ,

(31)

respectively. The following lemma plays a crucial role in the proof:

Lemma 1 Let γ m
n ∈ R

3 be the family of discrete space curves given in Theorem1.
Then it follows that

|αm
n |2 + |βm

n |2 = Γ m
n+1. (32)

By using (32), we have after long but straightforward calculations

Tm+1
n = γ m+1

n+1 − γ m+1
n

ε
= Fm

n

1

Γ m
n+1

⎡
⎢⎢⎣

∣∣αm
n

∣∣2 − ∣∣βm
n

∣∣2
−√

2αm
n

∗βm
n

∗e−√−1Λm
n

−√
2αm

n βm
n e

√−1Λm
n

⎤
⎥⎥⎦ , (33)

from which we obtain

∣∣∣∣∣γ
m+1
n+1 − γ m+1

n

ε

∣∣∣∣∣
2

=
(∣∣αm

n

∣∣2 − ∣∣βm
n

∣∣2)2 + 4
∣∣αm

n

∣∣2 ∣∣βm
n

∣∣2
Γ m

n+1
2 =

(∣∣αm
n

∣∣2 + ∣∣βm
n

∣∣2
Γ m

n+1

)2

= 1.

This proves the first statement. The second statement is proved as follows. Starting
from Tm+1

n (33), we have Bm+1
n and Nm+1

n in terms of Fm
n by using (11). Then we

obtain an expression of Φm+1
n = [Tm+1

n , Nm+1
n , Bm+1

n ] in terms of Fm
n , which can be

rewritten as Fm+1
n = Fm

n Ym
n with a certain matrix Ym

n ∈ U(3) by using (29). This can
be also transformed to the deformation equation of discrete Frenet frame of the form
Φm+1

n = Φm
n Mm

n with Mm
n given in (25). Finally one can check thatΦm+1

n satisfies the
discrete Frenet–Serret formula (19) for κm+1

n and νm+1
n determined from the complex

curvature um+1
n . This completes the proof of Theorem1. �
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3 Explicit Formulas

The formulation of NLS and dNLS flows in terms of the Frenet frame enables us
to apply the theory of integrable systems. As an example, we here present explicit
formulas of theNLS and dNLS flows in terms of the τ functions. For the case of plane
curves, see [10]. These formulas are established based on the bilinear formalism in the
theory of integrable systems by applying suitable reductions and imposing complex
structure to τ functions of the 2-component KP hierarchy, but here we only show the
results, leaving full derivations to the forthcoming publications.

For any N ∈ N, we first introduce the following three determinants, a 2N × 2N
determinant τ , two (2N + 1) × (2N + 1) determinants σ and ρ as

τ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(1)
11 · · · m(1)

1N 1 Ø

.

.

. · · ·
.
.
.

. . .

m(1)
N1 · · · m(1)

NN Ø 1

−1 Ø m(2)
11 · · · m(2)

1N

. . .
.
.
. · · ·

.

.

.

Ø −1 m(2)
N1 · · · m(2)

NN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (34)

σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(1)
11 · · · m(1)

1N 1 Ø ϕ
(1)
1

.

.

. · · ·
.
.
.

. . .
.
.
.

m(1)
N1 · · · m(1)

NN Ø 1 ϕ
(1)
N

−1 Ø m(2)
11 · · · m(2)

1N 0

. . .
.
.
. · · ·

.

.

.

.

.

.

Ø −1 m(2)
N1 · · · m(2)

NN 0

0 · · · 0 ϕ
(2)
1 · · · ϕ

(2)
N 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (35)

ρ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m(1)
11 · · · m(1)

1N 1 Ø 0

.

.

. · · ·
.
.
.

. . .
.
.
.

m(1)
N1 · · · m(1)

NN Ø 1 0

−1 Ø m(2)
11 · · · m(2)

1N ψ
(1)
1

. . .
.
.
. · · ·

.

.

.

.

.

.

Ø −1 m(2)
N1 · · · m(2)

NN ψ
(1)
N

ψ
(2)
1 · · · ψ

(2)
N 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (36)
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where Ø is the empty block. Then the formulas for NLS flow on smooth curves and
dNLS flow on discrete curves are obtained by choosing the entries of determinant as
follows:

NLS Flow on Smooth Curves

We choose the entries of determinants as

ϕ
(1)
i = pn

i eξi , ϕ
(2)
i = −1,

ψ
(1)
i = 1, ψ

(2)
i = −

(
− 1

p∗
i

)n

eξ∗
i ,

m(1)
ij = −ϕ

(1)
i ψ

(2)
j

pi + p∗
j

, m(2)
ij = 1

p∗
i + pj

,

ξi = pix − √−1p2i t + 1

pi
z + ξ

(0)
i , pi, ξ

(0)
i ∈ C,

(37)

so that we write τ = τn(x, t; z), σ = σn(x, t; z), ρ = ρn(x, t; z). Here, n and z are
regarded as auxiliary variables. Putting

F = τ0, G = −ρ0, h = −σ−2, (38)

we have:

Theorem 2 (Explicit formula for NLS flow)1

1. Let u = u(x, t) ∈ C be

u = 2
G

F
. (39)

Then u satisfies NLS (9).
2. Let γ = γ (x, t) ∈ R

3 be

γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

h + h∗

F
1√−1

h − h∗

F

2
∂

∂z
(logF) − x

⎤
⎥⎥⎥⎥⎥⎥⎦

. (40)

Then γ satisfies the Frenet–Serret formula (3) and the deformation equation (4)
(Fig.2).

1The N-soliton solution for the tangent vector has been constructed by using the bilinear formalism
in [5].
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Fig. 2 Interaction of loops of smooth curve by NLS flow obtained from Theorem2

dNLS flow on discrete curves

We choose the entries of determinants as

ϕ
(1)
i = p−n

i eζi(1 − api)
−m(1 − cpi)

−r, ϕ
(2)
i = −

(
1 − a

pi

)m (
1 − 1

cpi

)s
,

ψ
(1)
i = (1 − ap∗

i )
−m

(
1 − p∗

i
c

)−s
, ψ

(2)
i = −(p∗

i )
−neζ ∗

i

(
1 − a

p∗
i

)m (
1 − c

p∗
i

)r
,

m(1)
ij = −ϕ

(1)
i ψ

(2)
j

pi − 1
p∗

j

, m(2)
ij = −ψ

(1)
i ϕ

(2)
j

p∗
i − 1

pj

, eζi = e
1
2
1+cpi
1−cpi

z
,

a ∈ R, pi, c ∈ C, |c| = 1,
(41)

so that we write τ = τm
n (r, s; z), σ = σ m

n (r, s; z), ρ = ρm
n (r, s; z) with r, s and z

being auxiliary variables. Putting

Fm
n = τm

n (0, 0; z), Gm
n = ρm

n (0, 0; z), hm
n = c−nσ m

n (1,−1; z), (42)

a =
(
1 + ε4

δ2

) 1
2

, c = 1 − √−1 ε2

δ

a
, (43)

we have:
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Fig. 3 Interaction of loops of discrete curve by dNLS flow obtained from Theorem3

Theorem 3 (Explicit formula for dNLS flow)

1. Let um
n ∈ C be

um
n = (−1)mc−n−2m

ε

Gm
n

Fm
n

, Γ m
n = 2a

c + 1
c

Fm+1
n−1 Fm

n

Fm+1
n Fm

n−1

. (44)

Then um
n satisfies dNLS (15).

2. Let γ m
n ∈ R

3 be

γ m
n = ε

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(−1)m hm
n + hm

n
∗

Fm
n

(−1)m

√−1

hm
n − hm

n
∗

Fm
n

2
∂

∂z
(logFm

n ) − n − 2m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

Then γ m
n satisfies the Frenet–Serret formula (19) and the deformation equation

(20) and (21) (Fig.3).
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