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Abstract Nonparametric modelling of count data is partly motivated by the fact that
using parametric count models not only runs the risk of model misspecification but
also is rather restrictive in terms of local approximation. Accordingly, we present a
framework of using nonparametric mixtures for flexible modelling of count data. We
consider the use of the least squares function in nonparametric mixture modelling
and provide two algorithms for least squares fitting of nonparametric mixtures. Two
illustrations of the framework are given, each with a particular nonparametric mixture.
One illustration is the use of the nonparametric Poisson mixture for general modelling
purposes. The other illustration is concerned with modelling of count data from some
decreasing distribution, in which the Poisson mixture distribution is less appropriate,
for its fitted distribution might not be a decreasing distribution. We define a mix-
ture distribution called the discrete decreasing beta mixture distribution that always
has fitted probabilities conforming with the assumption of decreasing probabilities.
Through numerical studies, we demonstrate the performance of nonparametric mix-
tures as modelling tools.

Keywords Discrete decreasing distribution · Least squares estimation ·
Nonparametric mixtures · V -fold cross-validation

1 Introduction

For modelling count data, parametric models have been commonly used as practical
instruments, the standard one being that based on the Poisson distribution. As various
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kinds of counts such as heavy-tailed, multimodal, overdispersed and zero-inflated
data are observed from the real-world phenomena, the limitations and inadequacies
of parametric models based on basic counting distributions in describing counts have
become obvious. A natural means of addressing problems specific to count data would
be by considering a mixture distribution on X ⊆ N0, the set of nonnegative integers,
having a density of the form

p(x;G) =
∫

p(x; θ) dG(θ), x ∈ X , (1)

where p(x; θ) denotes a component density and G denotes a mixing distribution on
Θ ⊆ [0,∞). IfG belongs to a parametric family of (continuous) distributions, then (1)
is referred to as a parametric mixture distribution. See, e.g., Gupta and Ong (2005),
Karlis andXekalaki (2005), Nikoloulopoulos andKarlis (2008) andRigby et al. (2008)
for numerous parametric Poisson mixture models for count data. On the other hand,
if G is a discrete distribution with finitely many support points, then (1) is referred to
as a finite mixture distribution. As noted by Cameron and Trivedi (2013), finite mix-
tures have several advantages over parametric mixtures. The former not only relaxes
distributional assumptions for the mixing distribution but also may approximate any
distribution arbitrarily well. Besides, it is computationally inconvenient to even calcu-
late the probabilities of parametric mixture distributions without closed form density
functions, while fast algorithms are available for fitting finite mixture distributions.

The density of a J -component finite mixture distribution can be defined as:

p(x;G) =
J∑

j=1

π j p(x; θ j ), x ∈ X , (2)

with G(θ) = ∑J
j=1 π jδθ j (θ), where π j > 0 for all j ,

∑J
j=1 π j = 1 and δϑ denotes

a degenerate distribution at ϑ . Depending on the treatments of the number J of
components, the mixture model formulation can be classified as either parametric
or nonparametric. When the parameter J is regarded as known (and fixed), called
by Böhning et al. (1992) the fixed support size case, we have a parametric mixture for-
mulation. Another case is called by the authors the flexible support size case in which
the parameter J is left unspecified and is to be estimated from the data. Observe that
the latter case involves an entirely unknown discrete mixing distribution. For amixture
model with such a mixing distribution, we shall refer to it as a nonparametric mixture
model owing to the nonparametric nature of the mixing distribution.

Several nonparametric mixture models have been considered in the literature. Yet,
the most popular one is the nonparametric Poisson mixture model. A pioneering study
on the nonparametric Poisson mixture model and its use for analyzing count data
was done by Simar (1976) in which the maximum likelihood approach to estimating
the mixing distribution was introduced. On the contrary, Karlis and Xekalaki (2001)
employed the minimum Hellinger distance estimation for the nonparametric Poisson
mixturemodel. Later, Böhning andPatilea (2005) studied the nonparametricmaximum
likelihood estimator of a mixture of power series distributions and mentioned some
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Modelling of count data using nonparametric mixtures 241

applications in which such a mixture is potentially useful. In fact, many common dis-
crete distributions such as the geometric, negative binomial and Poisson distributions
are members of the family of power series distributions.

Recently, the usefulness of nonparametric mixtures in the context of estimation
of a discrete distribution under some constraint such as monotonicity or convexity
was demonstrated. Estimation of a monotone decreasing distribution on N0 via the
method of maximum likelihood was considered by Jankowski and Wellner (2009).
Since a monotone decreasing distribution on N0 may be written as a mixture of the
form (2) with component density

p(x; θ j ) = 1

θ j
, x ∈ {0, . . . , θ j − 1},

where θ j is a positive integer, the shape-constrained nonparametric estimation prob-
lem becomes that of estimating the mixing distribution in the discrete uniformmixture
model. On the other hand, Durot et al. (2013) showed that a convex decreasing distri-
bution on N0 can be decomposed as a mixture of discrete triangular distributions with
component density

p(x; θ j ) = 2(θ j − x)

θ j (θ j + 1)
, x ∈ {0, . . . , θ j − 1},

where θ j is a positive integer, and studied the least squares estimation of a convex
decreasing distribution. We remark that while the least squares estimator of a discrete
convex decreasing distribution is unique, there can be a nonuniqueness problem of the
nonparametric maximum likelihood estimate of the mixing distribution in the discrete
triangular mixture model, which leads to more than one maximum likelihood fitted
triangular mixture distribution. In contrast, both the maximum likelihood and least
squares estimators of a discrete monotone decreasing distribution are identical.

In this paper, we present a framework of using nonparametric mixture models
for modelling count data. See Wang and Chee (2012) for a framework for modelling
continuous data based on nonparametric mixture models. Our work here, which inves-
tigates the use of the least squares criterion in nonparametric mixture modelling of
count data, is distinguished from their work with respect to the estimation method
and model type. Also referred to by some authors as the minimum L2 distance esti-
mation method, the least squares estimation method indeed has already been applied
to parametric modelling of data; see, e.g., Scott (2001) and Harris and Shen (2011).
The fact that the least squares approach to fitting nonparametric mixture models has
received relatively less consideration in the literature motivates us to conduct this
investigation. Moreover, the least squares estimator exhibits more robustness to data
contamination than the maximum likelihood estimator, which we now illustrate by
first fitting nonparametric Poisson mixtures to contaminated data sets, each formed
by adding some contaminating value to an uncontaminated sample, and then comput-
ing the fitted means. The uncontaminated data set of size 25 we used was generated
by Karlis and Xekalaki (1998) from two equally weighted Poisson distributions with
means 1 and 3. The frequencies of 0, 1, 2, 3, 4, 5 and 6 are 8, 4, 5, 1, 3, 2 and 2,
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Fig. 1 Means of the maximum likelihood and least squares fitted Poisson mixture distributions for conta-
minating values of 11 to 150

respectively, resulting in a sample mean of 2.04. Figure 1 clearly shows that the fitted
means by the least squares method are affected to a lesser degree as compared with
those by the maximum likelihood method. Thus, the least squares approach definitely
serves the purpose of offering an alternative to other approaches such as the maxi-
mum likelihood approach. After introducing the framework, two specific illustrations,
each with a particular nonparametric mixture, are given. First, nonparametric Poisson
mixture modelling is briefly mentioned. Next, we describe the case of using a newly
defined model here, called the nonparametric discrete decreasing beta mixture model,
for modelling data arising from some discrete decreasing distribution. Also, simulated
and real-world count data are used to demonstrate the performance of nonparametric
mixtures as modelling tools.

2 Modelling of count data using nonparametric mixtures

Suppose we have a random sample of counts from a discrete distribution either with
no truncation or with left truncation and we are interested in modelling the distribu-
tion of these counts. For accomplishing this modelling task, nonparametric mixture
modelling of count data, a technique that describes the distribution of counts based on
nonparametric mixture models, is adopted. This technique requires fitting some non-
parametric mixture model to the observed counts, which in effect involves estimating
the unknown discrete mixing distribution in that model. In this section, we describe
the least squares approach, along with fitting algorithms, to estimating the mixing
distribution nonparametrically and also mention the case of using the nonparametric
Poisson mixture model for modelling count data.
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Modelling of count data using nonparametric mixtures 243

2.1 Least squares fitting of nonparametric mixtures

The least squares criterion function based on the observed counts x1, . . . , xn is defined
as:

L(G) =
∑
x∈X

{p(x;G) − p̃(x)}2 ,

where p̃(x) = 1
n

∑n
i=1 I{xi=x} denotes the relative frequency estimator. We consider

the problem of minimizing the least squares function over the set G of all discrete
mixing distributions on Θ . An equivalent minimization formulation for the problem
just described is given by

minimize
G∈G

Q(G) =
∑
x∈X

p2(x;G) − 2
∑
x∈X

p̃(x)p(x;G). (3)

The minimizing function of the problem (3) is referred to as the nonparametric least
squares estimate (NPLSE) ofG. Once the NPLSE is available, themixture distribution
corresponding to this NPLSE can be straightaway constructed and then be used for
making inferences.

Denoting the probability mass vector π = (π1, . . . , πJ )
� and the support point

vector θ = (θ1, . . . , θJ )
�, we also write Q(G) ≡ Q(π , θ). Now, we express the

objective function in (3) more compactly in matrix form as:

Q(π , θ) = π�Dπ − 2π�b, (4)

where the element in row j ′ and column j of matrix D = D(θ) is given by

Dj ′ j =
∑
x∈X

p(x; θ j ′)p(x; θ j ),

and the j th element of vector b = b(θ) is given by

b j =
∑
x∈X

p̃(x)p(x; θ j ).

An important tool that is of great importance in finding the NPLSE is the gradient
function:

d(θ;G) ≡ dQ{(1 − ε)G + εδθ }
dε

∣∣∣∣
ε=0

= 2

{∑
x∈X

p(x; θ)p(x;G) −
∑
x∈X

p̃(x)p(x; θ)

−
∑
x∈X

p2(x;G) +
∑
x∈X

p̃(x)p(x;G)

}
.
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The gradient function is vital as it characterizes the NPLSE. Specifically, all gradient
values evaluated at the NPLSE are at least zero. Furthermore, the set of support points
of the NPLSE is a subset of the set of points with zero gradient values. These results for
the NPLSE are based on the results mentioned in Chee and Wang (2014). The reader
interested in such results in a more general settingmay refer to Chee andWang (2013).

2.2 Fitting algorithms

The fitting of nonparametric mixtures by least squares requires some algorithm for
numerical minimization. For a fast computational method for fitting nonparametric
mixtures, we mention the work of Wang (2007) in which the constrained Newton
method (CNM) with multiple support point inclusion for finding the nonparametric
maximum likelihood estimate of a mixing distribution was proposed. Recently, Chee
and Wang (2013) developed a variant of the CNM algorithm that can be used to com-
pute the nonparametric minimum quadratic distance estimate of a mixing distribution,
which was subsequently applied by Chee and Wang (2014) to compute the NPLSE
for a continuous mixture model called the k-monotone model. The CNM algorithm
developed by Chee and Wang (2013) is also straightforward applicable to computing
the NPLSE for a discrete mixture model whose mixing distribution is defined on a
continuous domain. At each iteration, this algorithm enlarges the support point vector
by including all local minima of the gradient function, updates the probability mass
vector by holding fixed the enlarged support point vector and shrinks the enlarged
support point vector according to the updated probability mass vector.

We now describe in detail the computation of the NPLSE via the CNM algorithm.
Denote by ‖·‖2 the L2-norm, and let 0 = (0, . . . , 0)� and 1 = (1, . . . , 1)�. With
fixed θ , minimizing (4) with respect to π is the same as to

minimize ‖Rπ − d‖22, subject to π�1 = 1, π ≥ 0, (5)

where R = R(θ) satisfies D = R�R and d = d(θ) is the solution of R�d = b.
Problem (5) can be solved numerically by the nonnegative least squares (NNLS)
algorithm of Lawson and Hanson (1974) after employing the method of Dax (1990),
which transforms it into the least squares problemwith only nonnegativity constraints:

minimize ||Pπ̃ ||22 + |π̃�1 − 1|2, subject to π̃ ≥ 0, (6)

where P ≡ (r1 − d, . . . , rJ − d), with r j being the j th column of R. Dax established
that if π̃ solves problem (6), then π̃/π̃�1 solves problem (5). After π is updated, those
support points with zero probability masses are discarded before the next iteration.
The support point vector is expanded by adding the set of points that locally minimizes
the gradient function. The CNM algorithm is given as follows:

Algorithm 1 Set s = 0. From an initial estimate G0 with a support set of finite
cardinality and Q(G0) < ∞, repeat the following steps:

step 1: Compute all local minima θ�
s1, . . . , θ

�
sMs

of d(θ;Gs), θ ∈ Θ . Stop, if
min1�m�Ms {d(θ�

sm;Gs)} = 0.
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Modelling of count data using nonparametric mixtures 245

step 2: Set θ+
s = (θ�

s , θ�
s1, . . . , θ

�
sMs

)� and π+
s = (π�

s , 0�)�. Find π+
s+1 by solving

problem (5), with R and d replaced by R+
s = R(θ+

s ) and d+
s = d(θ+

s )

respectively.
step 3: Remove all support points with zero probability masses in π+

s+1, which gives
Gs+1 with π s+1 and θ s+1. Set s = s + 1.

Expanding the support point vector by the technique of including all local minima
of the gradient function works very well for the case of a continuous gradient function,
but for that of a discrete gradient function, it is less suitable due to the irregularity of
the function which can cause too many local minima to be included into the support
point vector (see Wang 2008). Thus, we need to make appropriate modifications in
Algorithm 1 for the efficient computation of the NPLSE when we have a gradient
function which is of discrete type. Suppose that now, for some nonnegative integers
L and U , G is the set of all discrete mixing distributions on Θ = {L , L + 1, . . . ,U }.
Adapting the support set expansion technique of Wang (2008), our new technique
includes in the support set the points that have the lowest gradient values between
inclusively every two neighbouring points in an increasing ordered set that is formed
by the union of the support set and {L ,U }. The discrete-space extension of the CNM
algorithm is given below:

Algorithm 2 Set s = 0. From an initial estimate G0 with a support set S0 of finite
cardinality and Q(G0) < ∞, repeat the following steps.

step 1: Compute d(θ;Gs) for all θ ∈ Θ = {L , L + 1, . . . ,U }. Stop, if
minL�θ�U {d(θ;Gs)} = 0.

step 2: Form the increasing ordered set {θs1, . . . , θsMs } by first combining elements
of Ss and {L ,U } and then sorting them in an increasing order.

step 3: Find θ�
sl = argminθsl�θ�θs(l+1){d(θ;Gs)} for all l ∈ {1, . . . , Ms − 1}.

step 4: Set elements of S+
s ≡ Ss ∪ {θ�

s1, . . . , θ
�
s(Ms−1)} as components of θ+

s and

π+
s = (π�

s , 0�)�. Find π+
s+1 by solving problem (5), with R and d replaced

by R+
s = R(θ+

s ) and d+
s = d(θ+

s ) respectively.
step 5: Remove all support points with zero probability masses in π+

s+1, which gives
Gs+1 with π s+1 and θ s+1. Set s = s + 1.

2.3 The case of using the nonparametric Poisson mixture model

Mixture modelling of count data is thus far largely undertaken by Poisson mixtures.
Basically, Poisson mixtures are able to cater for a wide range of density shapes, and
hence they arewell suited for use as generalmodelling tools. The density of themixture
of Poisson distributions with a discrete mixing distribution onΘ = [0,∞) is given by

p(x;G) =
J∑

j=1

π j e−θ j θ x
j

x ! , x ∈ N0.

Recently, Harris and Shen (2011) discussed the least squares approach to fitting a
finite Poisson mixture model and performed the estimation of G in the fixed support

123



246 C.-S. Chee

size case. Since making a priori choice of J for a particular data set is rather arbitrary,
we estimate G nonparametrically by the method of least squares. For the case of the
Poisson mixture model, the elements of matrix D and vector b in (4) are given by

Dj ′ j = e−(θ j ′+θ j ) I0(2
√

θ j ′θ j ),

b j =
∑
x∈N0

p̃(x)e−θ j θ x
j

x ! ,

where I0 denotes themodifiedBessel function of the first kind of order 0. Sincewe have
a continuous gradient function here, we use Algorithm 1 for computing the NPLSE.

To illustrate the model andmethod, we choose a set of overdispersed counts studied
by Shmueli et al. (2005). This data set, containing 3168 counts of the number of arti-
cle clothings sold per quarter, was used by the authors to demonstrate the usefulness
and flexibility of the Conway–Maxwell–Poisson distribution. With two parameters,
this model has the capability for addressing overdispersion and underdispersion with
respect to the Poisson model. The least squares fitted Conway–Maxwell–Poisson dis-
tribution is plotted in the top left panel of Fig. 2, together with the observed relative
frequency distribution and our least squares fitted Poisson mixture distribution. The
top right panel of Fig. 2 shows the gradient curve evaluated at the NPLSE for this par-
ticular data set. From the residuals of both fits in the bottom panel of Fig. 2, we find that
in general our nonparametric fit improves over the parametric fit in the high-density
region at the expense of only a negligible loss in the tail region.

We end this subsection by only very briefly mentioning that in situations in which
the count variables are truncated, the nonparametric truncated Poisson mixture model
can be applied for properly modelling such truncated count data. For example, one
can consider a mixture of zero-truncated Poisson distributions for hospital length of
stay count data which structurally preclude zeros to be observed.

3 Modelling of count data from decreasing distributions

In count data settings, it is not uncommon in real applications to observe relative
frequency distributions which are decreasing (nonincreasing). Thus, discrete dis-
tributions, particularly with decreasing shapes on their supports, are attractive and
empirically motivated for modelling such data. In practice, discrete decreasing dis-
tributions are conceived to be important and useful for fitting zero-truncated count
data such as species abundance count data in ecology (Durot et al. 2013) and word
frequency count data in linguistics (Baayen 2001). Of course, the motivation for their
uses can absolutely be based on prior knowledge or theoretical justification about the
population distributions.

Suppose we have a random sample of counts from some unknown decreasing
distribution, be it monotone decreasing, convex decreasing, geometric decreasing,
etc. Naturally, it would be desirable for a fitted model to conform with the known
qualitative information about the population distribution. While the nonparametric
Poisson mixture model as a general modelling tool provides a great flexibility in
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Modelling of count data using nonparametric mixtures 247

Fig. 2 (Top left) The relative frequency distribution of the quarterly sales data (Shmueli et al. 2005),
together with the fits of the Conway–Maxwell–Poisson and Poisson mixture distributions. (Bottom) The
residual plot of both fits. (Top right) The gradient function at convergence along with the support points
(red solid dots) of the NPLSE

describing count data, it does not guarantee the probabilities of its fit to be decreasing.
Thus, in this sense, the Poisson mixture model is a less suitable model although still
can be used. Motivated by the limitation of the Poisson mixture model and inspired
by the work of Balabdaoui and Wellner (2010), we shall define a mixture model with
decreasing probability property that is useful and appropriate in thismodelling context.

3.1 The discrete decreasing beta distribution and its mixture

The probability density function of the beta distribution of the first kind is

f (x) = (x − a)α−1(b − x)β−1

(b − a)α+β−1B(α, β)
, a < x < b,
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where a, b ∈ R, α, β > 0 and B denotes the beta function. The standard beta density
of the first kind equals f (x) with a = 0 and b = 1. Recently, Punzo and Zini (2012)
introduced a discrete analogue of the beta distribution of the first kind. Its density is

p(x;α, β) = (x + 1 − a)α−1(b + 1 − x)β−1

∑b
i=a(i + 1 − a)α−1(b + 1 − i)β−1

, x ∈ {a, . . . , b}, (7)

where a, b ∈ N0 and α, β ∈ R. In an attempt to facilitate the interpretation of the
parameters of the discrete beta distribution (7), Punzo (2010) offered a reparameterized
version of the distribution, which can conveniently serve as kernel functions in kernel-
basedmethods for estimating a probabilitymass function (Punzo 2010) and graduating
mortality rates (Mazza and Punzo 2011).

Based on (7), by letting b + 1 = θ ∈ {a + 1, a + 2, . . .}, α = 1 and β = k ∈
{1, 2, . . .}, we define the discrete decreasing beta distribution, with density

pk(x; θ) = (θ − x)k−1+∑θ−a
i=1 i k−1

, x ∈ {a, a + 1, . . .},

where (z)+ ≡ zI{z≥0}. For k = 1, this distribution becomes the discrete uniform
distribution, whereas for k = 2, it reduces to the discrete left triangular distribution.
The limiting form of the discrete decreasing beta distribution as k → ∞ is the Dirac
distribution located at a. Five different density functions of the discrete beta distrib-
ution on N0 which have strictly decreasing probabilities are shown in the left panel
of Fig. 3, from which it can be seen that, as k increases, the majority of the mass is
concentrated in the neighbourhood of zero.

The density of the mixture of discrete decreasing beta distributions is defined as:

pk(x;G) =
J∑

j=1

π j (θ j − x)k−1+∑θ j−a
i=1 i k−1

, x ∈ {a, a + 1, . . .}. (8)

Here, G is a discrete mixing distribution on Θ = {a + 1, a + 2, . . .} and k is a
common parameter to all component distributions, which controls the smoothness of
the mixture distribution. Similarly, five discrete decreasing beta mixtures are depicted
in the right panel of Fig. 3.

3.2 Fitting of the mixture of discrete decreasing beta distributions with a fixed
k-value

As a flexible means for modelling count data from some decreasing distribution, we
consider using the mixture of discrete decreasing beta distributions (8). Due to the fact
that the joint estimation of G and k by least squares always yields an estimate of 1
for k, as illustrated later in Fig. 5, we shall fit the mixture of discrete decreasing beta
distributions with a fixed k-value but an a priori unspecified number J of component
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Fig. 3 (Left) Density functions of the discrete decreasing beta distribution onN0 for five different values of
k with θ = 11. (Right) Five discrete decreasing beta mixtures, each with a different k-value but an identical
two-point mixing distribution at θ1 = 4 and θ2 = 11 with masses π1 = 0.2 and π2 = 0.8, respectively.
Note that the lines joining the probabilities do not imply continuity but for a better visualization of the
shapes of the distributions

distributions to the data. The common parameter k will be treated as a bandwidth para-
meter, as in the kernel-based density estimation setting, which is subject to selection.
Actually, this kind of joint estimation problem is essentially similar to the problem
encountered by Wang and Chee (2012) in the maximum likelihood estimation of a
density function using the nonparametric normal mixture model.

For a fixed k-value, we consider the following minimization problem:

minimize
G∈G

Qk(G) =
∑
x≥a

p2k (x;G) − 2
∑
x≥a

p̃(x)pk(x;G). (9)

In this particular case, the Dj ′ j and b j become

Dj ′ j =
∑min {θ j ′ ,θ j }−1

x=a {(θ j ′ − x)(θ j − x)}k−1

∑θ j ′−a
i=1 i k−1

∑θ j−a
i=1 i k−1

,

b j =
∑θ j−1

x=a p̃(x)(θ j − x)k−1

∑θ j−a
i=1 i k−1

.

Since themixing distributionG considered here is defined on a discrete space,we apply
Algorithm 2 for the fitting of the mixture of discrete decreasing beta distributions with
a fixed k-value by least squares to the observed counts. In the implementation of
Algorithm 2, we replace the infinite discrete space Θ with a finite set P of positive
integers, which is modified if necessary. Specifically, let Ps = {a + 1, a + 2, . . . ,Us}
at the sth iteration. We enlarge this set by doubling the value of Us if its value is less
than or equal to the largest value of the current support set, and use the updated set
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of points for gradient function evaluation and checking whether the convergence is
achieved.

3.3 Selection of the optimal k-value

In the realm of data modelling, one is always unsure about the “best” value of k.
The idea of cross-validation comes in handy when one wants a data-driven estimate
of k, rather than a subjective estimate. See Arlot and Celisse (2010) for a survey of
cross-validation procedures for model selection.

For the choice of the optimal k or the selection of the optimal model, we consider
the least squares V -fold cross-validation method. In the V -fold cross-validation, the
data set is randomly split into V disjoint partitions that are roughly equal in size. Given
a set of k-values, the optimal k is the one that minimizes the following criterion:

CV(k) = 1

V

V∑
v=1

Q(v)
k (Ĝk),

where Q(v)
k is the objective function defined in (9) for the data in the vth subset and

Ĝk is the NPLSE of G obtained from the data not in the vth subset while holding k
fixed.

3.4 An illustrative simulated example

A random sample of size n = 100 was generated from a discrete left triangular distrib-
ution onN0 with θ = 11. We first modelled this decreasing distribution as mixtures of
discrete decreasing beta distributions onN0 with different fixed k-values. In particular,
four discrete decreasing beta mixtures with k ∈ {1, 2, 3, 4}were fitted by least squares
to the observed distribution which is not monotone decreasing. Each fitted mixture
distribution represented by black solid dots is plotted on the relative frequency distri-
bution of the data (see Fig. 4). As k increases, the fitted mixture distribution becomes
smoother. We remark that the least squares fitted Poisson mixture probabilities for this
particular example are not monotone decreasing. Also shown in Fig. 4 is the gradient
function at the NPLSE along with its support points (red solid dots) for each k. Note
that all gradient values at convergence are nonnegative.

From the top left panel of Fig. 5, we see that simply minimizing Qk with respect
to G and k will lead to an estimated value of 1 for k. As indicated in Fig. 4, a small
k-value will give an undersmoothed fit with large variance, whereas a large k-value
will yield an overly smooth fit, which causes a large modelling bias. To trade off
between bias and variance, we then applied the cross-validation method for automat-
ically determining the optimal k-value. Specifically, we considered the least squares
V -fold cross-validation, with V ∈ {5, 10, n}. All cross-validation functions plotted in
Fig. 5 have obvious minimum points. While the cross-validation functions for V = 5
and V = 10 are minimized at k = 2, that for V = n is minimized at k = 5. Unfortu-
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Fig. 4 (Top) The relative frequency distribution of a simulated data set of size 100 from a discrete left
triangular distribution on N0 along with the fitted discrete decreasing beta mixture distribution with a fixed
k-value (black solid dots). Fixed k-values of 1, 2, 3 and 4 are considered. (Bottom) The corresponding plot
of gradient function at convergence along with the support points (red solid dots) of the NPLSE

nately, the optimal k-value is dependent on the value of V . This provides us motivation
to investigate the least squares V -fold cross-validation further in a simulation study.

4 Numerical studies

4.1 Simulated count data

In this subsection, we are interested in comparing the performance of nonparametric
mixtures as tools formodelling count data fromdecreasing distributions onN0. Also of
particular interest is the question as to which value of V is most likely to be appropriate
for the least squaresV -fold cross-validation in selecting theoptimal discrete decreasing
beta mixture model. Nonparametric mixtures included in this simulation study were
the Poisson mixture, the discrete uniform mixture (Jankowski and Wellner 2009),
the discrete left triangular mixture (Durot et al. 2013) and the discrete decreasing
beta mixture selected by the least squares V -fold cross-validation for each value of
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Fig. 5 (Top left) Objective function values evaluated at the NPLSE’s for different k-values. (Others) Least
squares V -fold cross-validation plots for V -values of 5, 10 and n

V ∈ {5, 10, n}. The cross-validation selection of the optimal k-value was among a set
of k-values from 1 to 30.

Four decreasing distributions on N0 were considered as data generating distribu-
tions.Denoted byPO(1),DB(11,2),DB(8,5) andGE(0.75), theywere, respectively, the
Poisson distribution with mean 1, the discrete left triangular distribution with θ = 11,
the discrete decreasing beta distribution with θ = 8 and k = 5 and the geometric
distribution with density p(x) = 0.75(0.25)x . Four sets of 200 samples were drawn
from each of the four data generating distributions with, respectively, sizes 100, 500,
1000 and 5000. For performance evaluation, we computed the average sum of squared
errors given by

1

R

R∑
r=1

⎡
⎣∑

x≥0

{
p̂(r)(x) − p(x)

}2
⎤
⎦ ,
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where R is the total number of samples, p(x) denotes a data generating density and
p̂(r)(x) denotes a fitted density based on the r th sample.

The simulation results are shown in Table 1, from which it is clear that no model is
strictly dominated by any other model. However, the cross-validation selected discrete
decreasing beta mixtures are never the worst. For the PO(1) setting in which the
distribution is not convex, the triangular mixture is really worse than the others even
with a sample size as large as 5000. For the DB(11,2) setting, the Poisson and uniform
mixtures fare poorly as compared with the other mixtures. For the DB(8,5) setting,
the uniform mixture performs rather badly for small sample sizes. For the GE(0.75)
setting, all mixtures show a rather similar performance.

As mentioned earlier, in using the least squares V -fold cross-validation to aid the
selection of k, different V -values may lead to different optimal k-values. Based on the
simulation results in Table 1, the issue of as to which V -value should be used seems
not very critical. Since larger V -values typically require more computational time, we
suggest using V = 5 for a pragmatic solution to the selection problem.

4.2 Real-world count data

It is well known that mixtures have a broad range of applications in many contexts.
For our real applications, the interest is to apply nonparametric mixtures as convenient
tools for providing adequate descriptions of the data. To demonstrate the use of non-
parametric mixtures, we consider two sets of real-world data from Deb and Trivedi
(1997). As given in Table 2, the two data sets contain, respectively, the number of
visits to the emergency room and the number of visits to a physician in a hospital
outpatient setting for a sample of 4406 individuals aged 66 and over. A notably salient
feature of both the emergency room visit and physician outpatient visit count data is
that they have a high proportion of zeros, about 82% and 77%, respectively. Apart
from showing zero inflation, the observed frequency distribution of the number of
physician outpatient visits also exhibits a long tail, with a few extreme visits beyond
40, i.e., 55, 61, 71 and 141.

While no information about the shapes of the two underlying distributions is avail-
able, fitting the Poissonmixture model to these data sets would be a reasonable choice.
However, on seeing that both observed frequency distributions decrease rapidly for
some small count values and remain about constant thereafter, assuming decreasing
shapes for the underlying distributions and considering fitting the discrete decreasing
beta mixture model to these data sets would not seem inappropriate.

The top row of Fig. 6 shows the results of the least squares fivefold cross-validation
for the selection of the “best” discrete decreasing beta mixture distribution, suggesting
that the optimal k-values for the emergency room visit and physician outpatient visit
count data are 2 and 4, respectively. To assess the mixture fits to each data set, we
provide their residuals in the bottom row of Fig. 6. Note that the range of the residual
plot for the physician outpatient visit count data is from 0 to 70 instead of to the largest
observed count value. On the whole, the Poisson mixture does not fit the emergency
room visit count data as closely as the discrete decreasing beta mixture. On the other
hand, both mixtures fare similarly for the physician outpatient visit count data, but the
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Table 1 Average sum of squared errors (×104) with the standard error in parentheses

Poisson
mixture

Uniform
mixture

Triangular
mixture

Discrete decreasing beta mixture

Fivefold CV Tenfold CV n-fold CV

PO(1)

n = 100 33.70 (3.05) 47.58 (3.46) 89.47 (2.10) 66.19 (3.78) 66.40 (3.78) 65.98 (3.90)

n = 500 7.20 (0.54) 8.89 (0.64) 70.92 (0.26) 11.69 (1.21) 11.40 (1.17) 10.93 (1.10)

n = 1000 4.69 (0.37) 5.42 (0.37) 70.06 (0.20) 5.83 (0.57) 5.64 (0.49) 5.61 (0.47)

n = 5000 0.75 (0.07) 0.92 (0.07) 68.02 (0.03) 0.92 (0.07) 0.92 (0.07) 0.92 (0.07)

DB(11,2)

n = 100 42.32 (2.07) 38.56 (1.89) 18.41 (1.72) 28.34 (2.02) 28.61 (2.06) 28.01 (2.01)

n = 500 11.31 (0.52) 11.89 (0.41) 3.56 (0.36) 5.92 (0.49) 6.35 (0.52) 6.09 (0.51)

n = 1000 5.98 (0.22) 6.67 (0.21) 1.69 (0.15) 2.76 (0.26) 3.00 (0.26) 3.09 (0.27)

n = 5000 2.29 (0.05) 1.72 (0.06) 0.37 (0.03) 0.63 (0.07) 0.58 (0.07) 0.58 (0.07)

DB(8,5)

n = 100 48.07 (3.19) 62.18 (3.45) 39.15 (2.60) 40.85 (3.12) 39.30 (3.09) 38.96 (3.15)

n = 500 13.03 (0.73) 15.24 (0.75) 12.79 (0.65) 11.25 (0.68) 11.43 (0.67) 11.21 (0.65)

n = 1000 5.35 (0.35) 6.34 (0.38) 5.83 (0.33) 4.66 (0.31) 4.67 (0.31) 4.58 (0.32)

n = 5000 1.26 (0.07) 1.38 (0.07) 1.38 (0.07) 1.15 (0.07) 1.11 (0.07) 1.15 (0.07)

GE(0.75)

n = 100 28.91 (2.26) 31.89 (2.35) 31.33 (2.32) 27.02 (2.17) 26.95 (2.20) 26.47 (2.14)

n = 500 7.89 (0.71) 8.21 (0.71) 8.19 (0.71) 7.31 (0.69) 7.26 (0.69) 7.14 (0.68)

n = 1000 3.93 (0.32) 4.06 (0.32) 4.05 (0.32) 3.64 (0.31) 3.64 (0.31) 3.60 (0.31)

n = 5000 0.74 (0.06) 0.75 (0.06) 0.75 (0.06) 0.69 (0.06) 0.69 (0.06) 0.68 (0.06)

Table 2 Deb and Trivedi’s (1997) count data

Number of emergency
room visits

0 1 2 3 4 5 6 7 8 9 10 11 12

Observed frequency 3602 588 137 54 11 7 2 1 2 0 0 1 1

Number of physician
outpatient visits

0 1 2 3 4 5 6 7 8 9 10 11 ≥12

Observed frequency 3397 526 204 76 51 36 25 10 13 7 7 7 47

discrete decreasing beta mixture is visually smoother than the Poisson mixture which
has multiple modes in the tail region (see Fig. 7). These modes could be spurious and
do not genuinely present in the underlying distribution; as often in practice, one would
expect tails of distributions to be monotone decreasing.

5 Conclusion

Parametric modelling of count data has become a commonly accepted practice among
practitioners, facilitated by the availability of a range of parametric count models
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Fig. 6 (Top row) Least squares fivefold cross-validation plots for the two real data examples. (Bottom row)
Residual plots of two mixture fits
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and easy-to-use fitting software packages. Nonetheless, on observing a distribution of
counts which ismore complex than the assumed one, formulating a suitable parametric
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countmodel for the data at hand has not always been straightforward and perhapsmight
be a difficulty for practitioners. To allow for more flexibility in capturing different
shapes of distributions, we present a framework for modelling count data based on
nonparametric mixture models, which have capabilities to cope with various problems
pertinent to count data such as multimodality, overdispersion and zero inflation. Fast
algorithms for least squares fitting of nonparametric mixture models to count data are
also provided. This framework potentially has a wider applicability, although we have
only offered two specific illustrative cases, ofwhich in thefirst case the competitiveness
of the nonparametric Poisson mixture model with respect to an existing parametric
count model is demonstrated using a real data set.

When one has some prior knowledge that the underlying distribution of interest
is decreasing or a decreasing distributional shape assumption seems tenable based
on empirical evidence, then a model that is able to yield a fitted distribution with
decreasing probabilities is conceived necessary. In the second case, we define the
discrete decreasing beta mixture model, which includes the uniform and left triangular
mixturemodels as special cases, and show its ability in accommodating possible shapes
of discrete decreasing distributions. Themethod of least squares is employed for fitting
the discrete decreasing betamixturemodelwith a fixed k-value. Viewing the parameter
k as a bandwidth parameter, the cross-validation procedure for the choice of its value
is suggested. As shown by two sets of real-world data, there are situations in which
the discrete decreasing beta mixture model can be a very competitive alternative to
the Poisson mixture model.

Nonparametricmixturemodels can serve the purposes of inference and exploratory.
They can be used as exploratory models for discovering the structure of the data and as
inferential models for statistical inferences of interest and, as such, they deserve to be
included in the modelling toolbox of practitioners. We hope that our work will attract
more practitioners to consider modelling of count data using nonparametric mixture
models.
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