MARCHALLAN TO THE CHARGE TO THE SECOND SECON

SAKRI IBRA IIM

DOCTOR OF PHILOSOPHY UNIVERSITI PERTANIAN MALAYSIA 1991

PDF processed with CutePDF evaluation edition www.CutePDF.com

Cfn: 3098 1000387621 akri Ibrahim kanan & Stilns Camudera & Sains Canaudera tesis tanian Malaysia SH 344.8 .U8 S2 1991 ng Telipot Terengganu. 1000387621 PUSTAKAAN Proper construction and set up of Malaysian fish aggregating RTANIAN MALAYSIA devices (unjam) / Sakri Ibrahim. TERENGGANU siti 5 PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU IRS - 3098 5H 344·8 . 48 52 1991 l ihat cahalah HAK MILIK PERPUSTAKAAN KUSTEM

HADIAH

PERPUSTAKAAN UNIVERSITI PERTANIAN MALAYSIA

TERENGGANU

1000387621

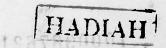
200002735

HADIAH

PERPUSTAKAAN UNIVERSITI PERTANIAN MALAYSIA

TERENGGANU

PROPER CONSTRUCTION AND SET UP OF MALAYSIAN FISH AGGREGATING DEVICES (UNJAM)


By

SAKRI BIN IBRAHIM

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy in the Faculty of Fisheries and Marine Science Universiti Pertanian Malaysia

July, 1991

200002735

I am truly indabted to my Chief Supervisor, Associate Professor Dr. Hobd Azmi Ambak, and my Supervisor, Associate Professor Dr. Gunzo Edvenues for their guidence, useful constants and constant encouragement.

margy, sometimes at the expense of his other priorities, In supervising my work during the period of candidature. My period of stay at Kagoshima University, Japan for

This work is dedicated to beloved wife: Saidah @ Rohani Ibrahim

and sons:

Mohd. Hafizuddin

Ahmad Fadhli

I sm grateful to Dr.Mohd Azzi for his comments, uggestions and advice, and having his presence around has dven me an added advantage.

which has made & ossible the several visits of the locality

My thankful appreciation goes to Mohamad Muda, "Ab. Manaf Md. Diab, Padhil Noh, Awang I Mohamad Erbong, and the crew of UNIFERTAKA III for their assistance during the period of data taking in the field.

A advance very thankful to thereath vertication which were the study provide.

1000387621

ACKNOWLEDGEMENT

I am truly indebted to my Chief Supervisor, Associate Professor Dr. Mohd Azmi Ambak, and my Supervisor, Associate Professor Dr. Gunzo Kawamura for their guidance, useful comments and constant encouragement.

Dr. Kawamura has devoted so much of his time and energy, sometimes at the expense of his other priorities, in supervising my work during the period of candidature. My period of stay at Kagoshima University, Japan for completing the last few chapters of my thesis would not have been materialized without his assistance. I am also extending my appreciation to Japan International Cooperation Agency (JICA) for the financial assistance which has made possible the several visits of Dr. Kawamura to Malaysia for the supervision of my study.

I am grateful to Dr.Mohd Azmi for his comments, suggestions and advice, and having his presence around has given me an added advantage.

My thankful appreciation goes to Mohamad Muda, Ab. Manaf Md. Diah, Fadhil Noh, Awang @ Mohamad Embong, and the crew of UNIPERTAMA III for their assistance during the period of data taking in the field.

I am also very thankful to Universiti Pertanian Malaysia for providing the financial assistance which make this study possible. Finally, this work will never be carried out without the blessings of God.

i٧

Anchoring Fower of Moored FAD

TABLE OF CONTENTS

		Page	
ACKNOWLEDGEMENT			
LIST OF TA	ABLES	ix	
LIST OF F	IGURES	x	
ABSTRACT x:			
ABSTRAK		xviii	
CHAPTER			
I	INTRODUCTION	1	
	Malaysian Fishery	1	
	An Unjam	6	
	Material and Construction of Unjam	8	
	Fishing Gears and Methods for Catching Fish from Unjam	8	
	Present Problems	10	
	Objective of This Study	13	
II	LITERATURE REVIEW	15	
	Variations of Moored FAD	15	
	Traditional FAD	16	
	Modern Moored FAD	19	
	Anchoring Power of Moored FAD	26	
	Type and Weight of Anchor	26	
	Material, Dimension and Length of		
	Anchoring Line	27	

v	SURFACE CURRENT PATTERN	70
	Introduction	70
	Materials and Methods	71
	Results	71
	Discussion	75
VI	MOVEMENT OF FISHES AS INFERRED FROM DRIFTNET CATCH	78
	Introduction	78
	Materials and Methods	79
	Results	79
	Discussion	80
VII	EFFECTIVE RANGE OF UNJAMS AS DETERMINED BY FISH RELEASING METHOD	87
	Introduction	87
	Materials and Methods	87
	Results	90
	Discussion	94
III	FISH DISTRIBUTION AROUND UNJAM	99
	Introduction	99
	Materials and Methods	100
	Results and Discussion	105
IX	MATHEMATICAL MODELS FOR PROPER SETTING OF UNJAMS	114
	Introduction	114
	Linear Model	116

vii

	Assumption	116
	Non-Linear Model	120
	Assumption	120
	Calculations of Non-Linear Model	123
	Case Example 1	123
	Uni-Directional Random Walk Model	128
	Theory and Assumptions	128
	Results of the Computer Simulation	131
	Discussion and Recommended Arrangements of Unjams	131
	The Linear Model	133
	The Non-Linear Model	133
	The Uni-Directional Random Walk Model	133
X	SUMMARY AND RECOMMENDATIONS	138
BIBLIOGRA		146
APPENDICE		162
VITA		170

LIST OF TABLES

Table		Page
1	Marine Fish Landings by Gear Group in 1983 (1988) for Peninsular Malaysia	5
2	Value of Fixing Coefficient (K) of Sandbags on Different Bottom Types	62
3	Value of Fixing Coefficient (K) of Sandbags Rigged Differently	64
4	Shooting and Hauling Positions of the Net and Drift of the Net	81
5	Number of Fish Caught by Species, Enmeshed Direction and Result of X^2 -Test.	
	N and S, Denote Northward and Southward Enmeshing Respectively. The Catch on the 31st Aug. was not Included in the Total X-Test as the Current on this Date was	
	Southerly, in Contrast to a Northerly Flow on the Other Sampling Dates	83
6	Number of Fish Released (in Parenthesis) and Positively Headed to Unjam by Species	67
	and Released Distance from Unjam	93
7	Species of Fish Associating with Unjam	111
8	Breakdown of the Average Basic Cost Incurred for Installing Unjams, a Case Example for Purse Seiner (37 H.P.). Depreciation Cost of the Vessels is	126
	not Included	126
9	Breakdown of the Average Cost of an Unjam	126

LIST OF FIGURES

Figure		Page
1	Total Marine Fish Landings in Malaysia	2
2	Construction of an Unjam	9
3	Sediment sampling Sites	47
4	Unjam Distribution in Relation to Sediment Pattern and Depth of Water	48
5	Rigging of the Tension Meter and Balance During the Experiment	57
6	Angle of Inclination of Unjam Line	61
7	Forces Acting on Sandbags, One Tied Behind the Other	64
8	Unjam Line Tension in Relation to Tidal Level (23/5/88 - 25/5/88)	66
9	Unjam Line Tension in Relation to Tidal Level (6/8/89 - 9/8/89)	67
10	Drogue Design Used in the Study	72
11 22 23	Track Charts of a Drifting Drogue Released on 25th to 26th and 27th to 28th March, 1989. The Positions of the Drogue are Plotted at Half-Hourly Intervals with Filled Circles Indicating the Rising Tide and Open Circles	
	Indicating the Receding Tide. Arrows Indicate Drift Direction of the Drogue	74
12	Chart Showing the Drift of the Net (Dotted Line and Arrow), Enmeshed (Arrow), Number of Fish Caught (Figure Beside the Arrow) With an Inserted Map Showing the Hauling Positions in the Waters off Terengganu	84
13	Study Area Showing the Locations of Experimental FAD. Dotted Lines Showing the Isodepth	89

14	Diagram Showing Positively (+ve) and Negatively (-ve) Headed Fish Towards the Unjam	92
15	Locations of the Surveyed Unjams Unjam 1. 005° 41.3'N 103° 05.0'E Unjam 2. 005° 38.4'N	101
	103 ⁰ 06.6'E	101
16	Radial Line Survey Courses. Arrows Showing Cruising Directions	102
17	Scores of Fish Echoes Based on Type and Density	104
18	Numerous Large Echoes Appeared on the Bottom and Mid-Layers. Recorded on the 27th April, 1988, Around Pulau Redang	106
19	Fish Echoes of Various Sizes Recorded With a 75 kHz Echo-Sounder. Obtained on the 27th April, 1988, Around Pulau Redang	107
20	Horizontal Distribution of the Total Fish Echoes	108
21	Values of m in Relation to the k Values for the Effective Range of 0.18 km and 1.6 km	127
22	Unjam Arrangement for the Model	130
23	Trapping Probability as a Function of Width of Unjam-Influence-Free Water for Step-Lengths of 10 m, 20 m, and 30 m	132
24A & 24B	Recommended Arrangements of Unjams in the Model Water for the Effective Ranges of; A: 0.18 km (Top), and	
	B: 1.6 km (Bottom)	135

xi

LIST OF ABBREVIATIONS

Wt	=	Weight of Sandbag
· T	=	Rope Tension
F	=	Frictional Force
W '	=	Vertical Component of T
K	=	Fixing Coefficient
w	=	Weight of Tension Meter
r	=	Readings Registered on the Balance
t	=	Readings Registered on the Tension Meter
A	=	Total Area of Model Water
m	=	The Cost of Catching a Unit Quantity of Fish (in \$)
mF	=	The Cost of an Unjam (in \$)
MFAD	=	The Total Cost of All Unjams (in \$)
Мо	=	The Basic Cost Incurred for Installing All the Unjams (in \$)
С	=	The Number of Fish Caught at the Unjam
NF	=	The Number of Unjams in the Model Water
Ng	=	The Total Quantity of Fish in the Model Water
Е	=	The Catching Efficiency
S	=	Area for One Unjam
Se	= =	Area of the Effective Range of an Unjam TI(Radius) ²
k	=	Density Coefficient of Fish Population

Defined as k = Ng/A = Quantity of Fish Per Unit Area

- W = Width of Model Water
- L = Length of Model Water
- v = Speed of Water Current
- V = Average Cruising Speed of Fish
 - S = Step-Length of Fish
 - R = Radius of the Effective Range

Paculty : Fisheries and Marine Science

This study was carried out with an objective of improving the durability of unjams and determining the rational arrangement and optimum density of unjams. Several experiments were conducted in coastal waters of Terenggans in the South China Son to determine a safe anchoring power of unjams and parameters required for the development of mathematical models that could produce an optimum trabular efficiency.

Experiments on anchoring power showed sandy botton giving the highest value of fixing coefficient (0.953). followed by muddy botton (0.903), and sandy-stat lotten (0.731). This value was found to be higher for two sandbogs tied one behind the other then for two sandhage tied is one lump. The unjag's applier was found to have a Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the degree of Doctor of Philosophy.

PROPER CONSTRUCTION AND SET UP OF MALAYSIAN FISH AGGREGATING DEVICES (UNJAM)

by SAKRI BIN IBRAHIM July, 1991

Supervisor: Associate Professor Dr. Mohd. Azmi AmbakFaculty: Fisheries and Marine Science

This study was carried out with an objective of improving the durability of unjams and determining the rational arrangement and optimum density of unjams. Several experiments were conducted in coastal waters of Terengganu in the South China Sea to determine a safe anchoring power of unjams and parameters required for the development of mathematical models that could produce an optimum trapping efficiency.

Experiments on anchoring power showed sandy bottom giving the highest value of fixing coefficient (0.953), followed by muddy bottom (0.903), and sandy-mud bottom (0.731). This value was found to be higher for two sandbags tied one behind the other than for two sandbags tied in one lump. The unjam's anchor was found to have a reserved fixing force of 67.34 kg, which is 93.86% in excess of what was required to anchor an unjam in place.

Utilizing the required parameters; current pattern in the area, effective ranges of the unjams, and fish movement pattern, three mathematical models were developed.

The Linear model was found to be unrealistic and invalid.

The Non-Linear model enables the derivation of optimum catching efficiency graphically. With an area of model water of 30 km x 10 km and two different effective ranges of 0.18 km and 1.6 km, the number of unjams required were found to be 256 and 14 respectively, and the cost of catching a unit quantity of fish, m, was found to be 0.2714/k and 0.003892/k respectively.

The Uni-Directional Random Walk model involved the development of a mathematical model. The results of computer simulations of the model showed that, when the effective range was 0.18 km, 75 unjams were needed with a total trapping probability of 0.272 and a total cost of \$19,836. When the effective range was 1.6 km, 27 unjams were needed with a total trapping probability of 0.558 and a total cost of \$7,356. The total trapping probability estimated here is found to be fairly high. However, this value could be reduced if a lower percentage of trapping is considered.