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Abstract In this paper, we derive the price of the forward freight contract using spot-
forward relationship framework.Webase our pricing on six different stochasticmodels
which can capture many stylized facts of spot freight rates such as heavy-tailed logre-
turns, time-varying volatility andmean reversion. Themodels are analytically tractable
which allows for pricing of forwards. We also examine the shape of forward curve
for all continuous-time forward pricing formulas and find various shapes being the
combination of fixed and stochastically dependent terms. Finally, this paper discusses
the effect of different time to delivery and the maturity effect to the forward curve.

Keywords Freight market · Forward price · Lévy processes · Normal inverse
Gaussian distribution · Stochastic volatility · Autoregressive moving average
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1 Introduction

The need of efficient commodity transport between countries or continents over the
world creates demand for shipping services. With the main task to transfer the com-
modity, a crucial part for the participants in this industry including shipowner and
charterer is the cost for hiring or leasing the transportation, conceived by freight rate.
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4 C. M. I. C. Taib

The market for freight rate is not similar to the market of other commodities like
crude oil, natural gas or agriculture. This is simply because freight services are essen-
tially non-storable. However, the nonstorability property at least makes the shipping
freight market more identical to energy markets, for instance the market for electricity
and temperature. Electricity must be used once generated and we cannot trade the
temperature. Therefore, the usual way for the users in freight market (electricity and
temperature as well) are to enter the forward/futures contract with a specific delivery
time, to ensure that commodity could be transported at that time.

Modelling the forward freight rate dynamics has been theoretically and empirically
studied by many researchers. Among of them are Kavussanov and Nomikos [15,16],
Koekebakker and Ådland [17] and recently in a paper by Prokopczuk [18]. Tomention
a few, a study done by Koekebakker and Ådland [17] used a direct Heath–Jarrow–
Morton (HJM) approach to investigate the forward dynamics in a risk neutral world.
They assume that the price evolution can be explained using multi-factor geometric
Brownian motion. Further, four different continuous time no arbitrage pricing models
have been considered in Prokopczuk [18]. The study finds that the two-factor model
outperform the one-factor model based on their hedging performance.

In the present paper, we study the pricing of the forward freight rates. Our approach
however is not straightforward, but based on spot-forward relationship framework.We
take six different continuous stochasticmodels of spot freight rates introduced inBenth
et al. [8] and infer forward prices thereof. To be more specific, we consider a simple
geometric Brownian motion, an exponential Lévy model and a pricing model with
stochastic volatility proposed by Barndorff-Nielsen and Shephard [2]. Further, we
implement three different stationary continuous-time autoregressive (CAR) models in
the forward pricing.

Modelling spot price of assets using geometric Brownian motion (GBM for short)
is essentially assuming that their (log)returns are normally distributed. In many empir-
ical studies (see Benth and Šaltytė Benth [4] and Benth et al. [8]), the logreturns are
observed to exhibit heavy tails and also peaky in the center of distribution. Hence,
the normal hypothesis is violated. Alternatively, Barndorff-Nielsen [1] proposes the
normal inverse Gaussian (NIG) distribution which can be used to model the logre-
turns. We refer to Benth et al. [5] for details discussion on nice fitting of NIG to the
empirical logreturns. Consequently, we propose to use an exponential Lévy model
driving by NIG Lévy process to price forward. With the sign of volatility cluster-
ing and dependency structure exhibited in freight data (refer to Benth et al. [8]),
we consider a stochastic model which incorporates stochastic volatility, namely the
Barndorff-Nielsen and Shephard (hereafter BNS) stochastic volatility model. Taking
into account the mean reversion property leads us to a stationary CAR(p) dynamics.
We consider CAR dynamics driven by three different (Lévy) processes: Brownian
motion, NIG and BNS stochastic volatility.

We price the forward with respect to a risk neutral probability. We introduce an
Esscher transform (see Gerber and Shiu [12] who first applied Esscher transform to
financial markets) for general Lévy processes driving the spot dynamics. The use of
such transformation in energy markets can be found in Benth et al. [5]. The Esscher
alters the dynamics with a constant called market price of risk such that the price
process becomes martingale after discounting. We also introduce the Esscher trans-
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Forward pricing in the shipping freight market 5

form to the stochastic volatility dynamics that would exponentially tilt the Lévy jump
measure by a coefficient called market price of volatility risk.

In pricing forward contracts for seasonally dependent commodities, the shape of
the forward curve is depending on the demand and supply which varies seasonally
(see Borovkova and Geman [9] for the discussion of seasonality behaviour in the
forward curve). Electricity for example are highly demanded during winter season
for heating compared to summer. The temperature market is obviously seasonally
dependent. However, the failure of supply side to react quickly to meet the demand,
distinguishing freight market from other seasonal-dependent market. A simple fitting
using seasonal mean function in Benth et al. [8] shows no (deterministic) seasonality
in the dry bulk freight time series. In addition, a seasonality study of tanker market
segment by Kavussanov and Alizadeh [14] has rejected the existence of stochastic
seasonality in freight rates. Since the findings of seasonality are mixed, we decided to
neglect seasonality in our forward pricing.

We present our findings as follows. In Sect. 2, we introduce the stochastic dynamics
of spot price that shall be used in forward pricing. Next, the forward prices are derived
in Sect. 3where theEsscher transform for risk-neutral pricingmeasure is implemented.
Section 4 discusses various shapes of forward curves for different stochastic models.
Finally, Sect. 5 concludes the paper.

2 Stochastic dynamics of the spot price

This section describes the six different stochastic spot models which were introduced
in Benth et al. [8]. We shall use all the models for our forward pricing. Now, let
(�,F , P) be a probability space equipped with filtration {Ft }t≥0 which satisfies the
usual conditions (see Barndorff-Nielsen and Shiryaev [3]).

2.1 Geometric Brownian motion

Denote S(t) as the spot price at time t ≥ 0. A geometric Brownian motion model
explains the spot using the dynamics

d S(t) = μS(t)dt + σ S(t)d B(t), (2.1)

where the constant μ and σ > 0 are respectively the drift and volatility and B(t) is
Brownian motion. Solving (2.1) for T ≥ t ≥ 0 yields

S(T ) = S(t) exp

((
μ − 1

2
σ 2

)
(T − t) + σ

∫ T

t
d B(u)

)
. (2.2)

The model assumes that the logreturns will be independent and normally distributed.
The empirical distribution of the logreturns for freight rates studied in Benth et al. [8]
shows the concentration ofmass in the center of the distribution.Moreover, the tails are
far more heavy than normal. Thus, the hypothesis of normally distributed logreturns
should be rejected and ultimately, GBM is not an appropriate model for the spot.

Instead of using GBM to model the spot price, one could use an exponential Lévy
model which generalize the Brownian motion to Lévy process. The model allows for
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6 C. M. I. C. Taib

jumps and the price path would be no more continuous. A possible candidate which
can explain the spot is the normal inverse Gaussian Lévy process. The study by Benth
et al. [8] shows that NIG fitted the logreturns of the freight rates very well, capturing
the tails and the high peak in the center. Next, we introduce the exponential Lévy
model that will be used in our forward pricing.

2.2 Lévy-based dynamics

The spot price S(t) is defined as an exponential Lévy process which takes the form

S(t) = S(0) exp(L(t)). (2.3)

Wechoose L(t) to beNIGLévyprocess, that is a stochastic processwith normal inverse
Gaussian distributed increments. Therefore, we called (2.3) as NIG Lévy model. We
explain briefly the NIG distribution herein and details can be found in Benth et al.
[5]. The NIG with four parameters α, β, δ and μ is a class of generalized hyperbolic
distributions having the density functions,

f (x;α, β, δ, μ) = k exp(β(x − μ))
K1(α

√
δ2 + (x − μ)2)√

δ2 + (x − μ)2
,

where k = δα exp(δ
√

α2 − β2)/π and K1(x) is the modified Bessel function of the
third kind with index 1.

We may classify L(t) as NIG Lévy process if L(1) is distributed according to
the normal inverse Gaussian distribution. The Lévy measure of L(t) is given by (see
Barndorff-Nielsen and Shephard [2])

�(dz) = αδ

π |z|eβz K1(α|z|)dz, (2.4)

and the cumulant function is given by (see Benth and Šaltytė-Benth [4])

ψ(λ) = iλμ + δ

(√
α2 − β2 −

√
α2 − (β + iλ)2

)
. (2.5)

In Benth et al. [8], the time series of empirical logreturns of freight rates show
volatility clustering. This fact together with heavy-tailed logreturns give signs of sto-
chastic volatility in the dynamics. Following the study, we propose to use the BNS
model to describe the time-varying volatility process.

2.3 Barndoff-Nielsen and Shephard stochastic volatility model

In energymarkets, for example electricity, it is rather natural to assume that the volatil-
ity of the price process is changing stochastically over time. The empirical studies in
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Forward pricing in the shipping freight market 7

Benth [5,6] show that the use of stochastic volatility model may capture many stylized
facts of the empirical logreturns data, and he proposed to use the BNSmodel. We shall
follow his step by defining the BNS stochastic volatility model with the following.

Denote X (t) = ln S(t) as the solution of the stochastic differential equation,

d X (t) = {μ + βσ 2(t)} dt + σ(t) d B(t), (2.6)

where B(t) is standard Brownian motion. The stationary volatility process, σ 2(t)
follows a weighted sum of processes Vj (t) given by

σ 2(t) =
n∑

j=1

ω j V j (t). (2.7)

The weights ω j ∈ [0, 1] for j = 1, . . . , n are summing up to one. Meanwhile, the
dynamics of the Ornstein–Uhlenbeck process Vj (t) takes the form

dVj (t) = −λ j V j (t) dt + d Z j (λ j t), (2.8)

where λ > 0 is the speed ofmean reversion of the volatility process. The process Z(λt)
is called a subordinator, that is the process with only positive increments and no drift.
This ensures the positivity of variable V (t). We let V (t) follow the inverse Gaussian
law, therefore the increments of (2.6) would approximately be NIG distributed.

For T ≥ t ≥ 0, we can reformulate Eq. (2.6) to be

S(T ) = S(t) exp

(
μ(T − t) + β

∫ T

t
σ 2(u) du +

∫ T

t
σ(u)d B(u)

)
. (2.9)

2.4 CAR( p) dynamics

Following Schwartz [19], we assume that the spot freight rates are characterized by
an exponential Ornstein–Uhlenbeck stochastic process. We choose to work with a
stationary model of continuous time autoregressive (CAR), a subclass of continuous
autoregressive moving average (CARMA)model (seeBrockwell [10]). Themotivation
is mainly triggered by empirical evidence of freight rates in Benth et al. [8] that the
prices are mean-reverting and showing dependency structure.

By working with one-dimensional Brownian motion B(t), we define a CAR(p)
dynamics as follows. For p ≥ 1, the p-dimensional Ornstein–Uhlenbeck stochastic
process X(t) is defined as the solution of

dX(t) = AX(t) dt + epσd B(t), (2.10)

with A is the p × p matrix given by

A =
[

0 I
−αp . . . −α1

]
, (2.11)
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8 C. M. I. C. Taib

where 0 is the (p − 1) vector of zeros and I represents the (p − 1) × (p − 1) identity
matrix. The matrix A contains positive constants αi for i = 1, . . . , p, corresponding
to the different speed of mean reversions. Moreover, {ei }p

i=1 is the i-th canonical basis
vectors in R

p and σ is a (constant) volatility. By Itô formula, the explicit solution
of (2.10) for s ≥ t is given as

X(s) = eA(s−t)X(t) +
∫ s

t
eA(s−u)epσd B(u). (2.12)

Setting the log price ln S(t) = Y (t), a CAR(p) is now defined as Y (t) = e′
1X(t) .

Looking back to the analysis of spot freight rates in Benth et al. [8], the observed
residuals of the log price after removing the autoregressive effects essentially come
from nonGaussian distribution. They fitted the empirical density with NIG class dis-
tribution, and the distribution looks very well fitted. Therefore, the study proposes an
alternative CAR model having similar structure as in (2.10) but with L being Lévy
process with NIG distributed increments. The dynamics of X(t) takes the form

dX(t) = AX(t) dt + ep d L(t). (2.13)

In this sense, the volatility takes value one, that is σ(t) = 1.
The analysis of residuals also shows the sign of stochastic volatility, where the tails

of residuals distribution are heavier than normal and there are dependency structures
indicated in the log price. The CARwith BNS stochastic volatility is defined as follows

dX(t) = AX(t) dt + ep σ(t) d B(t). (2.14)

By having normally distributed stochastic process B(t) and σ(t) ∼ I G(δ, γ ), Y (t)
would be approximately NIG distributed.

3 Pricing of freight forwards

In this section, we shall derive the forward pricing formulas for various spot models,
as described in the previous section. Denote F(t, T ) as the price of a forward contract
at time t with delivery time T where 0 ≤ t ≤ T < ∞. We define F(t, T ) to be the
expected spot price at time T conditional on information revealed up to time t , being
priced under risk neutral probability Q ∼ P . This can be mathematically expressed
as,

F(t, T ) = EQ[S(T )|Ft ]. (3.1)

It is assumed that F(t, T ) isFt -adapted and S(T ) ∈ L1(Q)whichmakes the arbitrage-
free property holds.

Pricing forwards requires a pricing probability Q. Following Benth et al. [5], we
introduce a parametric class of measure change of Girsanov transform for the case of
Gaussian model using

Bθ (t) = B(t) − θ t, (3.2)
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Forward pricing in the shipping freight market 9

with θ as a constant describing the market price of risk. Using this transformation, the
Q-dynamics of (2.1) is now taking the form

d S(t) = κS(t)dt + σ S(t)d Bθ (t), (3.3)

where κ = μ + σθ and Bθ is a Q-Brownian motion. The explicit solution of (3.3) is

S(T ) = S(t) exp

((
κ − σ 2

2

)
(T − t) +

∫ T

t
σd Bθ (u)

)
. (3.4)

Now, we are ready to derive the forward pricing formula under geometric Brownian
motion model.

Proposition 3.1 The price at time t for a forward contract with delivery at time
T ≥ t ≥ 0 under geometric Brownian motion model is given as

F(t, T ) = S(t) exp (κ (T − t)) , (3.5)

where κ = μ + σθ .

Proof From definition and with appealing to (3.4) we have

F(t, T ) = EQ[S(T )|Ft ]

= S(t) exp

((
κ − σ 2

2

)
(T − t)

)
· EQ

[
exp

(∫ T

t
σd Bθ (s)

) ∣∣∣∣Ft

]
.

We know that the stochastic integral is independent of Ft and Bθ ∼ N (0, T − t).
Hence, the proposition follows from independent increment property of Brownian
motion. �	

Moving on from a specific class of Brownian motion to the more general Lévy
processes in deriving risk-neutral forward price requires a more flexible change of
measure. Apparently, this can be done using the Esscher transform which can be
considered as generalization of Girsanov transformation. Historically, it has been
introduced by Esscher [11] in approximating the aggregated claim distribution, so
that the chosen parameter θ drifting the mean to a new point of interest. This density
transformation has later been developed by Gerber and Shiu [12] to pricing options
and recently it has been widely used in forward and futures pricing (see e.g. Benth et
al. [5], and Benth and Sgarra [7]).

The next proposition will be devoted to the derivation of explicit forward price for
NIG Lévy model. In order to do so, we state here some possible results from Benth
and Šaltytė Benth [4] concerning the existence of at least the first moment of the spot
process by imposing an exponential integrability condition on the Lévy measure as
follows.
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10 C. M. I. C. Taib

Condition 1 There exists a constant k > 0 such that the Lévy measure satisfies the
integrability condition

∫ ∞

1
ekz�(dz) < ∞.

The order of the moments is finite, and determined by the constant k. The following
Lemma ensure the finite moment condition exists.

Lemma 3.2 If g : [0, t] 
→ R is a bounded and measurable function and Condition 1
holds for k := sups∈[0,t] |g(s)|, then

E

[
exp

(∫ t

0
g(u) d L(u)

)]
= exp

(∫ t

0
φ(g(u))du

)
,

where φ(λ) = ψ(−iλ).

Proof The proof can be found in Benth and Šaltytė Benth [4]. �	

Let us consider a constant θL to be the market price of risk. For 0 ≤ t ≤ T , we
define a process πL(t) as

πL(t) = exp (θL L(t) − φL(θL)t) .

Here, φL is logarithm of the moment generating function of Lévy process L (or some-
times called the cumulant function). Thus, we define the Radon-Nikodym derivative

d Q

d P

∣∣∣Ft
= πL(t),

such that πL is the density process of a measure Q ∼ P . The next proposition will be
the price formula for forward using NIG Lévy spot model.

Proposition 3.3 The price at time t for a forward contract with delivery at time
T ≥ t ≥ 0 under NIG Lévy model is given as

F(t, T ) = S(t) exp ({φL(θL + 1) − φL(θL)}(T − t)) .

Proof Using definition and from (2.3) we have,

EQ [S(T ) | Ft ] = S(0)eL(t)
EQ

[
eL(T )−L(t) | Ft

]

= S(t) · EQ

[
exp

(∫ T

t
1 d L(u)

) ∣∣∣∣Ft

]
.
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Forward pricing in the shipping freight market 11

Appealing Bayes’ Formula to the conditional expectation, we have

EQ

[
exp

(∫ T

t
1 d L(u)

) ∣∣∣∣Ft

]

= E

[
exp

(∫ T

t
1 d L(u)

)
πL(T )

πL(t)

∣∣∣∣Ft

]

= exp

(
−

∫ T

t
φL(θL)du

)
E

[
exp

(∫ T

t
(θL + 1) d L(u)

) ∣∣∣∣Ft

]

= exp

(
−

∫ T

t
φL(θL)du

)
E

[
exp

(∫ T

t
(θL + 1) d L(u)

)]

= exp

(∫ T

t
{φL(θL + 1) − φL(θL)} du

)
,

from independent increment of Lévy process and introducing the cumulant function.
This proves the proposition. �	

Taking into account the stochastic volatility in the price dynamicsmakes the forward
pricing dependent on the path of volatility process and to compute the price now is not
a direct attainable task. Under risk neutral pricing measure Q, one could obtain the
forward price by transforming the density of the Lévy process using Esscher transform
as what we did for pricing forward under NIG Lévy model. Furthermore, we can also
transform the Lévy density of the volatility process by introducing market price of
volatility risk into the dynamics. We will focus here the BNS stochastic volatility
model.

Let θV be the market price of volatility risk, we define a process πZ with

πZ (t) = exp (θV Z(t) − φZ (θV )t) .

To this end, we introduce density process π(t) to be the product of πL(t) and πZ (t),
mathematically expressed as

d Q

d P

∣∣∣Ft
= πL(t) × πZ (t) = π(t).

We formulate the forward price for BNS stochastic volatility model in the next propo-
sition.

Proposition 3.4 The price at time t for a forward contract with delivery at time
T ≥ t ≥ 0 under BNS stochastic volatility model is given as

F(t, T ) = S(t) exp

⎛
⎝(μ + θ)(T − t) +

n∑
j=1

�(T − t)Vj (t)

⎞
⎠

× exp

⎛
⎝ n∑

j=1

∫ T

t
{φZ (�(T − ν) + θV ) − φZ (θV )} dν

⎞
⎠ ,
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12 C. M. I. C. Taib

where �(ξ) = ω j
λ j

(β + 0.5)
(
1 − e−λ j ξ

)
.

Proof We obtain the risk-neutral dynamics of (2.6),

d X (t) = {μ + θ + βσ 2(t)} dt + σ(t) d Bθ (t), (3.6)

by introducing parametric class of risk-neutral probabilities using Girsanov transform,

d Bθ (t) = d B(t) − θ

σ (t)
dt. (3.7)

We know that ln S(t) = X (t). By definition and reformulating (3.6), we have

EQ [S(T ) | Ft ] = S(t) exp ((μ + θ)(T − t))

×EQ

[
exp

(∫ T

t
βσ 2(u)du +

∫ T

t
σ(u)d Bθ (u)

) ∣∣∣∣Ft

]
.

(3.8)

Observe that the transformation of probability from P to Q does not alter the char-
acteristics of σ(t). Using the same argument for Proposition 2.2 in Benth [6], we
introduce the σ -algebra

Fσ
t = σ {σ 2(u), 0 ≤ u ≤ t}

∨
Ft .

Using the tower property of conditional expectations, and from the independence
between σ(t) and Bθ (t) and the independent increment property of Brownian motion
yields

EQ

[
exp

(∫ T

t
βσ 2(u)du +

∫ T

t
σ(u)d Bθ (u)

) ∣∣∣∣Ft

]

= EQ

[
exp

(∫ T

t
βσ 2(u)du

)
E

[
exp

(∫ T

t
σ(u)d Bθ (u)

)
| Fσ

t

] ∣∣∣∣Ft

]

= EQ

[
exp

((
β + 1

2

) ∫ T

t
σ 2(u)du

) ∣∣∣∣Ft

]
.

Now, we compute the conditional expectation. We have

EQ

[
exp

((
β + 1

2

) ∫ T

t
σ 2(u)du

) ∣∣∣∣Ft

]

= EQ

⎡
⎣exp

⎛
⎝(

β + 1

2

) ∫ T

t

n∑
j=1

ω j V j (u) du

⎞
⎠

∣∣∣∣Ft

⎤
⎦

=
n∏

j=1

EQ

[
exp

(
ω j

(
β + 1

2

) ∫ T

t
Vj (u) du

) ∣∣∣∣Ft

]
,
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Forward pricing in the shipping freight market 13

after replacing σ(u) = ∑n
j=1 ω j V j (u) and the last equality follows from inde-

pendence of the stochastic volatility factors Vj (u). We shall replace Vj (u) in the
conditional expectation with the following explicit dynamics of stochastic volatility

Vj (u) = e−λ j (u−t)Vj (t) +
∫ u

t
e−λ j (u−ν)d Z j (ν). (3.9)

By adaptedness of V (t), we have

EQ

[
exp

(
ω j

(
β + 1

2

) ∫ T

t
Vj (u) du

)
| Ft

]

= exp

(
ω j

(
β + 1

2

) ∫ T

t
e−λ j (u−t)du Vj (t)

)

× EQ

[
exp

(
ω j

(
β + 1

2

)∫ T

t

∫ u

t
e−λ j (u−ν) d Z j (ν) du

) ∣∣∣∣Ft

]
.

Appealing the stochastic Fubini theorem to the conditional expectation and with expo-
nential integrability conditions, we have

EQ

[
exp

(
ω j

(
β + 1

2

)∫ T

t

∫ u

t
e−λ j (u−ν) d Z j (ν) du

) ∣∣∣∣Ft

]

= EQ

[
exp

(
ω j

(
β + 1

2

)∫ T

t

∫ T

t
1(ν≤u)e

−λ j (u−ν)d Z j (ν)du

) ∣∣∣∣Ft

]

= EQ

[
exp

(
ω j

(
β + 1

2

)∫ T

t

∫ T

t
1(ν≤u)e

−λ j (u−ν)du d Z j (ν)

) ∣∣∣∣Ft

]

= EQ

[
exp

(
ω j

(
β + 1

2

)∫ T

t

∫ T

ν

e−λ j (u−ν)du d Z j (ν)

) ∣∣∣∣Ft

]

= EQ

[
exp

(
ω j

(
β + 1

2

)∫ T

t

1

λ j

(
1 − e−λ j (T −ν)

)
d Z j (ν)

) ∣∣∣∣Ft

]

= exp

(∫ T

t

{
φZ

(
ω j

λ j

(
β + 1

2

)(
1 − e−λ j (T −ν)

)
+ θV

)
− φZ (θV )

}
dν

)
,

follows from independent increment of Lévy process for stochastic volatility. Com-
bining all terms yields the result. �	

Many empirical studies validated the presence of memory structure in the spot
proces of energy related market including freight (see Benth et al. [8]). In the previous
section, we define stationary CAR(p) dynamics from there we can derive the forward
pricing formula. In the next proposition, we compute the forward price based on CAR
dynamics where the residuals are normally distributed with zero mean.
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14 C. M. I. C. Taib

Proposition 3.5 The price of a forward contract at time t for delivery at time T ≥
t ≥ 0 under CAR(p) model driven by Brownian motion is given as

F(t, T ) = exp

(
e′
1eA(T −t)X(t) +

∫ T

t
�(T − u)θσ du

)

× exp

(
1

2

∫ T

t
� 2(T − u)σ 2du

)
,

where �(T − u) = e′
1eA(T −u)ep.

Proof Given S(t) = eY (t). We obtain the explicit dynamics of risk-neutral
CAR(p) (2.10) after introducing Girsanov transform (3.2) as

Y (T ) = e′
1eA(T −t)X(t) +

∫ T

t
e′
1eA(T −u)ep σθ du

+
∫ T

t
e′
1eA(T −u)ep σ d Bθ (u).

(3.10)

By definition and inserting (3.10), we get

F(t, T ) = EQ [S(T ) | Ft ]

= exp

(
e′
1e

A(T −t)X(t) +
∫ T

t
e′
1e

A(T −u)ep θσ du

)

× EQ

[
exp

(∫ T

t
e′
1e

A(T −u)ep σd Bθ (u)

) ∣∣∣∣Ft

]
.

(3.11)

Using the same argument as in the proof of Proposition 3.4, we obtain

EQ

[
exp

(∫ T

t
e′
1eA(T −u)ep σd Bθ (u)

) ∣∣∣∣Ft

]

= E

[
exp

(
1

2

∫ T

t
(e′

1eA(T −u)ep)
2σ 2du

) ∣∣∣∣Ft

]

= exp

(
1

2

∫ T

t
(e′

1eA(T −u)ep)
2σ 2du

)
,

from independent increment property of Bθ . The proposition follows after change of
variables. �	

As indicated, the continuous stochastic process of Brownian motion is not appro-
priate to explain the evolution of CAR process (see Benth et al. [8]). Thus, we propose
in the previous section the NIG process driving the CAR dynamics which is believed
to be the potential Lévy process to capture the distributional properties of residuals.
We will here use the CAR dynamics driven by NIG process as in (2.13) to formulate
the forward price in the next proposition.
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Proposition 3.6 The price of a forward contract at time t for delivery at time
T ≥ t ≥ 0 under CAR(p) model driven by normal inverse Gaussian process is
given as

F(t, T ) = exp

(
e′
1eA(T −t)X(t) +

∫ T

t
{φL(�(T − u) + θL) − φL(θL)} du

)
,

where �(T − u) = e′
1eA(T −u)ep.

Proof We have the explicit solution of (2.13) as

Y (T ) = e′
1eA(T −t)X(t) +

∫ T

t
e′
1eA(T −u)ep d L(u). (3.12)

By definition and inserting (3.12), we obtain

EQ[S(T )|Ft ] = exp(e′
1eA(T −t)X(t))

× EQ

[
exp

(∫ T

t
e′
1eA(T −u)ep d L(u)

) ∣∣∣∣Ft

]
.

Using a short notation �(T − u) = e′
1eA(T −u)ep and by appealing Bayes’ formula to

the conditional expectation part, we get

EQ

[
exp

(∫ T

t
�(T − u)d L(u)

) ∣∣∣∣Ft

]

= E

[
exp

(∫ T

t
�(T − u)d L(u)

)
πL(T )

πL(t)

∣∣∣∣Ft

]

= exp

(
−

∫ T

t
φL(θL)du

)
E

[
exp

(∫ T

t
(�(T − u) + θL)d L(u)

) ∣∣∣∣Ft

]

= exp

(∫ T

t
{φL(�(T − u) + θL) − φL(θL)}du

)
.

Hence, the proposition follows. �	

Our next proposition will be the forward pricing under CAR dynamics driven by
BNS stochastic volatility process. The forward price is now dependent to the stochastic
volatility σ 2(t).
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16 C. M. I. C. Taib

Proposition 3.7 The price of a forward contract at time t for delivery at time T ≥
t ≥ 0 under CAR(p) driven by BNS stochastic volatility process is given as

F(t, T ) = exp

(
e′
1e

A(T −t)X(t) +
∫ T

t
�(T − u)θdu

)

× exp

⎛
⎝ n∑

j=1

ω j

2

∫ T

t
� 2(T − u)e−λ j (u−t) duVj (t)

⎞
⎠

× exp

⎛
⎝ n∑

j=1

∫ T

t

{
φZ

(
ω j

2

∫ T

ν

ϒ(u − v) du + θV

)
− φZ (θV )

}
dν

⎞
⎠ ,

where ϒ(x) = � 2(T − u)e−λ j x , and �(T − u) = e′
1eA(T −u)ep.

Proof We obtain

Y (T ) = e′
1eA(T −t)X(t) +

∫ T

t
e′
1eA(T −u)epθ du +

∫ T

t
e′
1eA(T −u)epσ(t) d Bθ (u),

(3.13)
after appealing the Girsanov transform (3.7) and solving (2.14). By definition,

F(t, T ) = EQ

[
S(T )

∣∣∣∣Ft

]

= exp

(
e′
1e

A(T −t)X(t) +
∫ T

t
e′
1e

A(T −u)epθdu

)

× EQ

[
exp

(∫ T

t
e′
1e

A(T −u)epσ(u)d Bθ (u)

) ∣∣∣∣Ft

]
.

Consider the conditional expectation part. Using the same argument as in the proof of
Proposition 3.4, we get

EQ

[
EQ

[
exp

(∫ T

t
e′
1e

A(T −u)epσ(u)d Bθ (u)

) ∣∣∣∣Fσ
t

] ∣∣∣∣Ft

]

= EQ

[
exp

(
1

2

∫ T

t
(e′

1e
A(T −u)ep)

2σ 2(u)du

) ∣∣∣∣Ft

]

=
n∏

j=1

EQ

[
exp

(
ω j

2

∫ T

t
� 2(T − u)Vj (u)du

) ∣∣∣∣Ft

]

=
n∏

j=1

exp

(
ω j

2

∫ T

t
� 2(T − u)e−λ j (u−t)du Vj (t)

)

× EQ

[
exp

(
ω j

2

∫ T

t

∫ u

t
� 2(T − u)e−λ j (u−ν)d Z j (ν)du

) ∣∣∣∣Ft

]
,
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after replacing the dynamics of stochastic volatility (3.9) and considering the inde-
pendency of stochastic volatility factor Vj (u). Invoking the stochastic Fubini theorem
to the conditional expectation of the last equality and from Bayes’ formula, we have

EQ

[
exp

(
ω j

2

∫ T

t

∫ u

t
� 2(T − u)e−λ j (u−ν)d Z j (ν)du

) ∣∣∣∣Ft

]

= EQ

[
exp

(
ω j

2

∫ T

t

∫ T

ν

� 2(T − u)e−λ j (u−ν)dud Z j (ν)

) ∣∣∣∣Ft

]

= exp

(∫ T

t

{
φZ

(
θV + ω j

2

∫ T

ν

� 2(T − u)e−λ j (u−ν)du

)
− φZ (θV )

}
dν

)
.

Combining all terms yields the result. �	
We have now completed the derivation of forward price for freight market using all

six models of spot freight rates discovered by Benth et al. [8]. In the following section,
we will discuss the various shape of forward curve contributed by many factors in the
explicit forward formulas.

4 Shapes of the forward curves

The price of a forward contract brings information on the behaviour of the spot price
in the future. We shall examine here the shape of the forward curve based on explicit
forward formulas derived from different spot models. These consist of GBM, NIG
Lévy, BNS stochastic volatility and CAR model with Brownian motion, NIG and
BNS stochastic volatility distributed increments. Let focus on the first three explicit
forward prices in Proposition 3.1, 3.3 and 3.4 respectively under GBM, NIG Lévy and
BNS stochastic volatility spot models. In general, the shape of the forward curve
is determined by today’s spot price, S(t) and a contribution from some constant
including risk premium, θ in the exponential which give rise to a fixed shape. We
can simply see that for forward under GBM model, the curve will be exponentially
increasing or decreasing respectively called contango or backwardation depending on
the positive or negative value of κ . For the forward price under NIG Lévy spot model,
additional contribution comes from integrands of cumulant function. We can directly
compute the integral with having the cumulant function of normal inverse Gaussian
as in (2.5). The forward for BNS stochastic volatility spot model however contains
the contribution from stochastic volatility (in the second term of Proposition 3.4)
which is weighted by ω j (β + 0.5){e−λ j (u−t) − 1}/λ j . The last term involving the
integrands of cumulant function of inverse Gaussian which is not stochastically vary-
ing.

The most important part for the forward price under BNS stochastic volatility
spot model is time-varying volatility V (t), appearing in Proposition 3.4 which also
accounts for the random changes in the price. Thus, one need to have the current state
of stochastic volatility to figure out the shape of the forward. This can be simulated
using a series representation (see Barndorff-Nielsen and Shephard [2]) or an exact
scheme proposed by Zhang and Zhang [20]. In Fig. 1, we have plotted the forward
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Fig. 1 Forward prices at t = 0 under GBM (complete line), NIG Lévy (dashed line) and BNS stochastic
volatility (dotted line) spot models with S(0) = 39663

curve at t = 0 under GBM spot model together with the curves for NIG Lévy and
BNS stochastic volatility spot models for different time to delivery using parameters
in Benth et al. [8]. However, we are not going to input any risk premium here, thus
setting θ = θL = θV = 0. The effect of risk premium is just scaling up or down the
original curve.

Obviously, the curve for forward prices under GBM is slowly increasing with
increasing time to delivery. The curves for the other two models deviates quite fast
with large deviation for longer time to delivery. In addition, the forward curve under
BNS stochastic volatility model shows significantly higher level since longer time to
delivery increase the volatility effect which affecting prices in the long end.

Now, we investigate the effect of time to delivery for these three models. Assume
that we have a contract with fixed delivery time, say T = 252. The forward price
t → F(t, T ) under GBM, NIG Lévy and BNS stochastic volatility spot models are
plotted in Fig. 2. Starting from forward prices at t = 0, we let time to move forward
until delivery and see the price difference between the models. From the discussion
above and looking at Fig. 1, there are huge differences in the forward price under
GBM with NIG Lévy and BNS stochastic volatility at t = 0 and in Fig. 2, we can still
see the difference within the first 50 days.

The path for NIG Lévy and BNS stochastic volatility looks similar and not much
different after 50 days, but they differ much with GBM model. As time to delivery
T − t → 0, then all models give the same price since F(T, T ) = S(T ).

We turn to the forward prices under stationary CAR models with three different
stochastic processes driving the dynamics: Brownian motion, NIG and BNS stochas-
tic volatility respectively formulated in Propositions 3.5–3.7. Under CAR model with
Brownian motion increments, we may have fixed shape of forward by having summa-
tion of deterministic function scaled by some constant in the second term. However,
the first term which includesX(t) is scaled by e′

1eA(T −t), and gives rise to a stochastic
path. This is similar to the forward price under two other CAR models. However, for
forward under CAR with BNS stochastic volatility increments in Proposition 3.7, the
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Fig. 2 Forward prices under GBM (complete line), NIG Lévy (dashed line) and BNS stochastic volatility
(dotted line) spot models with T = 252 and θ = θL = θV = 0

second term also contributes to the stochasticity with having time varying volatility,
while other terms gives rise to a fixed shape.

To this end, let us investigate the following term

e′
1eA(T −t)X(t), (4.1)

which contributes to the stochastic variation of the forward in all CAR models. We
may represent (4.1) as

e′
1eA(T −t)(e1x1(t) + e2x2(t) + · · · + epxp(t)).

Each of these random factors is scaled by the function mi (x) = e′
1eAx ei for i =

1, . . . , p and x = T − t or time to delivery. Note that when x → ∞, the function
mi (x) tends to zero since the real parts of the eigenvalues are all negative in stationarity.
Furthermore, if x = 0 then mi (0) = 1 for i = 1 and equal zero for i ≥ 2. These can
be observed in Fig. 3 using parameters for CAR(3) model in Benth et al. [8] where
there are hump shapes contributed by the second and third factors. The level of the
curve is depending on the different speed of mean reversions which are incorporated
in the matrix A.

In Fig. 4, we show the plots of mi (x) for i = 1, 2, 3 and T = 252. Observe the
nonnegativity of the functionm(x). The first curvewhich influences x1(t) is downward
sloping at very slow rate, while the second and third curves which affect x2(t) and
x3(t) respectively show hump in the short end.

We come to the second term in Proposition 3.7which also contributes to the stochas-
tic path of the forward forCARmodelwithBNS stochastic volatility increments. There
arise question on how weighting factor influences the stochastic volatility. Therefore,
we investigate the shape of the term given by
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Fig. 3 The function m(x) for CAR(3) model with t = 0
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Fig. 4 The function m(x) for CAR(3) model with T = 252

∫ T

t
(e′

1eA(T −u)ep)
2e−λ j (u−t) du, (4.2)

which appears next to Vj (t). We know that matrix A is diagonalizable since A ∈
GL p(R). Hence, we can represent eA(T −u) = veD(T −u)v−1 where v is the matrix of
eigenvectors and D is diagonal matrix with eigenvalues λk for k = 1, . . . , p as the
diagonal entries. We can use the spectral representation to show that

e′
1eA(T −u)ep =

p∑
k=1

akeλk (T −u)e′
1vk, (4.3)

for ak ∈ R. Note that the real part of eigenvalues are all negative from stationarity
property of CAR process. Consider the special case of p = 1 where the matrix A is
simply −α1. As x = T − t → ∞ then the function (4.2) goes to zero for λ j=1 is real.
Obviously for x = 0, (4.2) becomes zero. This produces a hump shape in the short end
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Fig. 5 The shape of (4.2) with t = 0, α1 = 0.005 and λ j=1 = 0.5

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (day)

Fig. 6 The shape of (4.2) with T = 252, α1 = 0.005 and λ j=1 = 0.5

as illustrated in Fig. 5 where the shape is changing from contango to backwardation
over time.

Now setting T = 252 and we observe the shape of (4.2) as time is moving forward
until delivery. The shape is plotted in Fig. 6. We observe an upward trend in the short
end of the curve and as time is increasing, the curve is decreasing towards some value.

As noted, if we let x → ∞ then the curve will decrease towards zero. For the case
of p > 1, the curve of (4.3) is in backwardation as long as eigenvalues have negative
real parts and the constants ak is not all with positive sign.

5 Conclusion

In this paper, we study the pricing of forward freight contracts under spot-forward
relationship framework. We base our study on empirical investigation of spot freight
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rates in Benth et al. [8], where six different stochastic models were introduced to
explain freight rates evolution in dry bulk market. Using no arbitrage pricing theory,
we derive explicit forward price for all models discovered in the paper. In addition, we
introduce a change of measure from physical probability to risk-neutral measure using
Esscher transform. As a consequence, the market price of risk is incorporated into the
forward formula and the market price of volatility risk is included in the model with
stochastic volatility. For the case related to Brownian motion, the Esscher is nothing
but a traditional Girsanov transform.

Further, we investigate the various shapes of forward curves based on our forward
price formula. The curves for forward under geometric Brownianmotion and exponen-
tial NIG Lévy spot models are fixed, in contrast with the curve under BNS stochastic
volatility spot model because of presence of stochastic volatility factor. We also exam-
ine the shape of the forward curve under stationary CAR model with different Lévy
increments. The impact of all factors goes through exponential function. While most
of the terms contribute to a fixed shape of the forward, the state of CAR process and
stochastic volatility provide fluctuations on the forward.

The findings in this article can be used for empirical study of the market forward
price where possibly we can calculate the risk premium by minimizing the distance
between theoretical and market forward price as suggested in Benth [6]. The risk
premium calculation for weather market has been demonstrated by Hardle and Lopez-
Cabrera [13]. Moreover, we can price the options based on explicit forward derived
in this paper for future work.
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