Materials Chemistry and Physics 170 (2016) 77-82

Contents lists available at ScienceDirect

Materials Chemistry and Physics

journal homepage: www.elsevier.com/locate/matchemphys

Catalytic effect of CeCl₃ on the hydrogen storage properties of MgH₂

M. Ismail^{*}, N.S. Mustafa, N. Juahir, F.A. Halim Yap

School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia

HIGHLIGHTS

• Hydrogen storage properties of CeCl₃-doped MgH₂ prepared by ball milling were investigated.

• Adding with CeCl₃ reduced the decomposition temperature and enhanced the sorption kinetics of MgH₂.

• The *in-situ* formation of Ce–Mg alloy, CeH_{2.73}, and MgCl₂ may play an important role.

ARTICLE INFO

Article history: Received 20 January 2015 Received in revised form 29 November 2015 Accepted 19 December 2015 Available online 28 December 2015

Keywords: Desorption Nucleation Diffusion Differential scanning calorimetry (DSC)

ABSTRACT

The effects of CeCl₃ addition on the hydrogen storage properties of MgH₂ prepared by ball milling were investigated for the first time. The 10 wt.% CeCl₃-added MgH₂ sample showed an improvement in hydrogenation sorption properties compared to that of undoped MgH₂, with the onset dehydrogenation temperature reduced from 350 °C to 300 °C. Kinetic desorption results showed that CeCl₃-added MgH₂ released about 5.5 wt.% hydrogen within 10 min at 350 °C, while the as-milled MgH₂ released below 3.1wt.% hydrogen within the same time period and temperature. Meanwhile, hydrogen absorption capacity of 5.2 wt.% was reached at 280 °C in 5 min for the CeCl₃-doped MgH₂ sample. In contrast, the ball-milled MgH₂ only absorbed 4.0 wt.% hydrogen at 280 °C in 5 min. From the Kissinger plot of differential scanning calorimetry, the apparent activation energy was 167.0 kJ/mol for as-milled MgH₂ and 149.0 kJ/mol for 10 wt.% CeCl₃-added MgH₂, indicating that CeCl₃ addition decreased the activation energy for hydrogen desorption of MgH₂. The improved hydrogen storage properties of MgH₂ in the presence of CeCl₃ are believed to be due to the role of *in situ* formed Ce–Mg alloy, MgCl₂, and CeH_{2.73} as active species to catalyse the hydrogen storage properties of MgH₂.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

MgH₂ is an attractive potential for solid-state hydrogen storage material because it has high gravimetric capacity of 7.6 wt.%, low cost, and superior reversibility. However, high thermodynamic stability (Δ H ~ -75 kJ/mol H₂) and the slow kinetics of hydride formation and decomposition render the use of MgH₂ for practical purposes. Many studies have been done to improve the thermodynamic property and kinetics behaviour of MgH₂ through using mechanical milling both with and without catalytic additives. The effects of ball-milling pure MgH₂ have been studied since the late 1990s [1,2], although the temperatures required for decomposition were still too high for practical applications. Meanwhile, catalyst investigation plays a crucial role in the development of solid-state

* Corresponding author. E-mail address: mohammadismail@umt.edu.my (M. Ismail).

http://dx.doi.org/10.1016/j.matchemphys.2015.12.021 0254-0584/© 2015 Elsevier B.V. All rights reserved. hydrogen storage based on MgH₂. Previous studies have shown that by using several catalysts and additives, thermodynamic property and de/rehydrogenation kinetic parameters of MgH₂ could be improved. In these studies, metal [3,4], metal oxide [5], metal halides [6–11], metal hydride [12], carbon materials [13], nanosized alloys [4,14–18], and combination carbon with other materials [19–21] were used as the catalysts and additives. Among the catalysts used above, metal halide was found to be the most promising catalyst. Although the addition of metal halides on MgH₂ improves the performance, a complete understanding of the roles play by catalysts is still an open issue and further investigations are highly desired.

Another halides family, rare-earth chlorides, has been widely applied as a catalyst in light complex metal hydrides, such as NaAlH₄ [22–28] and LiAlH₄ [29,30]. However, the effect of rareearth chlorides as a catalyst for hydrogen storage properties of MgH₂ has not been explored as thoroughly as NaAlH₄ and LiAlH₄. To the best of the authors' knowledge, until now, only one kind of rare-

earth chloride (LaCl₃) has been reported as the catalyst for the development of hydrogen storage performance of MgH₂, as reported in the authors' previous study [31]. So, it is interesting to examine other rare-earth chlorides as a catalyst or additive for hydrogen storage properties of MgH₂.

Recently, a study by Fan et al. [26] has shown that the hydrogen storage properties of NaAlH₄ have been improved with the addition of CeCl₃. They claimed that the *in situ* formed CeAl₄ acted as active species to catalyse the reversible dehydrogenation and rehydrogenation of NaAlH₄. More recently, Hu et al. [25] have reported that the introduction of CeCl₃ into NaAlH₄ was also effective in enhancing the sorption kinetics of NaAlH₄. They suggested that CeCl₃ was readily converted by ball-milling in the presence of NaAlH₄ to cerium hydride which further formed cerium aluminides $(CeAl_x)$ in the cycling process. Although both cerium hydride and CeAl_x showed catalytic effect in the kinetics enhancement, CeAl_x was found to be more effective than its counterpart, cerium hydride. Both of the articles above speculated that the in situ formed Ce–Al acted as active species and further improved the hydrogen storage properties of NaAlH₄. Therefore, it is reasonable to believe that CeCl₃ has a great potential as a catalyst to improve the hydrogen storage properties of MgH₂ through positive factors of in situ active species.

In the present work, with the aim of *in situ* active species role, the catalytic effects of adding CeCl₃ as a catalyst precursor on the de/rehydrogenation behaviour of MgH₂ are investigated. The possible mechanism is discussed based on the experimental results.

2. Experimental details

MgH₂ powder (hydrogen-storage grade) was purchased from Sigma—Aldrich and CeCl₃ powder (anhydrous, 99.5% (REO)) was purchased from Alfa Aesar. All the compounds were used asreceived with no further purification. Handling of the samples was performed in an MBraun Unilab glove box filled with highpurity Ar atmosphere. Doping was implemented by ball-milling. About 400 mg of MgH₂ was mixed with 10 wt.% CeCl₃. Each sample was put into a sealed stainless steel vial together with hardened stainless steel balls. Ball milling was performed in a planetary ball mill (NQM-0.4) for 1 h by milling for 0.5 h, resting for 6 min, and then continued milling for another 0.5 h in a different direction at a rate of 400 rpm. A fan was used as the air-cooling system for the vial to prevent overheating during the ball milling process.

Experiments for de/re-hydrogenation were performed in a Sieverts-type pressure-composition-temperature (PCT) apparatus (Advanced Materials Corporation). About 100 mg of the sample was loaded into a sample vessel for each test. For desorption purposes, all of the samples were heated in a vacuum chamber, and the amount of desorbed hydrogen was measured to determine the lowest decomposition temperature. The heating rate for desorption experiment was 5 °C/min, and the samples were heated from room temperature to 450 °C under vacuum. The de/rehydrogenation kinetics measurements were conducted at the desired temperature with initial hydrogen pressures of 0.1 atm and 30 atm, respectively.

The phase structures for the as-milled samples, after desorption, and after rehydrogenation, were determined by Rigaku MiniFlex X-ray diffractometer with Cu Ka radiation. Before the measurement, a small amount of sample was spread uniformly on the sample holder and wrapped with a plastic wrap to prevent oxidation. The X-ray intensity was measured over diffraction angles from 20° to 80° with a scanning rate of 2.00°/min.

Differential scanning calorimetry (DSC) analysis of the asprepared powder samples was carried out using a Mettler Toledo TGA/DSC 1. About 2–6 mg of the sample was loaded into an alumina crucible in the glove box. Subsequently, the crucible was placed in a sealed glass bottle in order to prevent oxidation during the transfer from the glove box to the DSC apparatus. An empty alumina crucible was used for reference. The samples were heated from room temperature until 500 °C under Ar atmosphere, and different heating degrees were used.

3. Results and discussion

Fig. 1 shows the temperature-programmed desorption (TPD) patterns for dehydrogenation of as-received MgH₂, as-milled MgH₂, and MgH₂ + 10 wt.% CeCl₃. The as-received MgH₂ started to release hydrogen at approximately 410 °C, with a total dehydrogenation capacity of about 7.0 wt.% H₂ by 430 °C. After milling, the onset desorption temperature of MgH₂ was reduced to about 350 °C, indicating that the milling process also influenced the onset desorption temperature of MgH₂, as reported in the literature [1]. After doping with CeCl₃, the onset desorption temperature of MgH₂ decreased dramatically. The doped sample started to release hydrogen at about 300 °C, a decrease of about 50 °C and 110 °C, compared to the as-milled and as-received MgH₂, respectively.

Further studies concerning the catalytic activity of CeCl₃ on the dehydrogenation of MgH₂ were carried out by evaluating the desorption kinetics. In order to determine the dehydrogenation kinetic of MgH₂ + 10 wt.% CeCl₃ composite, isothermal dehydrogenation was studied at 350 °C, as shown in Fig. 2. The dehydrogenations of undoped MgH₂ were also included for comparison under the same condition. The result showed that undoped MgH₂ released about 3.0 wt.% of hydrogen after 10 min. Meanwhile, the dehydrogenated MgH₂ + 10 wt.% CeCl₃ composite showed faster desorption than the undoped MgH₂ sample can be achieved within 10 min with about 5.5 wt.% of hydrogen release. Comparing the results, it can be seen that CeCl₃ also played an important role in improving the dehydrogenation kinetic of MgH₂.

For further investigation on hydrogen absorption kinetics, the quantity of hydrogen absorbed from doped and undoped samples at constant temperature was measured. Fig. 3 shows the hydrogenation kinetics of milled MgH₂ and MgH₂ + 10 wt.% CeCl₃ composite at 280 °C under 30 atm H₂. Obviously, MgH₂ + 10 wt.% CeCl₃ composite has better hydrogenation kinetics than undoped MgH₂. MgH₂ + 10 wt.% CeCl₃ composite can absorb about 5.6 wt.% hydrogen at 280 °C in 10 min under 30 atm H₂. In contrast, the

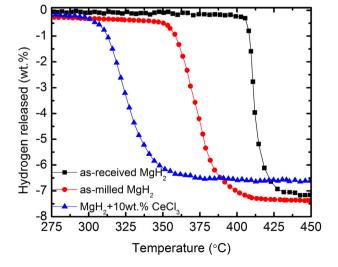


Fig. 1. Temperature-programmed desorption (TPD) patterns for the dehydrogenation of as-received MgH₂, as-milled MgH₂, and MgH₂ doped with 10 wt.% CeCl₃.

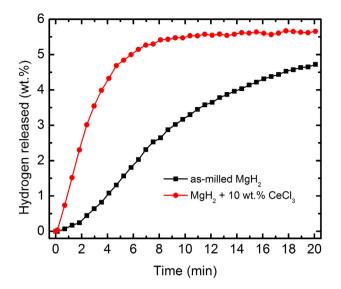


Fig. 2. Isothermal desorption kinetics curves for as-milled MgH_2 and MgH_2 doped with 10 wt.% CeCl₃ at 350 $^\circ C$ under vacuum.

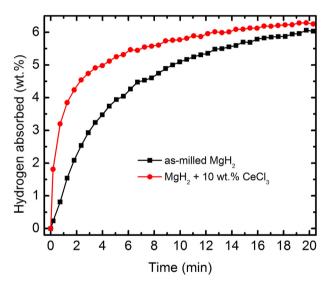


Fig. 3. Isothermal absorption kinetics measurement of as-milled MgH₂ and MgH₂ doped with 10 wt.% CeCl₃ at 280 $^\circ C$ under 30 atm hydrogen pressure.

undoped MgH₂ can only absorb about 5.0 wt.% hydrogen in the same condition. The results clearly suggest that the addition of CeCl₃ is responsible for hydrogenation kinetic enhancement.

Thermal properties of the as-milled MgH₂ and CeCl₃-doped MgH₂ samples were further investigated by DSC, as shown in Fig. 4. The as-milled MgH₂ started to release hydrogen at about 370 °C. After doping with CeCl₃, MgH₂ started to release hydrogen at about 320 °C, which represents a reduction of about 50 °C compared to as-milled MgH₂. This result is comparable with the results of PCT measurements (Fig. 1). Furthermore, it can be seen that the onset decomposition temperatures of the samples in DSC were slightly higher than in the TPD (Fig. 1). These differences may result from the fact that dehydrogenation was conducted under different heating rates and atmospheres in two types of measurements. The DSC measurement was run under 1 atm argon flow with a heating rate of 10 °C/min; while the TPD measurement was conducted under the condition of 0.1 atm vacuum with 5 °C/min heating rate, resulting different driving forces during the desorption process

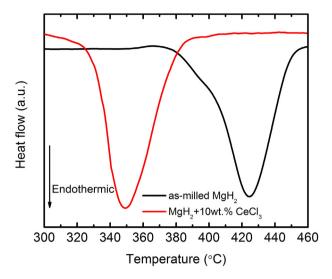


Fig. 4. DSC traces of as-milled MgH_2 and MgH_2+10 wt.% CeCl_3. Heating rate: 10 $^\circ C/$ min, argon flow: 30 ml/min.

[32]. A similar phenomenon has also appeared in our previous papers [33–37].

In order to determine the hydrogen desorption enthalpy (ΔH_{dec}) of MgH₂ decomposition, the DSC curves were analysed by STARe software and the hydrogen desorption enthalpy was obtained from the integrated peak areas. The hydrogen desorption enthalpy for as-milled MgH₂ was calculated as 75.7 kJ/mol H₂, which is almost the same as the theoretical value (76 kJ/molH₂). After the addition of CeCl₃, the enthalpy of hydrogen desorption of MgH₂ was similar to that of undoped MgH₂. These results indicate that the additive investigated in this work acted as a catalyst and did not change the thermodynamics of the system. This phenomenon is similar to a report by Malka et al. on ZrF₄, NbF₅, TaF₅, and TiCl₃ doped MgH₂ [10]. However, other studies have reported that both thermodynamic and kinetics properties could be adjusted at the same time with the addition of metals such as In, Al, Ti, and Ni [38–40].

The improvement of dehydrogenation properties is related to the energy barrier of H_2 released from MgH₂. In the present study, the activation energy for decomposition of MgH₂ was reduced by adding CeCl₃. To calculate the activation energy of as-milled MgH₂ and CeCl₃-added MgH₂, the Kissinger plot was used. The plot was obtained based on the Kissinger equation [41] as follows:

$$\ln[\beta/T_{\rm p}^2] = -E_{\rm A}/RT_{\rm p} + A \tag{1}$$

where β is the heating rate, T_p is the peak temperature in the DSC curve, E_A is the activation energy, R is the molar gas constant (8.3144621 J/(mol K)), and A is a constant. Thus, the activation energy, E_A , can be obtained from the slope by plotting a graph of ln $[\beta/T^2_p]$ versus 1000/T_p. Fig. 5(a) and Fig. 5(b) show the DSC traces of as-milled MgH₂ and CeCl₃-doped MgH₂ samples, respectively, at different heating rates. Based on the Kissinger plot of DSC data, as shown in Fig. 6, the activation energy for as-milled MgH₂ obtained was 167.0 kJ/mol. Meanwhile, the apparent activation energy for decomposition of CeCl₃-doped MgH₂ composite was found to be 149.0 kJ/mol, significantly lower compared to as-milled MgH₂. This indicates that CeCl₃ additive also played an important role in reducing the activation energy of H-desorption in MgH₂.

The SEM images of as-received and as-milled MgH_2 and $MgH_2 + 10$ wt.% CeCl₃ are shown in Fig. 7. For as-received MgH_2 (Fig. 7)(a), it is evident that majority of the MgH_2 particles have an angular shape with an average size of approximately larger than

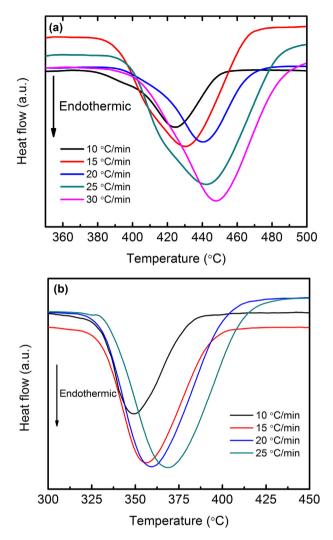


Fig. 5. DSC traces at different heating rates for (a) as-milled MgH_2 and (b) $MgH_2+10~\text{wt.\%}$ CeCl_3.

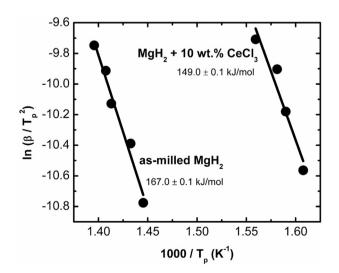


Fig. 6. The Kissinger's plot of dehydrogenation for 10 wt.% CeCl₃-doped MgH₂ composite as compared with as-milled MgH₂.

100 μ m. After ball milling (Fig. 7)(b), the powders changed to nearly spherical shape and agglomerated. The size of as-milled MgH₂ powders reduced drastically. Meanwhile, as shown in Fig. 7(c), the size of CeCl₃-doped MgH₂ particles was smaller than that of as-milled MgH₂. This is probably due to the hardness of the CeCl₃ which would have help breaking the MgH₂ particles into smaller sizes. It is already well-known that as the surface area of contact increases, the rate of reaction for MgH₂ to release and absorb H₂ will also increase. In addition, smaller particle size will improve hydrogen absorption/desorption because it reduces the diffusion length of the hydrogen and makes the particles' reactive surface larger [18]. So, from the morphology results, it is speculated that the hydrogen storage properties of MgH₂ + 10 wt.% CeCl₃ sample were improved as a result of the reduced particle size.

In order to clarify the phase structure of CeCl₃-doped MgH₂ sample after 1 h milling, after dehydrogenation at 450 °C, and after rehydrogenation at 280 °C under 30 atm hydrogen pressure, XRD was used, as shown in Fig. 8. After ball milling processes (Fig. 8)(a), the main phases presented were the formations of parent materials, MgH₂ and CeCl₃. No new compounds were formed from the mixtures. After dehydrogenation at 450 °C, XRD pattern (Fig. 8)(b) revealed that there were distinct peaks of Mg, which indicate that the dehydrogenation process of MgH₂ was completed. In addition, the peaks for CeCl₃ disappeared, and some new peaks corresponding to Ce–Mg alloy (MgCe) (crystallizes in cubic space group *Pm3m* with the lattice parameters of a = 3.899 Å and z = 1 Å, as identified using the powder diffraction file (PDF) 18–318) and MgCl₂ were observed, suggesting that the reaction of MgH₂ with CeCl₃ may occur during the heating process, as follows:

$$5MgH_2 + 2CeCl_3 \rightarrow 3MgCl_2 + 2MgCe + 5H_2$$
(2)

In the XRD pattern of rehydrogenated sample (Fig. 8)(c), characteristic diffraction peaks of Mg disappeared, while characteristic diffraction peaks of MgH₂ appeared, indicating that Mg was largely transformed into MgH₂ during the rehydrogenation process. After rehydrogenation, the Ce–Mg alloy peaks disappeared, and the peaks of CeH_{2.73} (crystallizes in cubic space group *Fm-3m* with the lattice parameters of a = 5.53000 Å and z = 4 Å, as identified using the powder diffraction file (PDF) 89–3694) appeared, indicating that Ce–Mg alloy can be dissociated into CeH_{2.73} and MgH₂ as reported by Ouyang et al. [42]. The disproportionation reaction in hydrogenation process of Mg-RE-alloys system has been widely reported previously [43–46]. In addition, MgCl₂ peak remained unchanged after the rehydrogenation process.

From the experimental results, improved hydrogen storage properties of MgH₂ by doping with CeCl₃ could be speculated by several factors. The formation of Ce–Mg alloy and CeH₂₇₃ during dehydrogenation and rehydrogenation process may play an important role in the enhancement of MgH₂ sorption. It is wellknown that dehydrogenation products in light metal hydride catalyst system could act as a real catalyst to facilitate the dehydrogenation step. These products could create surface activation and form a large number of nucleation sites at the surface of MgH₂ matrix [47,48]. In addition, many findings have exposed the catalytic effect of in situ formed rare hydrides on rehydrogenation process of MgH₂. In this study, CeH_{2.73} may act as H diffusion channels and nucleation sites of hydrides as reported by Ouyang et al. [42] for Mg₈₀Ce₁₈Ni₂ composite system. Moreover, Cl⁻ may also introduce an extra catalytic effect on MgH₂ sorption properties. As discussed in the literature [10,49], the catalytic effect of metal halides on hydrogen sorption of MgH2 could also be simultaneously influenced by a number of reasons such as formation of MgF₂ and catalytic influence of transition metal halides (with different levels of metal oxidation state). Based on these, in this study, the chlorine-

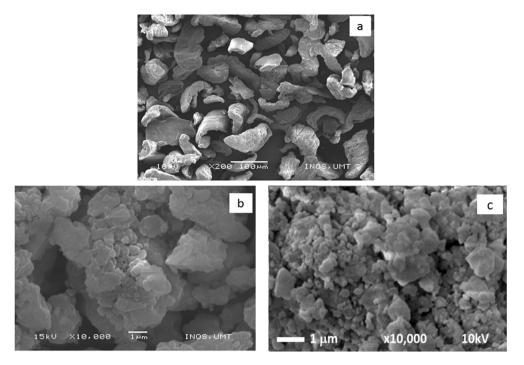


Fig. 7. SEM images of (a) as-received MgH₂, (b) as-milled MgH₂ and (c) MgH₂ + 10 wt% CeCl₃.

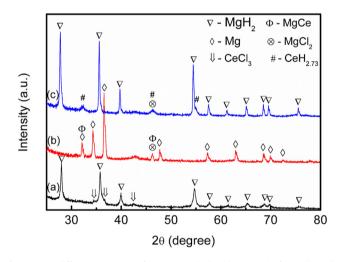


Fig. 8. X-ray diffraction patterns of 10 wt.% CeCl₃-doped MgH₂ (a) after milling, (b) after dehydrogenation, and (c) after rehydrogenation.

based product, MgCl₂, may also introduce an extra catalytic effect on MgH₂ sorption properties, as proved in previous reports [6,50]. Catalytic effect of MgCl₂ may further combine with the catalytic function of Ce–Mg alloy and CeH_{2.73} species to generate a synergetic effect. Besides, the addition of metal halides may also result in the generation of diffusion paths that would affect the kinetics of MgH₂ hydrogenation. Further investigation is required to clarify the exact role of CeCl₃ additive on the enhancement of hydrogen storage properties of MgH₂ such as investigating the effect of different amount of CeCl₃ and by observation methods such as transmission electron microscopy.

4. Conclusion

In summary, we have demonstrated that adding a small amount

of CeCl₃ powder by dry ball milling reduced the decomposition temperature and enhanced the sorption kinetics of MgH₂. Adding 10 wt.% CeCl₃ reduced the decomposition temperature of MgH₂ by 50 °C compared to as-milled MgH₂. The added material started to release hydrogen at about 300 °C, and dehydrogenation was completed below 375 °C with approximately 6.50 wt.% of H₂ release. Furthermore, kinetic desorption results showed that the addition of MgH₂ released about 5.5 wt.% hydrogen within 10 min at 350 °C, while as-milled MgH₂ only released about 3.1 wt.% hydrogen within the same time period. Meanwhile, about 5.2 wt.% hydrogen was absorbed at 280 °C under 30 atm hydrogen in 5 min for CeCl₃-doped MgH₂ sample, while MgH₂ sample only absorbed about 4.0 wt.% hydrogen under the same conditions. This indicates that the CeCl₃-added sample has shown a significant improvement in de/rehydrogenation rates compared to that of as-received MgH₂. From the Kissinger plot of differential scanning calorimetry, apparent activation energy was 149 kJ/mol for CeCl₃-added MgH₂ and 167 kJ/mol for MgH₂. Adding 10 wt.% CeCl₃ reduced the activation energy of MgH₂, thus promoting decomposition at a lower temperature. It is believed that the significant effect of CeCl₃ addition on dehydrogenation behaviour of MgH₂ is attributable to the catalytic activity of the in situ formed Ce-Mg alloy, CeH_{2.73}, and MgCl₂ as active species. From the experimental results, it can be concluded that CeCl₃ is an excellent additive for dehydrogenation of MgH₂.

Acknowledgements

The authors thanks the Universiti Malaysia Terengganu for providing the facilities to carry out this project. The author also acknowledges the Malaysian Government for the financial support through the Fundamental Research Grant Scheme (VOT 59362). N. S. Mustafa, N. Juahir, and F. A. Halim Yap are grateful to the Malaysian Ministry of Education for a MyBrain15 scholarship.

References

- [1] J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 293-295 (1999) 495-500
- [2] A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Compd. 288 (1999) 217-225.
- [3] N. Hanada, T. Ichikawa, H. Fujii, J. Phys. Chem. B 109 (2005) 7188-7194.
- [4] S.F. Santos, T.T. Ishikawa, W.J. Botta, J. Huot, Mater. Chem. Phys. 147 (2014) 557-562
- [5] J. Shan, P. Li, Q. Wan, F. Zhai, J. Zhang, Z. Li, Z. Liu, A.A. Volinsky, X. Qu, J. Power Sources 268 (2014) 778-786.
- [6] M. Ismail, Int. J. Hydrogen Energy 39 (2014) 2567–2574.
- [7] F.A. Halim Yap, N.S. Mustafa, M. Ismail, RSC Adv. 5 (2015) 9255–9260.
 [8] L.P. Ma, X.D. Kang, H.B. Dai, Y. Liang, Z.Z. Fang, P.J. Wang, P. Wang, H.M. Cheng, Acta Mater. 57 (2009) 2250-2258.
- [9] N.S. Mustafa, M. Ismail, Int. J. Hydrogen Energy 39 (2014) 15563-15569.
- [10] I.E. Malka, M. Pisarek, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy 36
- (2011) 12909-12917. [11] M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, Energy Edu. Sci. Technol. Part A Energy Sci. Res. 30 (2012) 107-122.
- [12] J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, E. Ronnebro, J. Am. Chem. Soc. 131 (2009) 15843-15852.
- [13] C.X. Shang, Z.X. Guo, J. Power Sources 129 (2004) 73-80.
- [14] X.B. Yu, Z.X. Yang, H.K. Liu, D.M. Grant, G.S. Walker, Int. J. Hydrogen Energy 35 (2010) 6338-6344.
- [15] X.B. Yu, Y.H. Guo, Z.X. Yang, Z.P. Guo, H.K. Liu, S.X. Dou, Scr. Mater. 61 (2009) 469-472.
- [16] X.B. Yu, Y.H. Guo, H. Yang, Z. Wu, D.M. Grant, G.S. Walker, J. Phys. Chem. C 113 (2009) 5324-5328.
- [17] A. Ranjbar, Z.P. Guo, X.B. Yu, D. Attard, A. Calka, H.K. Liu, Int. J. Hydrogen Energy 34 (2009) 7263-7268.
- [18] A. Ranjbar, Z.P. Guo, X.B. Yu, D. Wexler, A. Calka, C.J. Kim, H.K. Liu, Mater. Chem. Phys. 114 (2009) 168-172.
- [19] X. Yao, C. Wu, A. Du, J. Zou, Z. Zhu, P. Wang, H. Cheng, S. Smith, G. Lu, J. Am. Chem. Soc. 129 (2007) 15650-15654.
- [20] M. Ismail, N. Juahir, N.S. Mustafa, J. Phys. Chem. C 118 (2014) 18878–18883. [21] A. Ranjbar, M. Ismail, Z.P. Guo, X.B. Yu, H.K. Liu, Int. J. Hydrogen Energy 35 (2010) 7821-7826.
- [22] B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schueth, N. Spielkamp, Adv. Mater. 18 (2006) 1198-1201.
- [23] T. Sun, B. Zhou, H. Wang, M. Zhu, Int. J. Hydrogen Energy 33 (2008) 2260-2267.
- [24] Z. Xueping, L. Shenglin, L. Donglin, Int. J. Hydrogen Energy 34 (2009) 2701-2704.
- [25] J. Hu, S. Ren, R. Witter, M. Fichtner, Adv. Energy Mater. 2 (2012) 560-568.

- [26] X. Fan, X. Xiao, L. Chen, S. Li, Q. Wang, J. Alloys Compd. 509 (Suppl. 2) (2011) S750-S753.
- [27] X. Fan, X. Xiao, L. Chen, L. Han, S. Li, H. Ge, Q. Wang, Int. J. Hydrogen Energy 36 (2011) 10861-10869.
- [28] X. Fan, X. Xiao, L. Chen, K. Yu, Z. Wu, S. Li, Q. Wang, Chem. Commun. (2009) 6857-6859.
- [29] Z. Xueping, L. Ping, I.S. Humail, A. Fuqiang, W. Guoqing, Q. Xuanhui, Int. J. Hydrogen Energy 32 (2007) 4957–4960.
- [30] Z Xueping L Shenglin L Alloys Compd 481 (2009) 761–763
- [31] M. Ismail, Energy 79 (2015) 177–182.
- [32] F. Zhai, P. Li, A. Sun, S. Wu, Q. Wan, W. Zhang, Y. Li, L. Cui, X. Qu, J. Phys. Chem. C 116 (2012) 11939–11945.
- [33] M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, Int. J. Hydrogen Energy 35 (2010) 2361-2367
- [34] M. Ismail, Y. Zhao, X.B. Yu, A. Ranjbar, S.X. Dou, Int. J. Hydrogen Energy 36 (2011) 3593-3599.
- [35] M. Ismail, Y. Zhao, X.B. Yu, I.P. Nevirkovets, S.X. Dou, Int. J. Hydrogen Energy 36 (2011) 8327-8334.
- [36] M. Ismail, Y. Zhao, X.B. Yu, S.X. Dou, Int. J. Electroactive Mater. 1 (2013) 13-22. [37] M. Ismail, A. Sinin, C. Sheng, W.W. Nik, Int. J. Electrochem. Sci. 9 (2014) 4959-4973
- [38] Z. Cao, L. Ouyang, Y. Wu, H. Wang, J. Liu, F. Fang, D. Sun, Q. Zhang, M. Zhu, J. Alloys Compd. 623 (2015) 354–358.
- [39] L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 8881-8887.
- [40] L.Z. Ouyang, Z.J. Cao, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloys Compd. 586 (2014) 113-117.
- [41] H.E. Kissinger, Anal. Chem. 29 (1957) 1702-1706.
- [42] L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys, Chem. C 118 (2014) 7808-7820.
- [43] L.Z. Ouyang, F.X. Qin, M. Zhu, Scripta Mater. 55 (2006) 1075-1078.
- [44] L.Z. Ouyang, H.W. Dong, C.H. Peng, L.X. Sun, M. Zhu, Int. J. Hydrogen Energy 32 (2007) 3929-3935.
- [45] L.Z. Ouyang, X.S. Yang, H.W. Dong, M. Zhu, Scripta Mater. 61 (2009) 339–342. [46] L.Z. Ouyang, Y.J. Xu, H.W. Dong, L.X. Sun, M. Zhu, Int. J. Hydrogen Energy 34
- (2009) 9671-9676. [47] P. Li, Q. Wan, Z. Li, F. Zhai, Y. Li, L. Cui, X. Qu, A.A. Volinsky, J. Power Sources 239 (2013) 201-206
- [48] F. Zhai, P. Li, A. Sun, S. Wu, Q. Wan, W. Zhang, Y. Li, L. Cui, X. Qu, J. Phys. Chem. C 116 (2012) 11939-11945.
- [49] I.E. Malka, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy 35 (2010) 1706-1712.
- [50] J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu, J. Ni, Int. J. Hydrogen Energy 35 (2010) 4569-4575.