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Foreword

This volume of conference proceedings contains a collection of research papers pre-
sented at the 3rd Annual International Conference on Computational Mathematics,
Computational Geometry & Statistics (CMCGS 2014) organized by Global Science
and Technology Forum, held in Singapore on 3–4 February 2014.

The CMCGS 2014 conference is an international event for the presentation,
interaction, and dissemination of new advances relevant to computational mathe-
matics, computational geometry, and statistics research. As member of the Board of
Governors, GSTF, I would like to express my sincere thanks to all those who have
contributed to the success of CMCGS 2014.

A special thanks to all our speakers, authors, and delegates for making CMCGS
2014 a successful platform for the industry, fostering growth, learning, networking,
and inspiration. We sincerely hope you find the conference proceedings enriching
and thought-provoking.
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Preface

We are pleased to welcome you to the 3rd Annual International Conference on
Computational Mathematics, Computational Geometry & Statistics (CMCGS 2014)
organized by Global Science and Technology Forum, held in Singapore on 3–4
February 2014.

The CMCGS 2014 conference continuously aims to foster the growth of research
in mathematics, geometry, statistics, and its benefits to the community at large. The
research papers published in the proceedings are comprehensive in that it contains
a wealth of information that is extremely useful to academics and professionals
working in this and related fields.

It is my pleasure to announce the participation of leading academics and
researchers in their respective areas of focus from various countries at this event. The
Conference Proceedings and the presentations made at CMCGS 2014 are the end
result of a tremendous amount of innovative work and a highly selective review pro-
cess. We have received research papers from distinguished participating academics
from various countries. There will be “BEST PAPER AWARDS” for authors and
students, to recognize outstanding contributions and research publications.

We thank all authors for their participation and we are happy that they have
chosen CMCGS 2014 as the platform to present their work. Credit also goes to the
Program Committee members and review panel members for their contribution in
reviewing and evaluating the submissions and for making CMCGS 2014 a success.

Anton Ravindran
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An Augmented Lagrangian Approach
with Enhanced Local Refinement to Simulating
Yield Stress Fluid Flows Around a Spherical
Gas Bubble

Jianying Zhang

Abstract We simulate the flow of a yield stress fluid around a gas bubble
using an augmented Lagrangian approach with piecewise linear equal-order finite
elements for both the velocity and the pressure approximations. An enhanced mesh
adaptive strategy based on this element-pair choice is also proposed to render
the yield surfaces with desired resolution. The corresponding numerical scheme
is formulated for general Herschel–Bulkley fluids. Numerical results on Bingham
fluid flows around a slowly rising spherical gas bubble are provided to showcase the
improvement on the previously proposed algorithm in (Zhang, Int J Numer Methods
Fluids 69:731–746, 2012).

Keywords Viscoplastic fluids • Yield surfaces • Bingham fluid flows •
Augmented Lagrangian method • Gas bubble dynamics

Introduction

A viscoplastic fluid is a complex fluid with yield stress. It deforms only when the
applied shear stress exceeds the yield stress. Many multicomponent industrial fluids
are viscoplastic [1]. The existence of the yield stress allows a gas bubble of a certain
size or shape to be trapped in a viscoplastic fluid when the buoyancy of the bubble
is insufficient to break the yield stress or undergo deformations when the surface
tension becomes less dominant compared to the yield stress effect of the surrounding
fluid [2].

Theoretically, viscoplastic fluids are generalized Newtonian fluids governed
by discontinuous constitutive laws which lead to implicitly defined and highly
nonlinear viscous terms in the corresponding momentum equations. This makes the
simulation of viscoplastic fluid flows rather difficult. Our main interest in this work

J. Zhang (�)
Department of Mathematics, Western Washington University, Bellingham, WA, USA
e-mail: Jianying.Zhang@wwu.edu

© Springer International Publishing Switzerland 2016
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4 J. Zhang

is to capture the yield surfaces around a fixed-shape bubble. A detailed review of
various numerical approaches to simulating viscoplastic fluid flows in the literature
can be found in [3]. To keep the actual viscoplastic feature of the fluid of interest,
we are in favor of the variational approach in the presented work.

Mathematical Formulation

The Constitutive Laws for the Liquid and the Gas Regions

We consider the flow of a yield stress fluid around a slowly rising spherical gas
bubble in a long cylindrical tube. The center of the bubble is located on the
symmetric axis of the tube. In the following, the subscript “l” associated with a
physical quantity indicates that the quantity is in the liquid region and the subscript
“g” indicates it in the gas region. Consequently, we denote the liquid and gas
densities by �l and �g, the liquid and gas viscosities by �l and �g.

The yield stress fluids considered here are generalized Newtonian fluids, a class
of non-Newtonian fluids. For such fluids, the rate of strain P�ij and the deviatoric
stress � ij are related through a constitutive equation of form �ij D � . P�/ P�ij with

P� D
q

P�ij P�ij
2

, where � D � . P�/ is termed the effective viscosity. Denote the second

invariant of the deviatoric stress by P� D
q

�ij �ij
2

. If �
� P� ! 0C� D �Y > 0, then the

models are viscoplastic, with yield stress �Y .
A typical viscoplastic model is the Herschel–Bulkley model with the following

scaled constitutive relation:

�ij D
�
�n�1 C B

�

�
�ij if � > B; � D 0 if � � B

with n being the power-law index.
This is an extension of the power-law model to a fluid with a yield stressb�Y . The

dimensionless parameter B D b�YbR
b�bV , termed the Bingham number, denotes the ratio

of yield stress to viscous stress. Hereb� represents the kinematic viscosity, bR and bV
are the reference spatial and velocity scales, respectively.

For the Herschel–Bulkley model, the effective viscosity is defined from � D
� . P�/ P� . Setting n D 1 and B D 0 returns the Newtonian model, � D 1. Setting
n D 1, we recover the popular Bingham model. Note that for the Herschel–Bulkley
model, if B > 0, then � ! 1 as � ! 0.

The gas inside the bubble is assumed to be Newtonian, which leads to the
constitutive equation �g;ij D �g P�g;ij .
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Equations of Motion and Boundary Conditions

We study the behavior of viscoplastic fluid around a slowly rising gas bubble, for
which the corresponding equations of motion and boundary conditions are derived
in [2]. Let u .x1; x2; x3/ D .u1 .x1; x2; x3/ ; u2 .x1; x2; x3/ ; u3 .x1; x2; x3// be the
velocity of the two-phase fluid at the location x D .x1; x2; x3/. The gravitational
force is assumed to be the only body force acting on the two-phase system.

The equations of motion in the fluid region �l are given by the generalized
incompressible Navier–Stokes equations:

�l
Dui
Dt

D � @p

@xi
C �lgi C @�l;ij

@xj
; r � u D 0 (1)

with Dui
Dt

D @ui
@t

C u � rui being the material derivative and g D .0; 0;�9:8/T the
acceleration of the gravitational field.

The gas region �g is generally compressible and the Navier–Stokes equations
associated with the mass conservation inside the bubble are given by

�g
Dui
Dt

D � @p

@xi
C �ggi C @�g;ij

@xj
;

@�g

@t
C r � ��gu

� D 0: (2)

In (1) and (2), @p

@xi
, for i D 1; 2; 3, represent the three components of the gradient

field of the pressure p. With Einstein’s notation, the viscous terms @�k:ij
@xj

, for k D l; g

and i D 1; 2; 3, stand for the divergences of the three row vectors in the deviatoric
stress tensors � l,ij and �g,ij correspondingly. Due to the unknown yield surfaces, these
viscous terms are implicitly defined in (1).

The boundary of the fluid region �l, denoted by @�, consists of two portions:
One is the collection of the cylinder walls, denoted by @�w; the other is the bubble
surface, denoted by @�g . That is, @� D @�l [ @�g . Boundary conditions on @�
shall be specified as complements for (1) and (2).

The no-slip boundary condition is imposed on the cylinder walls, i.e., u D 0 on
@�w. In addition, a set of jump conditions are imposed on the bubble surface. Let nb

be the outer unit normal on the bubble surface; the continuity of the velocity across
the bubble surface amounts to

�
ul � ug

� � nb D 0 on @�g:

For k D l; g and i D 1; 2; 3, let �k;ij .u/ D �pkI C �k;ij .u/ be the stress tensor for
the corresponding liquidor gas region, where pl and pg stand for the pressure in the
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liquid and the gas regions, respectively. Let t1 and t2 be two linearly independent
unit tangent vectors on the bubble surface. The continuity of the tangential traction

tTi
�
�l;ij � �g;ij

� � nb D 0

and the jump of the normal traction

nTb
�
�l;ij � �g;ij

� � nb D 	

�
1

R1
C 1

R2

�

are also imposed, where 	 is the surface tension, R1 and R2 are the radii of curvature
in the principle directions, and 1

R1
C 1

R2
is then twice the mean curvature of the

bubble surface.
For a viscoplastic fluid around a slowly rising gas bubble, the nondimensional-

ized equations of motion are derived and simplified in [2] as

0 D � @p

@xi
C gi C @�l;ij

@xj
; r � u D 0 (3)

and

0 D � @p

@xi
C "�ggi C ı
ui ; r � u D 0 (4)

with the boundary conditions

tTi �l;ij nb D 0; �pl C pg C nTb �l;ij nb D ˇ

�
1

R1
C 1

R2

�
:

Here g D .0; 0;�1/T is the unit acceleration of the gravitational field, B is the
Bingham number, and ˇ is the dimensionless surface tension. The dimensionless

parameters " D ��

g

�l
and ı D �gR

n�1
0

�lU n�1 assuming the bubble radius at the injection
pressure is R0, the steady-state bubble velocity is U, and the gas density at the
injection pressure is �*

g.

The Augmented Lagrangian Method

The variational reformulation and its application to Bingham fluid flows date back
to the pioneer work of Duvaut and Lions [4], in which a desired flow motion
is captured by solving an equivalent variational inequality whose minimizer set
is proven to be the solution set of the momentum equations with the associated
constitutive law. For a viscoplastic fluid, the discontinuity of the constitutive law
brings in a nonlinear and non-differentiable yield stress term in the corresponding
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variational reformulation. The augmented Lagrangian method (ALM) [5, 6], as an
effective numerical technique, resolves this difficulty by introducing an auxiliary
variable to relax the undesired yield stress term and then adding an augmented
constraint. Consequently, the original problem is decoupled into a series of element-
wise optimization problems, each of which can be solved with standard optimization
techniques. This is also the virtue of the ALM.

For a slowly rising gas bubble, its motion can be assumed axisymmetric.
That is, the velocity field u is identical in each cross section along the radial
direction. Hence, u can be written as u .r; �; z/ D .u1 .r; z/ ; 0; u3 .r; z// in cylindrical
coordinates (r, � , z). It is then enough to simulate the original three-dimensional
two-phase system, set up in �, in one of its cross sections, denoted by D. In the
following presentation, we use Dl and Dg to denote the liquid and gas regions in
the corresponding cross section. This assumption simplifies the three-dimensional
vector field to two-dimensional. However, the rate of strain tensor P�ij .u/ is still a
3 � 3 symmetric matrix.

Define the admissible set

A D
n
v 2 �H1

0 .D/
�2 W r � v D 0 in D

o
:

It can be shown via integration by parts that the desired vector field u for the
steady-state two-phase problem (3)–(4) with the boundary conditions is the one that
satisfies the following constrained variational inequality:

a .u; v � u/C j.v/ � j.u/ � L.v � u/ ; 8v 2 A (5)

where j.v/ D B

Z

Dl

P�.v/,

a .u; v/ D 1

2

0
B@
Z

Dl

P�n�1.u/ P�ij .u/ P�ij .v/C ı

Z

Dg

P�n�1.u/ P�ij .u/ P�ij .v/

1
CA

L.v/ D �
Z

Dl

v3 � "�g
Z

Dg

v3 �
Z

@Dg

ˇ

�
1

R1
C 1

R2

�
v � nb

:

Note that a .�; �/, referred to as the viscous dissipation rate in some of the
literature, is linear in its argument v for general Herschel–Bulkley fluids and bilinear
in either of its argument for Bingham fluids, i.e., when n D 1. The force term L.�/
is linear in its argument, whereas the yield stress dissipation rate j .�/ is nonlinear
and non-differentiable in its argument.

It can be shown [6] that the desired vector field u in (5) is the one that minimizes

J.v/ D 1

nC 1
a .v; v/C j.v/ � L.v/ (6)
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over the function space A. Our numerical algorithm is based on this variational
equality. For Bingham fluids, the existence and uniqueness of the minimizer can be
shown by directly applying Theorem 4.1 and Lemma 4.1 from Chapter 1 of [6].

The ALM is implemented following the Uzawa-type iterations:
Step 1: Solve an elliptic problem for the velocity. The finite element method is

naturally preferred.
Step 2: Update the pressure based on the incompressible constraint.
Step 3: Solve element-wise optimization problems for the rate of strain tensor.
Step 4: Update the Lagrange multiplier corresponding to the augmented

constraint.
Various ways of choosing the finite element spaces for the velocity and the

pressure exist, such as P2 � P1, P1 � C0, based on the Babuska–Brezzi stability
condition [7]. Differently, our work is based on that of Latch’e and Vola [8] where
the piecewise linear equal-order P1 �P1 element spaces are chosen for the velocity
and the pressure, and the piecewise constant approximation is made for the rate
of strain tensor. This arrangement is cost-effective and matches the coherence
constraint between velocity and the rate of strain perfectly. In addition, an implicit
updating scheme [8] is applied in Step 2 in order to accelerate and stabilize the
convergence of the pressure.

Numerical Implementation of ALM

Difficulty in solving the optimization problem (6) is caused by the nonlinear and
non-differentiable yield stress term j .�/. This can be resolved by applying the
ALM [6].

Let W be the collection of symmetric 3 � 3 tensors with L2 entries. The key
idea of the ALM is to relax the nonlinear yield stress term P�ij .u/ to an auxiliary
term wij 2 W so that the minimization problem (6) can be reformulated into a
constrained minimization problem [3] solved following the Uzawa-type iterations.

Initialize p, wij, and sij.
Step 1: With fixed p, wij, and sij, solve the following for u:

�
Z

D

pr � v C
Z

Dl

v3 C "�g

Z

Dg

v3 C
Z

D

P�ij .v/sij

CR

Z

D

�
P�ij .u/� wij

�
P�ij .v/ D 0; 8v 2 V:

(7)

Step 2: With fixed u and sij, solve the following for wij:
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min
wij2W

1

nC 1

0
B@
Z

Dl

wnC1 C ı

Z

Dg

wnC1

1
CAC B

Z

D

w �
Z

D

wij sij

�R
Z

D

P�ij .u/wij CR

Z

D

w2:

(8)

Step 3: With fixed u, update p based on the globally stabilized constraint

Z

D

qr � u C cb

Z

D

rp � rq D 0; 8q 2 H1
0 .D/ (9)

where the second term on the left-hand side of the equation is a Brezzi–Pitkäranta
stabilization term used for the pressure updating, with cb > 0 being the stabilization
parameter [8].

A larger value of cb yields faster convergence in the pressure update, but the
result could be too much off the true value. So in practical cb should not be set too
large in order to keep the real structure of the pressure.

Step 4: With fixed u and wij, update sij 2 W based on the yield stress constraint

Z

D

� P�ij .u/� wij
�
tij D 0; 8tij 2 W: (10)

The virtue of the above decomposition coordination process is to decouple the
original problem (6) into several subproblems (7)–(10), each of which can be solved
with less effort.

Yield Surface Detection with an Enhanced Mesh
Adaptive Strategy

We propose the following refinement algorithm as an enhancement of the local
refinement algorithm proposed in [3], based on the solution property determined
by the piecewise linear equal-order element pair.

Initialize with a uniform unstructured triangulation of some pre-chosen size h.
Step 1: For each edge, compute its larger and smaller P� values, V1

w and V2
w. The

larger and smaller P� values for an edge is defined as the larger and smaller P� values
in the adjacent triangles sharing this common edge.

Step 2: For each edge, compute the ratio Rw D V 1w �V 2w
L

with L being the length
of the edge. Rw is a reasonable indicator of the corresponding edge location. For a
common edge inside either the fluid or the solid region, Rw should be moderately
small. An edge with larger ratio Rw is supposed to be closer to a yield surface.
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Step 3: For each element, make the longest edge refinement if the largest Rw

value among its three edges is larger than some preset value Cr .

Numerical Results

Consider a gas bubble of unit radius in a cylindrical container filled with Bingham
fluids of different Bingham numbers. The base radius and the height of the cylinder
are set to 5 and 10 units, respectively. The coordinates of the system are set such
that both the centers of the bubble and of the cylinder are located at the origin. The
surface tension is set to 0 for simplification. It can be added though without crucial
numerical efforts.

The analytical solution for Newtonian fluid flow around a gas bubble rising at a
steady speed U has been derived in [9]. The validity of our numerical algorithm in
the Newtonian case has been confirmed in [3] by comparing the corresponding U
numerical and analytical results with U D 1=3.

In Bingham fluids, we still set U D 1=3 at the instant of computing. Unlike
it is in the Newtonian case, the bubble actually tends to deform due to the non-
Newtonian effects of the surrounding fluid flows. In [10], the transient deformations
of a gas bubble in various Bingham fluids have been investigated. Our goal is to
understand how the unyielded regions are affected by the Bingham number B for a
fixed-shape spherical gas bubble. Of course this captures the flow behavior only at
a certain moment.

Adopting the enhanced mesh adaptivity technique introduced above, yield
surfaces around the gas bubble in various Bingham fluids can be captured with
desirable resolution more effectively. The number of elements drops from 7,000–
8,000 range as required in [3] to 4,500–5,500 here in order to achieve comparable
resolution, which considerably lowers the numerical cost.

Yield surfaces in Bingham fluids with B D 0:08; 0:12; 0:15; 0:2; 0:4; 0:55 are
detected and shown in Fig. 1. In addition, yield surfaces in Bingham fluids withB D
0:542; 0:544; 0:546; 0:549 are detected and shown in Fig. 2. A “C” sign is plotted at
the center of each element in which the numerical indicator of the second invariant
of the deviatoric stress P� < TOL, some preset threshold. We set TOL D 10�8 here.
The density of the plots provides additional information on the unyielded regions.
The highly concentrated plots generate the yield surfaces, the boundaries between
the solid and the fluid regions, whereas the sparse plotted regions are considered to
lie in the interior of the unyielded regions.

As shown in the figures, the yield surfaces first expand towards the gas bubble as
B increases. During the evolution of the unyielded region, small inner unyielded
regions next to the left and right of bubble surface arise as B increases beyond
0.15 and then expand towards the outer unyielded region with the increment of B.
The inner and outer regions eventually merge as B keeps increasing. This growth
property of the unyielded regions is consistent with the one observed in [10]. Yet
the growth becomes less noticeable as B reaches 0.55, and the entire fluid region is



An Augmented Lagrangian Approach with Enhanced Local Refinement. . . 11

Fig. 1 Yield surfaces around
a unit radius gas bubble in
various Bingham fluid flows
in a cylinder with radius 5 and
height 10. The corresponding
Bingham numbers are
(a) B D 0.08, (b) B D 0.12,
(c) B D 0.15, (d) B D 0.2,
(e) B D 0.4, and (f) B D 0.55

Fig. 2 Yield surfaces around
a unit radius gas bubble in
various Bingham fluid flows
in a cylinder with radius 5
and height 10. The
corresponding Bingham
numbers are (a) B D 0.542,
(b) B D 0.544, (c) B D 0.546,
and (d) B D 0.549

observed to be unyielded based on our computation. The evolution of yield surfaces
in Bingham fluids with B values right below this critical number can be clearly seen
in Fig. 2.

Our result numerically verifies that B D 0:55 is the critical Bingham number at
which the gas bubble gets completely trapped. This is consistent with the conclusion
drawn in [3], considered as an improvement of the sufficient but unnecessary
stopping criterion, B > 1=

p
3, analytically derived in [2].



12 J. Zhang

Conclusions and Future Investigations

The key feature of a bubble propagating through a viscoplastic fluid is that the yield
stress can prevent it from moving. The proposed numerical algorithm allows us to
numerically determine the minimal Bingham number at which a spherical bubble
gets completely trapped in a Bingham fluid. With the enhanced mesh adaptivity
strategy, the yield surfaces can be detected with desired resolution and at a faster
speed.

As one of the future investigations, it would be interesting to extend the presented
work to a dynamical two-phase system, in which a gas bubble is moving in
viscoplastic fluids and undergoing a series of deformations. This can be achieved
by coupling the momentum equations with the level set equation [11, 12] that tracks
the bubble interface.

In addition, the proposed mesh adaptivity strategy is obviously not optimal. More
enhanced mesh adaptivity strategies are to be developed in order to further improve
the resolution of the yield surfaces while keeping the numerical cost as low as
possible.
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On Classical Solution in Finite Time
of BGK-Poisson’s Equations

Slim Ben Rejeb

Abstract BGK model is a collision operator for the evolution of gases which
satisfies several fundamental properties. Different collision operators for gas evo-
lutions have been introduced earlier, but none of them could satisfy all the basic
physical properties: conservation, positivity, correct exchange coefficients, and
entropy inequality. However, contrary to Boltzmann model which has a quadratic
form, the BGK model presents a heavy nonlinearity which explains the complexity
of this analysis.

The existence of solution to the periodic Boltzmann BGK model (Bhatnagar–
Gross–Krook) coupled with Poisson’s equation has been proved by the same author.

In this paper we are interested to the uniqueness of such solution.

Keywords Kinetic equations • BGK model • Maxwellian • Boltzmann’s
equations • Plasma’s physics • Schauder’s fixed point • Poisson’s equation •
Fluid equations

Introduction

We study the initial value problem of BGK model [2] coupled with Poisson’s
equation, which is a simple relaxation model introduced by Bhatnagar, Gross, and
Krook to mimic Boltzmann flows, where f .x; v; t/ is the density of plasma particles
at time t in the space of position x and velocity v and �.x; t/ is the electric field
potential of the plasma.

The existence and uniqueness problems of the BGK model were proved by
Perthame and Pulvirenti [4] but without coupling with Poisson’s equation.

Ukay and Okabe [5] had proved the existence and uniqueness of .f; �/ for the
Vlasov–Poisson equation (without collision term).
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Here we have a complete problem, BGK model coupled with Poisson’s equation.
We will start by giving the construction of the solution [1], and in the second time,
we prove the uniqueness of such solution.

In periodic Case the dimensionless Boltzmann BGK model coupled with Pois-
son’s equation in one space dimension is written as

8
ˆ̂̂
<
ˆ̂̂
:

Lf f D MŒf  � f; .x; v/ 2 � � R; t � 0

f .t D 0/ D f0.x; v/; x 2 �; v 2 R

��xx D
Z

R

f .x; v; t/dv; �.0/ D �.L/ D 0:

(1)

� D 0; LŒ.
where

Lf D @t C v@x C E.x; t/@v (2)

E.x; t/ D �1
2
�x (3)

MŒf  D �

.2�T /1=2
exp.�ju � vj2

2T
/ (4)

MŒf  is the Maxwellian associated to f , where

.�; �u; �.u2 C T // D
Z

R

.1; v; v2/f .v/dv (5)

Remark 1. The notation Lf for the deferential operator in (2) is chosen to see that
it depends on f according to (3) and (1).

Existence of Solution

The electric field potential is given by

�.x; t/ D
Z

�

G.x � y/.
Z

R2

f .y; v; t/dv/dy (6)

where G is the fundamental solution of 
x (see [5] or [1]).
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Using �, we can solve the initial value problem of the first- order partial
differential equation:

(
Lf f C f D MŒf ; .x; v/ 2 � � R; t � 0

f .t D 0/ D f0.x; v/; x 2 �; v 2 R

(7)

We can easily solve Eq. (7) using the characteristics .X.t/; V .t// which will be
denoted as .Xt ; Vt /:

8̂
<
:̂

dX

dt
D V.t/; X.s/ D x;

dV

dt
D E.X.t/; t/; V .s/ D v:

(8)

The solution of Eq. (7) is given implicitly as

f .x; v; t/ D e�t f0.X.0; x; v; t/; V .0; x; v; t//

C
Z t

0

e�.t�s/M Œf .Xs; Vs; s/ds

In this way we have assigned a function f to a given function g which we will
denote by f D ˆ.g/. So we shall specify a set S of functions g in such a way
that the map ˆ defined on S can be shown to have a fixed point, with the aid of
Schauder’s fixed-point theorem and that any fixed point of ˆ in S is a classical
solution of (1).

Class of Functions

For any set„ � R
2�R

C, we denoteBlC� .„/ the set of all continuous and bounded
functions defined on „ having continuous and bounded l th derivatives which are
uniformly Holder continuous in „ with exponent � , where l is a positive integer
and 0 � � � 1.

Notations

For f 2 L1.R/; q � 0; f � 0, we denote
Nq.f / D sup

v2R
.jvjqf .v//andNq.f / D sup

v2R
..1 C jvjq/f .v/ and for � � 0, we

introduce

�� D ��0; �Œ andQ� D � � R�0; �Œ:
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Lemma 1. For f � 0 and f .v/ 2 L1.R; .1C v2/dv/, we have

i/
�

T 1=2
� N0.f /;

ii/ �.T C u2/
.q�1/
2 � CqNq.f /; q > 3;

iii/ sup
v2R

fjvjqM Œf g � CqNq.f /; q > 3:

(9)

where .�; u; T / are given by (5). See [4] for the proof.

Proposition 2. Suppose that f is a solution of (1). Then

Nq.f / � Cq exp.Cqt/ for q D 0 or q � 3

Proof. i/ We shall first prove the case q D 0,
From (9) .i/ we have MŒf  � CN0.f / where C is a positive constant.

From (1) we have

d

dt
.etf .Xt ; Vt ; t// � Cet sup

x2�
N0.f /.t/;

) etf .Xt ; Vt ; t// � f0.x; v/C C

Z t

0

es sup
x2�

N0.f /.s/ds;

) etf .x; v; t// � f0.X.0; x; v; t/; V .0; x; v; t//

CC R t0 es supx2� N0.f /.s/ds;

) et sup
x2�

N0.f /.t/ � jjf0jj1 C C

Z t

0

es sup
x2�

N0.f /.s/ds:

The Gronwall lemma ended the proof.
ii) case where q > 3

We denote fq D .1C jvjq/f ; writing the equation verified by fq , we get

Lf fq D .1C jvjq/M Œf  � fq C vjvj.q�2/Ef (10)

where E can be written as

E.x; t/ D
Z

�

K.x; y/.

Z

R

g.y; v; t/dv/dy: (11)

K is a bounded kernel and can be easily deduced from (3) and (6). We can easily
see that

jE.x; y/j � sup
.x;y/2�

jK.x; y/jjjf0jjL1.��R/ (12)
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For the values of jvj � 1, we have

Lf fq C fq � CqNq.f / (13)

The Gronwall lemma applied to the map
t �! et sup

x2�
Nq.f /.t/ gives the proof.

The case jvj < 1 is easy to prove from .i/.

Lemma 3. We suppose that there exist V1 2 R and C0 > 0, such that:

i) f0 is not depending on x,
ii) f0 is increasing at  � 1; V1Œ and decreasing at V1;C1Œ,

iii)
Z

jv�V1 j>2�
f0.v/dv � C0:

Then

�.t/ � C0e
�t :

The proof is detailed in [1].

Proposition 4. For f0 � 0 we suppose:

i) f0 2 B1.� � R/,
ii) there exist A0 > 0 such that,

sup
v2R

f.1C jvjq/f0.x; v/g D A0 < C1;

then 8t 2 Œ0; �, 9A.t/ < C1; B.t/ 2 R
�C verify

i/ 0 < B.t/ � T .t/ � A.t/;

ii/ u.t/ � A.t/:
(14)

Proof. From (9) .i/, we get

T 1=2 � C
�

N0.f /
� C1.t/;

and from (9) .i i/ we get (14) .i/ and .i i/.
Indeed

�.T C u2/
q�1
2 � CqNq.f /;

Thus,

.T C u2/ � A.t/:
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Definition 5. We denote S as the class of functions satisfying

S D fg 2 Bı.Q�/I jjgjjBı.Q� /
� A1; sup

v
..1C jvjq/g/

� A2;8.x; t/ 2 ��0; �Œg;

where A1 and A2 are positive constants.

For g 2 S we consider f a solution of

8
ˆ̂̂
<
ˆ̂̂
:

Lgf D MŒg � f; .x; v/ 2 � � R; t � 0

f .t D 0/ D f0.x; v/; x 2 �; v 2 R

��xx D
Z

R

g.x; v; t/dv; �.0/ D �.L/ D 0

(15)

and

E.x; t/ D
Z

�

K.x; y/.

Z

R

g.y; v; t/dv/dy:

We denote

f D ˆ.g/

We have to prove that ˆ is a continuous map from S to itself, which will prove the
existence of a solution in S .

The solution of (15) is given by

f .x; v; t/ D e�t f0.X.0; x; v; t/; V .0; x; v; t//

C
Z t

0

e�.t�s/M Œg.Xs; Vs; s/ds
(16)

where we noted: From (9) .i/, we get

MŒg � �.x; t/

T 1=2
� CN0.g/

by virtue of (16) and the condition imposed to f0 in proposition (4), it’s easy to see
that f 2 S if g 2 S .

We consider a sequence gn 2 S and g1 2 B0.Q�/ verify jjgn�g1jjB0.Q� / �!
0 when n �! C1:

Lemma 6. S is a compact convex subset of B0.Q�/

The proof is detailed in [1].
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Theorem 7. With the conditions of proposition (4) for f0, the problem (1) has one
solution .f; �/.

Before the proof, we introduce these notations.

Notations

First, we denote

f n D ˆ.gn/ and f 1 D ˆ.g1/

and for any function F


F D Fn � F1:

Proof.

et
f .x; v; t/ D f0.X
n
0 ; V

n
0 /� f0.X

1
0 ; V

1
0 /CZ t

0

esŒM Œgn.Xn
s ; V

n
s ; s/ �MŒg1.X1

s ; V
1
s ; s/ds

(17)

On one hand, we have

f0.X
n
0 ; V

n
0 / � f0.X1

0 ; V
1
0 / � jjf0jjB1.��R/N

s
n.X; V /

On the other hand,

MŒgn.Xn
s ; V

n
s ; s/�MŒg1.X1

s ; V
1
s ; s/

D .M Œgn�MŒg1/.Xn
s ; V

n
s ; s/C

MŒg1.Xn
s ; V

n
s ; s/ �MŒg1.X1

s ; V
1
s ; s/

By virtue of (14) .i/, it is easily seen that MŒg has at least the same regularity as
g 2 S then

jMŒg1.Xn
s ; V

n
s ; s/�MŒg1.X1

s ; V
1
s ; s/j �

jjMŒg1jjBı.Q� /
N s
n.X; V /

ı

It remains then to estimate the term:

.M Œgn �MŒg1/.Xn
s ; V

n
s ; s/:
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We pose for � 2 Œ0; 1,

.�n� ; u
n
� ; T

n
� / D �.�1; u1; T1/C .1 � �/.�n; un; T n/

We denoteMn
� the Maxwellian associated to .�n� ; u

n
� ; T

n
� /. We have

jMŒgn �MŒg1j.Xn
s ; V

n
s ; s/ � j
�.Xn

s ; s/
@Mn

�

@�
j

Cj
u.Xn
s ; s/

@Mn
�

@u
j C j
T .Xn

s ; s/
@Mn

�

@T
j

(18)

the derivatives of Mn
� verify:

j@M
n
�

@�
j � C.T n� /

�1=2;

j @Mn
�

@u j � C�n� .T
n
� /

�1;

j @Mn
�

@T
j � C�n� .T

n
� /

�3=2:

To conclude from (18), we shall need the estimates:

.i/ W j
�.Xn
s ; s/; .ii/ W j
u.Xn

s ; s/j; .iii/ W j
T .Xn
s ; s/j

which can be estimated by

.i/ W j
�.Xn
s ; s/j D j

Z

R

.gn � g1/.Xn
s ;w; s/dwj

.ii/ W j
u.Xn
s ; s/j � C j
u.Xn

s ; s/�
1.Xn

s ; s/j �
C j.
.�u/u1/.Xn

s ; s/j C jun
�.Xn
s ; s/j

.iii/ W j
T .Xn
s ; s/j � C j
T .Xn

s ; s/�
1.Xn

s ; s/j �
C j
.�T //.Xn

s ; s/j C jT n.
�/.Xn
s ; s/j:

Hence q > 3, the dominated convergence theorem applied to (17) ended the proof.

We conclude that ˆ is a continuous map in S ; then it has a fixed point in S , which
is a solution of BGK-Poisson’s equation (1).

The Schauder’s fixed-point theorem does not allow to show the uniqueness of the
solution; this question will be solved in the next section.

Remark 8. The conditions .ii/ and .iii/ imposed to f0 in lemma (3) can be
generalized as

.ii/0 There is a finite sequence .Vn/n2N such that f0 is increasing at � 1; V0Œ and
decreasing at Vn;C1Œ:

.iii/0 There exist C0 > 0 such that
Z V0�2�

�1
f0.v/dv C

Z C1

VnC2�
f0.v/dv � C0
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Remark 9. The condition .ii/ imposed to f0 is not excessive; the distribution of
particles has generally this shape, like Gaussian curves, for example.

Uniqueness of the Solution

Assume, in addition to the hypothesis in proposition (4), the following conditions
on f0:

@xf0 2 L1.R/\ C1.� � R/

sup
v2R
.1C jvjq/@xf0 < A0 (19)

The aim of this section is to prove the uniqueness of the solution .f; �/ to (1)
constructed above in class of such functions that

i/ f 2 B0.Q�/\ C1.Q�/

ii/ � D
Z

R

fdv 2 Bı.Œ0; �IB1.�// \ Bı.��/
(20)

Let .fi ; �i /; i D 1; 2 be any two solutions of (1) satisfying (20).
Subtracting the two equations for i D 1 and i D 2, writing f D f1 � f2 and

� D �1 � �2, we obtain

8
ˆ̂̂
<
ˆ̂̂
:

Lf1f C .E1 � E2/@vf2 D MŒf1 �MŒf2 � f;

f jtD0 D 0

��xx D
Z

R

f .x; v; t/dv

(21)

Integrating the first equation with respect to v (first fluid equation), we get

8
<
:
@t�C @x.�u/ D 0

�.t D 0/ D 0

(22)

which can be written as
8
<
:
@t�C u@x� D �.@xu/�

�.t D 0/ D 0

(23)
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8
<̂
:̂

d

dt
�.xt ; t/ D �@xu.xt ; t/�.xt ; t/

�.t D 0/ D 0

(24)

where xt are the characteristic associated to (23).
Finally, we can write

8
<̂
:̂
�.x; t/ D �

Z t

0

@xu. Qxs; s/�. Qxs; s/ds

�.t D 0/ D 0

(25)

Qx.t/ are the characteristics adjusted according to their properties (see [1]):

8
<̂
:̂

sup
x2�

�.x; t/ �
Z t

0

sup
x2�

j@xu.x; s/j sup
x2�

�.x; s/ds

�.t D 0/ D 0

(26)

Thus, with the aid of Gronwall lemma, we can prove that �.x; t/ D 0 which imply
that f .x; v; t/ D f1.x; v; t/ � f2.x; v; t/ D 0 and gives the uniqueness of the
solution.

Finally, from (12) we can see that the electric field potential �.x; t/ D �1.x; t/�
�2.x; t/ D 0:

Theorem 1. According to the conditions of (4) and (19), the solution of (1)
constructed in theorem (7) is unique.

Conclusion

We have proved the uniqueness of the solution of BGK model coupled with
Poisson’s equation.

This document completes the result of the existence, given in [1] by the same
author where we constructed a solution and demonstrated the existence to such a
problem.
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A Note on Lanczos Algorithm for Computing
PageRank

Kazuma Teramoto and Takashi Nodera

Abstract We now study the Lanczos algorithm for computing the PageRank vector.
This algorithm is based on biorthogonalization, which transforms a nonsymmetric
matrix into a tridiagonal matrix to compute PageRank. This generates better
approximation of the largest eigenvalue at early stage of iterations. We propose a
practical scheme of the Lanczos biorthogonalization algorithm with SVD scheme
for computing PageRank. Numerical results show that the proposed algorithm
converges faster than the existing Arnoldi method in the computation time.

Keywords PageRank • Lanczos method • Eigenvalue problem

Introduction

PageRank is the essential approach for ranking a Web page whereby a page’s status
id decided according to the link structure of the Web. This model has been used
by Google as a part of its contemporary search engine equipment. Nowadays, the
precise ranking procedures and computation schemes used by Google are no longer
public evidence, but the PageRank model has taken on the life of its own and has
received important consideration in the scientific and technology society in the last
10 years. PageRank is essentially the fixed distribution vector of the Markov chain
whose transition matrix is a convex combination of a Web link graph and precise
rank-one matrix. A major parameter in the model is a damping factor, a scalar that
settles the weight given to a Web link graph in the model. The weighted PageRank

K. Teramoto (�)
Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi,
Kohoku, Yokohama 223-8522, Japan
e-mail: trmtkzm011010@a5.keio.jp

T. Nodera
Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku,
Yokohama 223-8522, Japan
e-mail: nodera@math.keio.ac.jp

© Springer International Publishing Switzerland 2016
K. Chen (ed.), Forging Connections between Computational Mathematics
and Computational Geometry, Springer Proceedings in Mathematics & Statistics 124,
DOI 10.5176/2251-1911_CMCGS14.15_3

25

mailto:trmtkzm011010@a5.keio.jp
mailto:nodera@math.keio.ac.jp


26 K. Teramoto and T. Nodera

is the elements of the dominant eigenvector of the modified adjacency matrix as
follows:

A D ˛P C .1 � ˛/E

where P is a column stochastic matrix, ˛ is a damping factor, and E is a rank-one
matrix. The specified derivation can be seen in Kamvar et al. [7].

Recently, the computation of eigenpair (eigenvalue and eigenvector) of nonsym-
metric matrices is one of the most major tasks in many scientific and technology
applications. A typical example, nowadays, is the computation of PageRank for
the link structure of the Web. Due to the great size and sparsity of the matrix,
factorization schemes are considered infeasible. Instead, iterative schemes are
used, where the computation is dominated by matrix–vector products. Detailed
descriptions of this problem are available, and the algorithms can be found in lots
of references (i.e., [2, 5–9]), where P is a column stochastic matrix, ˛ is a damping
factor, and E is a rank one matrix. The specified derivation can be seen in Kamvar
et al. [7].

In recently, the computation of eigenpair (eigenvalue and eigenvector) of non-
symmetric matrices are one of the most major tasks in many scientific and
technology applications. Typical example, nowadays, is the computation of PageR-
ank for the link structure of Web. Due to the great size and sparsity of the
matrix, factorization schemes are considered infeasible. Instead, iterative schemes
are used, where the computation is dominated by matrix–vector products. Detailed
descriptions of this problem are available, and the algorithms can be found in lots
of references (i.e., [2, 5–9]).

The power method was firstly considered for computing PageRank. For detailed
properties of PageRank for using the power method, we refer the reader to Kamvar
et al. [7]. However, the power method has its disadvantage. For some given matrices,
the power method converges very slowly.

Although methods were suggested to accelerate its convergence, improvement
was not important. As a selection, a procedure using orthogonalization such as the
Arnoldi method was suggested [6].

In this paper, we propose and investigate a new algorithm for computing
the PageRank vector, using a combination of the Lanczos biorthogonalization
algorithm and SVD (singular value decomposition). This remainder of the paper
is organized as follows. In the section “Arnoldi Method,” we sketch the brief
description of Arnoldi method of the PageRank vector. Then in the section “Lanczos
Algorithm for Computing PageRank,” we will propose a new Lanczos algorithm
with SVD scheme. In the section “Numerical Experiments,” the results of numerical
experiments obtained by running the MATLAB codes are reported. At last, in the
section “Conclusion,” we draw some conclusions.
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Arnoldi Method

In this section, we describe the brief introduction of the Arnoldi method [1] for
computing the PageRank vector. The Arnoldi method, which is given Algorithm 1,
builds an orthonormal basis for Krylov subspace given by

Km .A; q0/ D ˚
q0; Aq0; : : : ; A

m�1q0

�

where the Krylov subspace is restricted to be of fixed dimension m and q0 is an
initial vector which satisfies jq0j2 D 1. From Algorithm 1, the following relations
hold:

AQm D QmHm C hmC1;mqme
T
m

QT
mAQm D Hm

where Qm D Œq0; q1; : : : ; qm 2 Rn�n is a column–orthogonal matrix and Hm D˚
hi;j

� 2 Rm�m is a Hessenberg matrix [6].
Since Hm is an orthogonal projection from A to Km, we can use the eigenvalue

of Hm as an approximate eigenvalue of A. If y is the eigenvector of Hm, then Qmy
is the approximate eigenvector of A, since it is known that the largest eigenvalue
of a PageRank matrix is 1. The Arnoldi-type method was proposed by Golub and
Greif [4] and we call it as Algorithm 2. In Algorithm 2, we are used to compute the
singular value decomposition instead of computing the eigenvalue of Hm [6].

We can see that when m increases, the total computation cost of this method in
every cycle is increasing, while the total iterations are decreasing. Unsuitably, it can
be very difficult to know how to choose m a priori and if too small a value is chosen,
the convergence may stall. Consequently, it is difficult to choose the optimal value
of m to minimize the total computation cost (CPU time).
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Lanczos Algorithm for Computing PageRank

The Lanczos biorthogonalization algorithm is an extension to nonsymmetric matri-
ces of a symmetric Lanczos algorithm. One such extension, the Arnoldi method, has
been seen in [10], but the nonsymmetric Lanczos biorthogonalization algorithm is
quite different in the concept from Arnoldi method (see Saad [10, pp. 207–221]).
In this section, we propose a new algorithm for computing PageRank by using the
Lanczos algorithm. This algorithm is one of the Krylov subspace methods which
transform symmetric matrices into tridiagonal matrices. To deal with nonsymmetric
matrices, we will use the Lanczos biorthogonalization algorithm, an extension that
allows the Lanczos algorithm to be applied to nonsymmetric matrices. This will
build a pair of biorthogonal bases for the two Krylov subspaces as follows

Km .A; v1/ D ˚
v1; Av1; : : : ; A

m�1v1
�

Km

�
AT ;w1

� D
n
w1; A

Tw1; : : : ;
�
AT
�mC1

w1

o

Also, from the Lanczos algorithm (Algorithm 3), the following three-term recur-
rence formulae are given as follows:

bvjC1 D ˇjC1vj C1 D Avj � ˛j vj � ˇj vj �1

bwjC1 D ıjC1wj C1 D ATwj � ˛jwj � ıjwj �1

where ˛j D �
Avj ;wj

�
. Additionally, ˇjC1 and ıjC1 are a parameter for normaliz-

ing vj C1 and wjC1. They satisfy the following equalities:

wj C1 D bwj C1
ˇjC1

vj C1 D bvj C1

ıjC1
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where vj C1 and wj C1 can be selected in any manner to ensure that

�
vjC1;wj C1

� D 1

As a result, ˇjC1 and ıjC1 satisfy the following equality:

•jC1ˇjC1 D �bvjC1;bwj C1
�

As long as this condition is satisfied, ˇjC1 and ıjC1 are free to select. Accordingly,
we select these formulae as follows:

ıjC1 D ˇ̌�bvj C1;bwj C1
�ˇ̌ 1

2 ;

ˇjC1 Dbvj C1;bwj C1

ıjC1

As a result of above, the following equation is also satisfied:

ˇjC1 D ˙ıjC1

By using these formulae, we obtain Algorithm 3. Now we consider the following
matrices:

Vm D .v1; v2; : : : ; vm/

Wm D .w1;w2; : : : ;wm/

Since these matrices are biorthogonal matrices, they satisfy the equality:

W T
m Wm D I:
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Table 1 Computation cost of the Lanczos algorithm

Line Operation Cost

4 Matrix vector product 3mn2

5 Matrix vector product and vector scaling 2mn2 C 2mn

6 Matrix vector product and vector scaling 2mn2 C 2mn

7 Vector product and norm computation 3mn

8 Vector product and vector scaling 3mn

9 Vector scaling mn

10 Vector scaling mn

Total 7mn2 C 12mn

We define the following tridiagonal matrix Tm to use in the Algorithm 3.

Tm D

0
BBBBB@

˛1 ˇ2
ı2 ˛2 ˇ3

: : :

ım�1 ˛m�1 ˇm
ım ˛m

1
CCCCCA
:

From the three-term recurrence formulae, the following relations hold:

AVm D VmTm C ımC1vmC1e
T
m;

ATWm D WmT
T
m C ˇmC1wmC1e

T
m;

W T
m AVm D Tm

Next, using the results obtained above, we propose the Algorithm 4 for computing
the PageRank vector.

We now present the computation cost of the Lanczos algorithm in Table 1,
m is the dimension of tridiagonal matrix, and vm is the right singular vector
corresponding to the minimal singular value. The benefit of the Lanczos algorithm is
that the total computation cost is small. But one drawback of the Lanczos algorithm
is that we don’t know the optimal value of m. If the value of m increases, accuracy
may be improved, but the total computation cost also increases. From these facts, it
can be very difficult to know how to choose the optimal value of m a priori.
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Table 2 Iterations and
computation time for test
matrix 1 (4,298 � 4,298)

Arnoldi Lanczos
’ IT Time (s) IT Time (s)

0:85 4 0:884 10 0:677

0:90 4 0:904 10 0:677

0:95 4 0:904 10 0:677

0:99 5 1:121 10 0:677

Numerical Experiments

In this section, numerical results will be presented that compare the two methods
described in the previous sections on the test problems. All computing of numerical
experiments were done on the PC with 3.6 GHz and an eight-gigabyte memory in
using MATLAB R2012b. We will show these results to demonstrate the efficiency
of the Lanczos algorithm with SVD scheme. Here, we present that the test matrices,
Death Penalty, are obtained from the Web page [3]. First of all, we choose the
stopping criterion of the Arnoldi-type method as follows.

j�m QmC1umj1 � 1:0 � 10�6:

The computation cost of the Arnoldi method for one iteration,

2mn2 C 2m .mC 1/ nC 3mn

(see [6]), and the Lanczos method is 7mn2 C 12mn from Table 1 in the former
section “Lanczos Algorithm for Computing PageRank.” The Lanczos algorithm
requires more computation cost than the Arnoldi method, but the total computation
cost is less than Arnoldi method (Table 2). However, m increases, the total
computational cost is increasing, and more computational cost may require than the
Arnoldi method. Hence, it is important to choose the optimal value of m. In order
to choose the number of m and check the accuracy, we inspect the relative error
between the exact PageRank vector and computation PageRank vector as follows:

jm � cj 2;

where m is the exact PageRank vector and c is the computation PageRank vector.
Test matrix 1 is an ill-conditioned matrix, and test matrix 2 is a well-conditioned
matrix (see [3]). From Fig. 1, we can see that norm of relative error is completely
different by each of the matrix. Consequently, it is difficult to choose the optimal
value of m to minimize the total computation cost (CPU time), systematically. We
need aped up to compute the approximate value of the PageRank vector. From these
points, we consider the value of m D 10 as a practical value in these problems.
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Fig. 1 Relative error vs. iterations for test matrix 1 and 2 ([3])

Conclusion

In this paper, we proposed the new algorithm to compute the PageRank vector, using
a combined scheme of the Lanczos algorithm and SVD. Since the computation time
is dependent on the dimension m of the tridiagonal matrix, numerical results showed
that the computation time is constant. The proposed algorithm has the advantages
which do not depend on ’. If the accuracy of computation is not sufficient, we
need to increase the number of ’. Future work may include investigating how to
adaptively estimate the parameter m and exploring the performance of the proposed
algorithm as an acceleration technique for a variety of procedures of the PageRank
computation. At last, there are lots of applications which are based on random walks.
They are analogous in essence to the PageRank computation.
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Superconvergence of Discontinuous Galerkin
Method to Nonlinear Differential Equations

Helmi Temimi

Abstract In this paper, we investigate the superconvergence criteria of the discon-
tinuous Galerkin (DG) method applied to one-dimensional nonlinear differential
equations. We show numerically that the p-degree finite element (DG) solution is
O.
xpC2/ superconvergent at the roots of specific combined Jacobi polynomials.
Moreover, we used these results to construct efficient and asymptotically exact a
posteriori error estimates.

Keywords Discontinuous Galerkin method • Nonlinear boundary value problem
• Superconvergence

Introduction

The (DG) method was left asleep for many decades till the last twenty years
when it attracted the attention of several researchers and gained much popularity
due to its wide application and flexibility. Celiker and Cockburn [4] showed that
the p-degree (DG) solution and its derivative are, respectively, O.
xpC2/ and
O.
xpC1/ superconvergent at the p-degree right Radau and at p-degree left Radau
polynomials. Adjerid and Temimi [3] provided an original (DG) formulation applied
to higher-order initial value problem without introducing an auxiliary variable in
order to transform it into a first-order system. They showed that the p-degree DG
solution isO.
tpC2/ superconvergent at the roots of the .pC1�m/-degree Jacobi
polynomial Pm;0

pC1�m.�/ and that the DG solution and its first m � 1 derivatives are
O.
t2pC2�m/ superconvergent at the end of each step where m is the order of the
ordinary differential equation (ODE).
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The paper is organized as follows: in section “The Discontinuous Galerkin
Method”, we present the DG formulation for the nonlinear differential equations.
In section “Error Estimation for Nonlinear Boundary Value Problem”, we provide
an error estimation of DG method for nonlinear boundary value problem along with
several numerical results. In section “Conclusion”, we conclude with a few remarks.

The Discontinuous Galerkin Method

Let us consider the following nonlinear boundary value problem:

u00 C f .u/ D g.x/; a < x < b; (1a)

subjected to the Dirichlet boundary conditions

u.a/ D ul ; u.b/ D ur : (1b)

In order to implement the discontinuous Galerkin (DG) method, we first create a
partition, xk D k 
x; k D 0; 1; 2; � � � ; N C 1, 
x D b�a

NC1 with Ik D .xk; xkC1/
and define the piecewise polynomial spaces

Sn;p D fU W U jIk 2 Ppg; (2)

where Pp denotes the space of Legendre polynomials of degree p which will be
adopted as basis functions.

We define the weak discontinuous Galerkin (DG) formulation for (1) by multi-
plying (1a) by a test function and then integrating over Ik . After integrating by parts,
we obtain

u0vjxkC1
xk � uv0jtxC1

xk C
Z xkC1

xk

uv00dx�
Z xkC1

xk

f .u/vdx D
Z xkC1

xk

gvdx (3)

Let us replace u by Uk.x/ D U jŒxk;xkC1 2 Pp and v by V 2 Pp in (3), we obtain
for k D 0; 1; 2; � � � ; N and 8 V 2 Pp

OU 0
k.xkC1/V .x�

kC1/ � OU 0
k.xk/V .x

C
k /�

OUk.xkC1/V 0.x�
kC1/C OUk.xk/V 0.xC

k /CZ xkC1

xk

UkV
00dt �

Z xkC1

xk

f .Uk/Vdx D
Z xkC1

xk

gvdx: (4)
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where OUk.xk/, OUk.xkC1/, OU 0
k.xk/, and OU 0

k.xkC1/ are called numerical fluxes. These
terms arise from a double integration by parts, and an appropriate choice of
these fluxes will define a stable DG method. Therefore, let us choose for k D
1; 2; ; � � � ; N � 1

OUk.xkC1/ D Uk.x
�
kC1/; OUk.xk/ D Uk�1.x�

k /

and

OU 0
k.xkC1/ D U 0

kC1.xC
kC1/; OU 0

k.xk/ D U 0
k.x

C
k /

and

OU0.a/ D ul ; OUN .b/ D ur

and

OU 0
N .b/ D U 0

N .b
�/� p


x
.UN .b

�/ � ur /

Therefore, the discrete formulation consists of determining Uk.x/ D U jŒxk ;xkC1 2
Pp, such that 8 V 2 Pp

U 0
1.x

C
1 /V .x

�
1 / � U 0

0.a
C/V .aC/ � U0.x�

1 /V
0.x�

1 /CZ x1

a

U0V
00dx �

Z x1

a

f .U0/Vdx D �ulV
0.a�/ (5a)

and for k D 1; 2; ; � � � ; N � 1

U 0
kC1.xC

kC1/V .x
�
kC1/� U 0

k.x
C
k /V .x

C
k /�

Uk.x
�
kC1/V 0.x�

kC1/C Uk�1.x�
k /V

0.xC
k /CZ xkC1

xk

UkV
00dx �

Z xkC1

xk

.Uk/Vdx D 0 (5b)

and

U 0
N .b

�/V .b�/� U 0
N .x

C
N /V.x

C
N /C UN�1.x�

N /V
0.xC

N /C
Z b

xN

UNV
00dx �

Z b

xN

f .UN /Vdx D urV
0.b�/ (5c)
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Error Estimation for Nonlinear Boundary Value Problem

Error Estimation

Let us recall P˛;ˇ

k .�/ are Jacobi polynomials defined by the Rodrigues formula

P
˛;ˇ

k .�/ D .�1/k
2kkŠ

.1 � �/�˛.1C �/�ˇ
dk

d�k
Œ.1 � �/˛Ck.1C �/ˇCk;

˛; ˇ > �1; k D 0; 1; � � � : (6)

We note that Jacobi polynomials satisfy the orthogonality condition

Z 1

�1
.1 � �/˛.1C �/ˇP

˛;ˇ

k .�/P
˛;ˇ

l .�/d� D ckıkl ; (7)

where ck > 0 and ıkl is the Kronecker symbol equal to 1 if k D l and 0, otherwise.
We further note that P0;0

k D Pk , the kth-degree Legendre polynomial.

Lemma 1. Let u and U be respectively solutions of (1) and (5); therefore,

u � U D QpC1.	/CO.
xpC1/ (8)

where the leading term of the discretization error is given by

QpC1.	/ D ˛pC1.	 � 1/

"
P1;0
p .	/C

�
p C 1

p

�2
P
1;0
p�1.	/

#
: (9)

ut
and

Lemma 2. Let u 2 C2pC2 and Uk 2 Pp; p � 2; be the solutions of (1) and (5);
then the DG solution is superconvergent at the interior points x8j

e.x�
j / D O.
xpC2/; j D 1; � � � ; p;

where x�
j are the shifted roots of

	
P1;0
p .	/C

�
pC1
p

�2
P
1;0
p�1.	/



to each element.

ut
Moreover, we construct a posteriori error estimates for 1.

We replace u D ek CUk in (1a), multiply by a test function V and, integrate over
Œxk; xkC1 to obtain
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Z xkC1

xk

�
.ek C Uk/

00 C f .ek C Uk/
�
Vdx D

Z xkC1

xk

g.x/Vdx; (10)

where Uk 2 Pp is the DG solution of (1) and ek the discontinuous Galerkin error
on Œxk; xkC1 defined by

ek � Ek D ˛pC1;k QPpC1.x/ (11)

where QPpC1.x/ is obtained by mapping

PpC1.	/ D .	 � 1/

	
P1;0
p .	/C .

p C 1

p
/2P 1;0

p�1.	/



to Œxk; xkC1.
Testing against V D QPpC1 and solving (10) for ˛pC1;k .
we measure the accuracy of a posteriori error estimates using the effectivity index

defined by

� D

s
NP
kD0

jjEkjj2k
s

NP
kD0

jju � Ukjj2k
:

A posteriori error estimates are considered asymptotically exact, if the effectivity
index converges to 1 under
x or p refinements.

Computational Results

Let us consider the following nonlinear boundary value problem:

u00 C ln.u/ D exp.x/C x; 0 < x < 1; (12a)

subjected to

u.0/ D 1; u.1/ D exp.1/: (12b)

The exact solution for 12 is u.x/ D exp.x/. We solve (12) using a uniform mesh
with 
x D 0:1 and p D 2; 3; 4; 5, and we plot the error u � U versus x in Figs. 1
and 2.

In Fig. 3, we plot jjejj versus N in a log-log graph in order to obtain
the convergence rates for e. We conclude that jjejj D O.
xpC1/. Figure 4
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Fig. 1 The error curves of
u � U for problem (12) on
uniform meshes (N D 10)
for p D 2 (top) and p D 3

with roots of mapped
polynomials	
P 1;0
p .	/C

�
pC1

p

�2
P
1;0
p�1.	/
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Fig. 2 The error curves of
u � U for problem (12) on
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Fig. 3 The L2-norm of the
error jjejj using p D 2; 3; 4

versus N
10

−4

10
−6

p=2, Slope=−3.08
p=3, Slope=−4.04
p=4, Slope=−5.03

10
−8

|| 
u-
U

 ||

10
−10

10
−12

18 20 22 24

N

26 28 30

Fig. 4 The L1-norm of the
error e at roots of mapped
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Table 1 The effectivity
indices of the DG method for
problem (12) versus N using
p D 2; 3; 4

�

N p D 2 p D 3 p D 4

20 9.8823e�001 1.0013 9.8758

25 9.9060e�001 1.0010 9.9056

30 9.9218e�001 1.0009 9.9376

35 9.9330e�001 1.0007 9.9649

40 9.9414e�001 1.0006 1.0018

shows that the error is superconvergent at roots x�
j of the mapped polynomials	

P1;0
p .	/C

�
pC1
p

�2
P
1;0
p�1.	/



. Thus, jje.x�

j /jj1 D O.
xpC2/. Table 1 exhibits

the convergence of the effectivity index to 1 under p and 
x refinement which
reveals that a posteriori error estimates are asymptotically exact
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Conclusion

In this paper, we present an error estimation of the discontinuous Galerkin method
developed by Cheng and Shu [5] applied to nonlinear boundary value problems.
We show that the leading term of the DG error is proportional to PpC1.	/ D
.	 � 1/

	
P1;0
p .	/C

�
pC1
p

�2
P
1;0
p�1.	/



; therefore, the p-degree finite element (DG)

solution isO.
xpC2/ superconvergent at the shifted roots ofPpC1.	/. We use these
superconvergence results to compute efficient and asymptotically exact a posteriori
error estimates.

Acknowledgements We acknowledge the Gulf University for Science and Technology (GUST)
for partially supporting this research in terms of conference grants.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)
2. Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for

discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng.
191, 1097–1112 (2002)

3. Adjerid, S., Temimi, H.: A discontinuous Galerkin Method for higher-order ordinary differential
equations. Comput. Methods Appl. Mech. Eng. 197, 202–218 (2007)

4. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces for discontinuous Galerkin
and hybridized methods for convection-diffusion problems in one space dimension. Math.
Comput. 76(257), 67–96 (2007)

5. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent
partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

6. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin methods
for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin finite element method for
convection-diffusion systems. SIAM J. Numer. Anal. 35, 2240–2463 (1998)

8. Le Saint, P., Raviart, P.: On a finite element method for solving the neutron transport equations.
In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations,
pp. 89–145. Academic, New York (1974)

9. Szego, G.: Orthogonal Polynomials. American Mathematical Society, Rhode Island (1975)



A Least Squares Approach for Exponential
Rate of Convergence of Eigenfunctions
of Second-Order Elliptic Eigenvalue Problems

Lokendra K. Balyan

Abstract In this paper, we show the convergence estimates for eigenvalues and
eigenvectors of second-order elliptic eigenvalue problems using spectral element
method. A least squares approach is used to prove that the eigenvalues and eigenvec-
tors converge exponentially in P , degree of polynomials, when the boundary of the
domains is to be assumed sufficiently smooth and the coefficients of the differential
operator are analytic.

Keywords Approximation of eigenvalues and eigenvectors • Compact operator •
Nonconforming • Spectral element method • Elliptic operators • Smooth
boundary

Introduction

The study of eigenvalues/eigenfunctions is very important in science and engineer-
ing, particularly in physics, civil engineering, and aeronautical engineering. In this
paper the author has proved the rate of convergence of eigenvalues and eigenvectors
of elliptic operator where the coefficients of the operator and the boundary of the
domain are sufficiently smooth. In [7, 11] have proved the similar convergence result
for elliptic system on non-smooth domain. The author et al. have discussed the least
squares nonconforming spectral element method for elliptic eigenvalue problems
in [4]. We approximate eigenvalues and corresponding subspaces of generalized
eigenfunctions are in terms of compact operators [8].

We shall consider a compact operator T W V ! V; V is a Banach space,
and a family of compact operators T P W V ! V; such that T P ! T in H1

norm, as P ! 1. We obtained the estimates which show how the eigenvalues
and eigenvectors of T are approximated by those of T P [9]. In [5] Bramble and
Osborn developed spectral approximation results for a class of compact operators on
a Hilbert space and applied them to obtain convergence estimates for the eigenvalues
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and generalized eigenvectors of non-self-adjoint elliptic boundary value problems.
Later in [9], Osborn presented the spectral approximation results for compact
operators on a Banach space. He formulated the results in terms of the norm on
the underlying Banach spaces.

We use least squares approach to discretize the partial differential equations. In
literature, there exist several methods for differential equations, but each method
has its own conditions under which their performance is measurable. However, the
least squares method works on uniform policy, and it has a unified formulation
for the numerical solution of all kinds of differential equations. Least squares
approach for spectral element methods needs less degrees of freedom to obtain
the prescribed level of accuracy; however, the amount of work that needs to be
done for each degree of freedom is higher. Variation formulation approach to find
out the solution of eigenvalues problems must impose the boundary condition on
test and trail functions. To avoid this, least squares methods for elliptic eigenvalue
problems were first proposed by Bramble and Schatz on smooth domains [6].
They constructed a finite dimensional subspace of H2.�/ for which the method
employs C1 elements and the functions need not satisfy the boundary conditions.
However, the requirement of first-order continuity on the finite element space causes
the numerical solution of the problem to be computationally demanding, and it is
difficult to parallelize the method.

We minimize the sum of the residuals in the partial differential equations and a
fractional Sobolev norm of the residuals in the boundary conditions and enforce
continuity by adding a term which measures the jump in the function and its
derivatives at inter-element boundaries in fractional Sobolev norms to the functional
being minimized.

The outline of the paper is as follows. In section “Discretization and Prior Esti-
mations”, we define the elliptic eigenvalue problem and discuss how to discretize the
domain. We close this section by stating the stability theorem for elliptic eigenvalue
problems on smooth domain. In section “Main Result”, the convergence estimates
for eigenvalues and eigenvectors are presented.

Discretization and Prior Estimations

In this section we state our problem over the domain whose boundaries are smooth.
We discretize the domain and define the nonconforming spectral element functions
over the domain.

Consider the second-order elliptic eigenvalue problem on domain � 	 R2: We
seek the eigenvalue � and eigenfunction u.x/ satisfying

Lu D �u.x/ in �;

Bu D 0 on @�: (1)
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where the operator Lu is defined

�
2X

i;jD1

@

@xi

�
ai;j .x/

@u

@xj

�
C

2X
iD1

bi .x/
@u

@xi
C c .x/u;

and the coefficients of elliptic operators ai;j .x/ D aj;i .x/; bi .x/ and c.x/ are
analytic functions of x. Further, the boundary operatorBu D u denotes the Dirichlet
boundary condition and Bu D �

@u
@N

�
A

denotes the Neumann boundary condition,

where
�
@u
@N

�
A

is the conormal derivative of u. Let A denote the 2 � 2 matrix whose

entries are given by Ai;j .x/ D ai;j .x/, for i; j D 1; 2 [3]. Then
�
@u
@N

�
A

is defined as

�
@u

@N

�

A

D
2X

i;jD1
ai;j nj

@u

@xi
; (2)

where n.x/ D .n1; n2/ is the exterior unit normal to @� at x. Here, @� denotes the
boundary of the domain.

We divide �, Fig. 1, into a fixed number of quadrilateral elements
�1;�2; : : : ;�r : Let us define the set of nonconforming spectral element functions
fu1; u2; : : : ; urg as follows. The spectral element function Oui is defined on S as

Oui .	; �/ D
PX
kD0

PX
lD0

ak;l 	
k�l : (3)

Define a smooth mappingMi from the master squares S D .�1; 1/2 to �i by

xj D .Xi/j .	; �/ for j D 1; 2:

Then u is given by

ui .x1; x2/ D Oui .M�1
i .x1; x2//:

Fig. 1 The domain � is
divided into elements
�1;�2; : : : �r
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We now describe the terms which shall be needed in sequel. We define

.um/x1 D .Oum/		x1 C .Oum/��x1 ;

.um/x2 D .Oum/		x2 C .Oum/��x2 :
Let �s be a side common to the elements �m and�n: We may assume that �s is the
image of � D �1 under the mapping Mm which maps S to �m and also the image
of � D 1 under the mapping Mn which maps S to �n: We now define the jumps at
the inter-element Boundaries:

kŒuk20;�s D kOum.	;�1/� Oun.	; 1/k20;I ; (4)

kŒ.ux1/k21=2;�s D k.um/x1.	;�1/� .un/x1.	; 1/k21=2;I ;
kŒ.ux2/k21=2;�s D k.um/x2.	;�1/� .un/x2.	; 1/k21=2;I :

Here I D (-1,1).
Now we define

Z

�i

j Lui j2 dx1dx2 D
Z

S

j Lui j2 Ji d	d�: (5)

Here Ji .	; �/ is the Jacobian of the mappingMi from S to�i . Let OLi Oui D p
Ji Lui

and OFi .	; �/ D f .Mi.	; �//
p
Ji .	; �/ [4].

Thus,
Z

�i

j Lui j2 dx1dx2 D
Z

S

j OLi Oui j2 d	d�: (6)

Define the quadratic form

VP .Ou1; Ou2; : : : ; Our / D Pr
iD1

 OLi Oui

2

0;S
(7)

CP
�j2�

�
kŒuk20;�jC kŒux1 k21

2 ;�j
C kŒux2 k21

2 ;�j

�

CP
�j2@� kBuk2�;�j :

Here � D 3=2 if Bu D u and � D 1=2 if Bu D �
@u
@N

�
A

. Let �s be a side of the
element �m corresponding to � D 1 such that �s 	 @�, and let Bu D u denote the
Dirichlet boundary conditions [4]. Then

kBuk23
2 ;�s

D kum.	; 1/k20;I C k@um
@T

.	; 1/k21
2 ;I
:

Here @um
@T

denotes the tangential derivative along the curve �s: Similarly if Bu D�
@u
@N

�
A

, the Neumann boundary condition, we can define kBuk21
2 ;�s
:
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Then the following stability theorem holds which is a special case of Theorem 2.1
for smooth domains in [7].

Theorem 1. There is a constant C > 0 such that

rX
iD1

k Oui k22;S � C .lnP /2 VP .Ou1; Ou2; : : : ; Our /: (8)

Main Result

Let T W V ! V be a compact operator, V is a Banach space, and a family
of compact operators T P W V ! V . In this paper, we present the convergence
estimates for eigenvalues and eigenvectors in terms of compact operator by using
the results of [9].

Let f 2 Hs.�/ with s > 0: Then by the shift theorem for elliptic boundary
value problems u 2 HsC2.�/ [1]. Henceforth, V will denote the space H1.�/. Let
T denote an operator defined by

T .f / D u;

where f 2 H1.�/. Then T is a compact operator from V ! V . It follows that
.�; u/ is an eigenpair of (1) if and only if .� D ��1; u/ is an eigenpair of the
operator T [3, 9].

Theorem 1. Let the coefficients of the elliptic operator and the boundary of
the domain � be analytic. Let � and �j .P / be an eigenvalue of T and T P ,
respectively, such that �j .P / converges to �: Let uj .P / be an unit eigenvector
of T P corresponding to �j .P /. Then there exists an eigenvector u of T such that

j � � �j .P / j� k.T � T P /f k � c e�bP ; and

ku � uj .P /k � k.T � T P /f k � c e�bP :

Here c and b denote constants.

Proof. Let u 2 Hs.�/: Define OUi.	; �/ D u .Mi.	; �// for .	; �/ 2 S and
Ovi .	; �/ D …P OUi be the orthogonal projection of OUi into the space of polynomials
of degree P in each variable separately with respect to the inner product in H2.S/.
Then the following estimates hold from Theorem 4.46 of [10]:

k OUi � Ovik22;S � CsP
�2sC8k OUik2s;S ; (9)

where s � 5 and P � s � 3; where Cs D c e2s:
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Let Li denote the differential operator with analytic coefficients such that
Z

�i

Z
.Lv.x; y//2dxdy D

Z

S

Z
.Li Ov.	; �//2d	d�;

where

Li Ov.	; �/ D Ai Ov		 C 2Bi Ov	� C Ci Ov�� C Di Ov	 C Ei Ov� C Fi Ov:
Since u and Mi are analytic, we can show that there exist constants C and d such
that

j D˛1
	 D

˛2
�

OUi j� C dssŠ

for all .	; �/ 2 S and j˛j � s [2, 11].
Now, we estimate the residuals in the partial differential equation

Li Ovi � OFi

2

0;S
�
Li Ovi � Li OUi


2

0;S
� C

 Ovi � OUi

2

2;S
: (10)

Hence,

Li Ovi � OFi

2

0;S
� CsP

�2sC8.C d ssŠ/2: (11)

Next, we show how to estimate the jumps defined in functional

�
kŒvk20;�j C kŒvx1 k21

2 ;�j
C kŒvx2 k21

2 ;�j

�

for any �j � �: Here �j is a side common to �m and�n for some m and n: Then

kŒvk20;�j D
Z 1

�1
. Ovm.	;�1/ � Ovn.	; 1//2 d	

� 2

�Z 1

�1

�
Ovm.	;�1/� OUm.	;�1/

�2
d	

C
Z 1

�1

�
Ovn.	; 1/� OUn.	; 1/

�2
d	

�

� CsP
�2sC8.C d ssŠ/2: (12)

Now,

kŒvx1 k21
2 ;�j

D �. Ovm/	 	x1 C . Ovm/� �x1
�
.	;�1/

� �
. Ovn/	 	x1 C . Ovn/� �x1

�
.	; 1/

2
1
2 ;I
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� 4

�
��
. Ovm/	 � . OUm/	

�
	x1

�
.	;�1/


2

1
2 ;I

C

��
. Ovm/� � . OUm/�

�
�x1

�
.	;�1/


2

1
2 ;I

C

��
. Ovn/	 � . OUn/	

�
	x1

�
.	; 1/


2

1
2 ;I

C

��
. Ovn/� � . OUn/�

�
�x1

�
.	; 1/


2

1
2 ;I

�
:

We have

kabk1=2;I � Ckak1;1;I kbk1=2;I :
Putting all these estimates together, we can conclude that

kŒvx1 k21
2 ;�j

� CsP
�2sC8.C d ssŠ/2: (13)

Similarly we can show that

kŒvx2 k21
2 ;�j

� CsP
�2sC8.C d ssŠ/2; (14)

and the remaining terms can be estimated in the same manner.
Hence, we can conclude that

RP . Ov1; : : : ; Ovr/ � K
�
CsP

�2sC8.C d ssŠ/2
�
: (15)

where the functional RP . Ov1; Ov2; : : : ; Ovr/ is defined as per (7).

RP . Ov1; Ov2; : : : ; Ovr/ D Pr
iD1 k OLi Ovi � OFik20;S

CP
�j2�

�
kŒvk20;�j C kŒvx1 k21

2 ;�j
C kŒvx2 k21

2 ;�j

�

CP
�j2@� kBvk2�;�j :

We now use Stirling’s formula

nŠ 
 p
2�n e�nnn:

Let s D ‡P; where ‡ is a constant. Then

RP . Ov1; : : : ; Ovr/ � K.2�‡P/C e2sP 8e�2s
�
ds

P

�2s

� C‡P9 .d‡/2‡P : (16)

We choose ‡ so that d‡ < 1.
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Then using Theorem 3.1 of [11], there exist constants c; b > 0 such that the
estimate

RP . Ov1; : : : ; Ovr/ � C e�bP (17)

holds.
Let the set of spectral element functions f Ow1; Ow2; : : : ; Owr g be our approximate

solution which minimizes the functional RP . Ov1; Ov2; : : : ; Ovr/.
Thus,

RP . Ow1; : : : ; Owr / � C e�bP : (18)

Therefore, we can conclude that

RP . Ov1 � Ow1; : : : ; Ovr � Owr / � C e�bP ; (19)

Hence, by using the stability theorem, there exist constants k and c such that

rX
iD1

k Ovi � Owik22;S � k e�cP

holds.
Now, we make corrections so that the corrected solution is conforming and

belongs to H1.�/:

Thus, the error estimate

kvc � wckH1.�/ � k e�cP (20)

holds for P large enough. Here, k and c denote generic constants.
Clearly

ku � vckH1.�/ � k e�cP : (21)

Hence,

ku � wckH1.�/ � k e�cP : (22)

Here k and c denote generic constants. Define the operator

T P .f / D wc

Then T P is an operator from V ! V; where V D H1.�/: Then T P is a compact
operator since its image is finite.
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Therefore, Eq. (22) can be written as

k.T � T P /f kH1.�/ � k e�cP : (23)

By using the Theorems (1, 2) of [9], we obtain the results.

Conclusion

We have shown the convergence estimates for the eigenvalues and eigenvectors
using spectral element methods when the boundary of the domain is smooth
and the coefficients of differential operator are analytic. We estimate the errors
for eigenvalues and eigenvectors using least squares methods. We used fully
nonconforming approach and considered the jumps between two elements. It has
been shown that the eigenvalues and eigenvectors of second-order elliptic operator
exponentially converge.
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Multivariable Polynomials for the Construction
of Binary Sensing Matrices

R. Ramu Naidu, Phanindra Jampana, and Sastry S. Challa

Abstract In compressed sensing, the matrices that satisfy restricted isometry
property (RIP) play an important role. But to date, very few results for designing
such matrices are available. Of interest in several applications is a matrix whose
elements are 0’s and 1’s (in short, 0; 1-matrix), excluding column normalization
factors. Recently, DeVore (J Complexity 23:918–925, 2007) has constructed deter-
ministic 0; 1-matrices that obey sparse recovery properties such as RIP. The present
work extends the ideas embedded in DeVore (J Complexity 23:918–925, 2007) and
shows that the 0; 1-matrices of different sizes can be constructed using multivariable
homogeneous polynomials.

Keywords Compressed sensing • Restricted isometry property • Deterministic
construction • Multivariable homogeneous polynomials

Introduction

Compressed sensing (CS) aims at recovering high-dimensional sparse vectors from
considerably fewer linear measurements. The problem of sparse recovery through
l0 norm minimization (i.e., minimization of number of nonzero components in the
solution to be obtained) is not tractable. Chen and Donoho [7], Donoho et al. [11],
Candes [3], Candes et al. [4], Candes and Tao [6] and Cohen et al. [8] have made
several pioneering contributions and have reposed the problem as a simple linear
programming problem (LPP). They have then established the conditions that ensure
the stated equivalence between the original l0 problem and its reposed version.
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It is known that RIP is one sufficient condition to ensure the equivalence. Random
matrices such as Gaussian or Bernoulli as their entries satisfy RIP with high
probability.

DeVore [9] has constructed deterministic RIP matrices with 0’s and 1’s as
elements (excluding column normalization factors) using general univariate poly-
nomials on finite fields. In the present work, we extend the ideas developed in [9]
and construct 0; 1-matrices that satisfy RIP with different row and column sizes
using homogeneous multivariable polynomials.

The paper is organized into several sections. In sections “Sparse Recovery from
Linear Measurements” and “On the Equivalence Between P0 and P1 Problems”,
we present basic CS theory and conditions that ensure the equivalence between
l0-norm problem and its LPP version problems. Motivated by the deterministic
construction methodology proposed in [9], we present in section “Deterministic CS
Matrices Through Multivariable Homogeneous Polynomials” our extension, which
is based on homogeneous two-variable polynomials over finite fields. In section “On
Constructing Circulant RIP Matrices”, we extend the ideas to deal with circulant
matrices. While in section “Generalization from Two Variables to n Variables”, we
state the results for n-variable homogeneous polynomials. In the last section, we
present our concluding remarks.

Sparse Recovery from Linear Measurements

As stated already, CS refers to the problem of reconstruction of an unknown vector
u 2 R

m from the linear measurements y D .hu;  1i; : : : ; hu;  ni/ 2 R
n with hu;  j i

being the inner product between u and  j . The basic objective in CS is to design
a recovery procedure based on the sparsity assumption on u when the number of
measurements n is much small compared to m. Sparse representations seem to
have merit for various applications in areas such as image/signal processing and
numerical computation.

A vector u 2 R
m is k-spare if it has at most k nonzero coordinates. The problem

of obtaining the sparse vector from its linear measurements may be posed as

P0 W min
v

kvk0 subject to ‰v D y: (1)

Here, kvk0 D jfi j vi ¤ 0gj :
Donoho and others [7, 11] have provided the conditions under which the solution

to P0 is the same as that of the following LPP:

P1 W min
v

kvk1 subject to ‰v D y: (2)

Here, kvk1 denotes the l1-norm of the vector v 2 R
m. Denote the solution to P1 by

f‰.y/ and solution to P0 by u0‰.y/ 2 R
m.
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On the Equivalence Between P0 and P1 Problems

Definition 1. The mutual coherence �.‰/ of a given matrix ‰ is the largest
absolute normalized inner product between different columns of ‰. Denoting the
k-th column in ‰ by  k , the mutual coherence is given by

�.‰/ D max
1� i;j� m; i¤j

j  Ti  j j
k ik2k j k2 : (3)

It is known [11] that for �-coherent matrices ‰, one has

u0‰.y/ D f‰.y/ D u; (4)

provided u is k-sparse with k < 1
2
.1 C 1

�
/: Donoho [10] has given sufficient

conditions on the matrix ‰ for (4) to hold.
Candes and Tao [5] have introduced the following isometry condition on matrices

‰ and have established its important role in CS.

Definition 2. An n � m matrix ‰ is said to satisfy the Restricted Isometry
Property (RIP) of order k with constant ık if for all k-sparse vectors x 2 R

m,
we have

.1 � ık/ kxk2l2 � k‰xk2l2 � .1C ık/ kxk2l2 : (5)

Candes and Tao [5] have shown that whenever ‰ satisfies RIP of order 3k with
ı3k < 1; the CS reconstruction error satisfies the following estimate:

ku � f‰.‰u/klm2 � Ck
�1
2 �k.u/lm1 ; (6)

where �k.u/lm1 denotes the l1 error of the best k-term approximation and the constant
C depends only on ı3k. This means that the bigger the value of k for which we can
verify the RIP, then the better guarantee we have on the performance of ‰.

One of the important problems in CS theory deals with constructing CS matrices
that satisfy the RIP for the largest possible range of k. It is known that the widest
range possible is k � C n

log. mn /
[1, 9, 13, 14]. However, the only known matrices that

satisfy the RIP for this range are based on random constructions.
Baraniuk et al. [1] have verified the RIP for random matrices with some

probability using the following concentration of measure inequality:

Pr.
ˇ̌
ˇk‰.!/uk2l2 � kuk2l2

ˇ̌
ˇ � � kuk2l2 / � 2e�nc0.�/; 0 < � < 1: (7)

where the probability is taken over all n �m matrices ‰.!/ and c0.�/ is a constant
dependent only on � such that for all � 2 .0; 1/, c0.�/ > 0.
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There are, however, no deterministic constructions for k being equal to n
log. mn /

.
To the best of our knowledge, designing the good deterministic constructions of
RIP matrices is still an open problem. DeVore [9], Nelson and Temlyakov [16] have
constructed deterministic RIP matrices. DeVore has constructed 0; 1-RIP matrix
using univariable polynomials. In the present work, we attempt to extend DeVore’s
work and construct 0; 1-matrices based on multivariable homogeneous polynomials.
The advantage of using such polynomials is that matrices of different sizes can be
constructed.

Deterministic CS Matrices Through Multivariable
Homogeneous Polynomials

In this section, we present our deterministic construction procedure that is based on
multivariable homogeneous polynomials. To begin with, we consider homogeneous
polynomials in two variables, and later on we extend our methodology using
homogeneous polynomials in n variables. As in [9], we shall consider only the case
where F has a prime order and hence is a field of integers modulo p (Zp). The
results we prove can be established for other finite fields also.

Given any integer 2 < r � p, define Pr to be the set of all homogeneous
polynomials in two variables of degree r over Zp . LetQ.x; y/ 2 Pr be represented
as Q.x; y/ D P

iCjDr aij xi yj , where the coefficients aij 2 Zp . Clearly the
cardinality of Pr is m D prC1 � 1 (�1 for removing the zero polynomial). Any
Q.x; y/ 2 Pr , is a mapping from Zp � Zp to Zp . The graph of Q.x; y/ is G.Q/ D˚
.x; y;Q.x; y// j .x; y/ 2 Zp � Zp

� 	 Zp � Zp � Zp , with jZp � Zp � Zpj D
p3 D n.

We order the elements ofZp�Zp�Zp lexicographically as .0; 0; 0/; ; : : : .0; p�1;
p�1/; .1; 0; 0/; : : : .p�1; p�1p�1/. For anyQ.x; y/ 2 Pr , denote VQ the vector
indexed on Zp � Zp � Zp which takes value one at any ordered pair from the graph
of Q.x; y/ and takes the value zero otherwise. There are exactly p2 ones in VQ.
Define the matrix ˆ with columns VQ;Q.x; y/ 2 Pr , with these columns ordered
lexicographically with respect to the coefficients of the polynomials. Then the size
of the matrix is n�m, that is, p3� .prC1�1/: The following theorem [15] provides
an upper bound on the number of zeros of a homogeneous polynomial Q 2 Pr
in F

2
q .

Theorem 1. Let f 2 FqŒx1; : : : xj  be homogeneous polynomial with deg.f / D
r � 1. Then the equation f .x1; : : : xj / D 0 has at most r.qj�1 � 1/C 1 solutions

in F
j
q , where Fq is a finite field of characteristic p and q D pi ; i 2 Z

C:

The following proposition relates the RIP constant ık and �:

Proposition 2. Suppose that �1; : : : ; �m are the unit norm columns of the matrixˆ
and have coherence�. Thenˆ satisfies RIP of order k with constant ık D .k�1/�.
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Using the above Theorem 1 and Proposition 2 [2, 12], we prove that the matrix ˆ
so constructed satisfies RIP, as detailed below:

Theorem 3. The matrix ˆ0 D 1
p
ˆ satisfies the RIP with ık D k�1.r.p�1/C1/

p2
for

any k < p2

r.p�1/C1 C 1.

Proof. Let VQ; VR be two different columns from ˆ. For any Q;R 2 Pr with
Q ¤ R, there are at most r.p � 1/ C 1 values of Zp � Zp such that Q.x; y/ D
R.x; y/.

Therefore, the inner product between any two different columns of ˆ is at most
equal to r.p � 1/C 1. It follows that coherence of the matrix ˆ is �.ˆ/, which is
at most equal to r.p�1/C1

p2
. From the above proposition 4:2, ˆ satisfies the RIP with

ık D .k � 1/
r.p�1/C1

p2
. For ık < 1, k < p2

r.p�1/C1 C 1. Hence, ˆ satisfies RIP of
order k: ut
Remark 1. Since n D p3; m D prC1 � 1, and k � 1 <

p2

r.p�1/C1 , we get p D
n
1
3 ; r D log.mC1/

logp � 1. Consequently,

k.n;m/ � n
2
3 log.n/

1
3

n
1
3 log

�
mC1
n
1
3

�
C log

�
n
2
3

mC1

� : (8)

From this we can easily get that n
1
3 � k.n;m/.

Remark 2. The size of the matrix obtained in [9] is p2 �p.rC1/ and of our matrix is
p3 � p.rC1/ � 1. Therefore, it may be concluded that our methodology allows us to
construct a different class of 0; 1-matrices. So far in this construction, the field that
is considered is Zp . If we consider any finite field Fq; q D pi ; i 2 Z

C in place of
Zp , then sizes of Devore’s and our matrices becomep2n�pn.rC1/, p3n�pn.rC1/�1,
respectively.

On Constructing Circulant RIP Matrices

Motivated by the results of [9], we also extend our construction to deal with
circulant matrices ˆ D .�ij /. The circulant matrix is completely determined
by its first l columns. Subsequent blocks of l columns are obtained by cyclic
shifts of the rows of the first block. For choosing the first l columns of ˆ, we
define an equivalence relation on Pr . For P;Q 2 Pr , P v Q iff there exists
0 ¤ � 2 Zp such that P.x; y/ D �Q.x; y/;8.x; y/ 2 Zp � Zp: Given
P 2 Pr ; let ŒP  D ˚

��1P j0 ¤ � 2 Zp

�
and then j ŒP  j D p�1; jPr j D prC1�1.

Therefore, there are prC1�1
p�1 distinct equivalence classes in Pr . Let �r be a set

which consists of one representation from each of the equivalence classes. Then the
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cardinality of �r is prC1�1
p�1 . The polynomials from �r represent the first l columns.

Hence, l D j�r j. Since n D p3 and these l columns can be shifted in cyclic way p3

times, the matrix can be written as

�ij D �..i�k/ mod p3/.j mod l/

where kl � j < .k C 1/l for 0 � i < p3 and 0 � j < m WD .
prC1�1
p�1 /p3 D

prC3 C prC2 C : : :C p3:

Now define the circulant matrix ˆ0 of size n � m whose first l columns are
VQ;Q.x; y/ 2 �r , written in lexicographic order with respect to the coefficients of
the polynomials. We can find ones in shifted columns in the following way:

Consider the i th-block, 0 � i � n�1. As n D p3, we can write i D aCbpCcp2,
where a; b; c 2 f0; : : : ; p � 1g. Each column in this block will be the cyclic shift
of a column VQ in the first block. The entry in the .x; y; z/ position of VQ will
now occupy the position .x0; y0; z0/ in the i th-block, where z0 D z C i D z C
a .mod p/; y0 D yCb or yCbC1 .mod p/; x0 D xCc or xCcC1.mod p/.
Since the ones in VQ occur precisely in the position .x; y;Q.x; y//, the new ones in
the corresponding column of block i will occur at .x0; y0; z0/;where z0 D Q.x; y/C
a .mod p/; y0 D yCb or yCbC1 .mod p/; x0 D xCc or xCcC1.mod p/.

The following theorem [15] provides an upper bound on the number of zeros of
a multivariable polynomialQ.x; y/ in F

2
q .

Theorem 4. Let f 2 FqŒx1; : : : xn be a polynomial with deg.f / D r � 1. Then
the equation f .x1; : : : xn/ D 0 has at most rqn�1 solutions in F

n
q , where the Fq is

the finite field of characteristic p, q D pn; n 2 Z
C:

The following lemma bounds the inner product of any two columns of ˆ0.

Lemma 5. The inner product between any two different columns of the matrix ˆ0
is jV �W j � 24rp.

Proof. Let V and W be any two columns of ˆ0. Then there exist Q;R 2 �r such
that V and W are the cyclic shift of vectors VQ; VR. As we have observed above,
there are integers a0; b0; c0 (depending only on V ) such that any one in column V
occurs at a position .x0; y0; z0/ iff z0 D Q.x; y/ C a0 .mod p/; y0 D y C b0 C
�0 .mod p/; x0 D x C c0 C �1.mod p/ with .x; y/ 2 Zp � Zp , �0; �1 2 f0; 1g.
Similarly a one occurs in column W at position .x00; y00; z00/ iff z00 D R.x; y/ C
a1 .mod p/; y00 D y C b1 C �0

0 .mod p/; x00 D x C c1 C �0
1.mod p/ with

.x; y/ 2 Zp � Zp and �0
0; �

0
1 2 f0; 1g. The inner product V � W counts the number

of row positions for which there is a one at common places of these two columns.
In other words, that is, .x0; y0; z0/ D .x00; y00; z00/, which is the same as
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x C c0 C �1 D x C c1 C �0
1;

y C b0 C �0 D y C b1 C �0
0

Q.x; y/C a0 D R.x; y/C a1.mod p/:

(9)

Case 1: If Q ¤ R, we fix one of the 24 possibilities for �0; �0
0; �1; �

0
1. (9) implies

that x D x C d; y D y C e and R.x C d; y C e/ D Q.x; y/C a; .mod p/

where a D a0�a1; d D c0C�1�c1��0
1; e D b0C�0�b1��0

0. SinceQ ¤ R and
Q;R are homogeneous, we have R.:C .d; e// ¤ Q.:/C a;8.x; y/ 2 Zp �Zp .
Therefore, R.:C .d; e//�Q.:/ � a is a nonzero, nonhomogeneous polynomial
of degree r . In this case, the only possible .x; y/0s which satisfy (9) are zeros
of R.: C .d; e// � Q.:/ � a. As R.: C .d; e// � Q.:/ � a is nonhomogeneous
two-variable polynomial, from theorem 4, it has at most rp roots. Since there are
24 possibilities for �0; �0

0; �1; �
0
1; jV �W j � 24rp.

Case 2: If Q D R, then (9) implies that x D x C d; y D y C e and Q.x C d;

y C e/ D Q.x; y/ C a. Suppose Q.: C .d; e//  Q.:/ C a; which implies
that Q.: C .d; e// � a  Q.:/. Since Q.: C .d; e// � a is a nonhomogeneous
polynomial, Q is nonhomogeneous, which is a contradiction. Hence, Q.: C
.d; e//�Q.:/�a is a nonzero, nonhomogeneous polynomial of degree at most r .
Consequently, it has at most rp roots, which implies that jV �W j � 24rp. ut

Therefore, the coherence of the circulant matrix is �.ˆ0/ � 24rp

p2
:

Theorem 6. The circulant matrix ˆ1 D 1
p
ˆ0 has the RIP with ık D 24.k � 1/ r

p

whenever k � 1 <
p

24r
.

Proof. Proof is the same as that of Theorem 3. ut

Generalization from Two Variables to n Variables

In the above construction, we have used homogeneous polynomials in two variables
over Zp . This idea can, however, be extended to deal with homogeneous polyno-
mials in n variables over Zp . Given any integer 2 < r < p, define Pr to be a set
of all homogeneous polynomials in n variables of degree r over Zp . Let fn.r/ be a
cardinality of a set of all integer solutions such that i1 C i2 C : : : C in D r: Then
using the following relation

nX
kD1

k.k C 1/.k C 2/ : : : .k Cm/ D n.nC 1/.nC 2/ : : : .nCmC 1/

mC 2
; (10)
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and the following recursive formula

f2.r/ D r C 1

f3.r/ D
rX
iD0

f2.r � i/

f4.r/ D
rX
iD0

f3.r � i/

:::

fn.r/ D
rX
iD0

fn�1.r � i/;

(11)

one may easily show that fn.r/ D �
rC.n�1/
n�1

�
. Therefore, the cardinality of Pr D

pfn.r/ � 1 D p.
rC.n�1/
n�1 / � 1. If we construct the matrix ˆ0 using these polynomials

just as in the two-variable case, the size of the matrix becomes pnC1�p.rC.n�1/
n�1 /�1.

Remark 3. In the general case, it is difficult to obtain asymptotic estimates due to
the presence of

�
rC.n�1/
n�1

�
terms in the value for column size. The following theorem

concludes that the matrix ˆ0 so defined is RIP compliant.

Theorem 7. The matrix ˆ D 1p
pn
ˆ0 satisfies the RIP with ık D k�1.r.pn�1�1/C1/

pn

for any k < pn

r.pn�1�1/C1 C 1.

Proof. Proof is the same as that of Theorem 3. ut
Using the afore-discussed ideas, if we construct the circulant matrices ˆ with
respect to homogeneous rth degree polynomials in n variables, then they satisfy
RIP, as summarized below.

Theorem 8. The circulant matrix ˆ0 D 1p
pn
ˆ has the RIP with ık D 22n.k � 1/ r

p

whenever k � 1 <
p

22nr
.

Proof. Proof is the same as that of Theorem 3. ut

Concluding Remarks

Inspired by the deterministic construction procedure proposed by DeVore [9],
we have constructed a different class of CS matrices by using homogeneous
multivariable polynomials. It should be emphasized here that the comparison in
terms of recovery properties between the matrices obtained in this work and the
ones in [9] does not make sense as both classes of matrices have different sizes.
Despite it, we have noticed that the bound on the sparsity in our construction is wider
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as compared to that of Devore’s matrix. However, the construction methodology
becomes more relevant if it is capable of being used for constructing RIP compliant
matrix of any order. In addition, for use in real-life applications, the columns of the
matrix should contain an unequal number of 1’s. Our future work shall attempt to
address these issues.
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An Ant Colony Algorithm to Solve
the Container Storage Problem

Ndèye Fatma Ndiaye, Adnan Yassine, and Ibrahima Diarrassouba

Abstract In this chapter we treat the container storage problem in port terminal. We
study the storage of inbound containers in a port wherein straddle carriers are used
as means of transport instead of internal trucks. In this work, unlike to the one that
we did in Moussi et al. (LNCS 7197:301–310, 2012), reshuffles are not completely
prohibited but are minimized. We consider additional constraints operational and
propose a linear mathematical model. For numerical resolution we design an ant
colony-based algorithm, named CSP-ANT. Several performed simulations prove the
effectiveness of our algorithm.

Keywords Storage container • Ant colony algorithm • CPLEX

Introduction

In a seaport, the management of all containers is ensured by the container terminal.
Its performance is an important criterion of the port productivity. This justifies many
research work done concerning it. Generally there are three types of containers:
inbound, outbound, and transshipment containers. Inbound containers are unloaded
from ships by quay cranes (QC), then transported and placed to their storage
locations by straddle carriers (SC), and at the end claimed by external trucks (ET).
Outbound containers are brought by ET, also stored in the container yard, and so
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loaded onto ships later. Transshipment containers are unloaded from ships, then
temporarily stacked in the storage areas, before being loaded onto other vessels.
In this chapter we focus on the storage of inbound containers. Most of the work
regarding this topic aims to minimize the number of reshuffles. In fact, these
are unproductive movements requiring to move some containers in order to reach
another. In [1], three different strategies of storage are proposed by Sauri and Martin.
They have designed a mathematical model based on probabilistic distribution
function, which minimize reshuffles. In [2], a segregation strategy is tackled by
Kim and Bae. They do not mix containers which are unloaded from different
vessels. In [3], a genetic algorithm is implemented by Jinxin and Qixin, to allocate
storage spaces for inbound containers. They minimize the number of congestions,
the waiting time of trucks, and the unloading time of containers. In [4], a modern
container terminal is considered by Yu et Qi. To minimize reshuffles, they firstly
resolve the block space allocation problem for newly arriving inbound containers.
Then after the retrieval of some containers, they deal with the reorganization
problem. Previously in [5], we have proposed an effective hybrid algorithm to
store inbound containers in a terminal wherein reshuffles are not allowed. But with
the continuous increase of the containership sizes, there may be situations where
the available space is not sufficient to store all containers without causing any
reshuffles. Therefore, we tackle in this chapter the case of storage where reshuffles
are minimized instead of prohibited. We also determine the exact location assigned
to every container, unlike the other papers which specify in the best case the assigned
stack to each container. So, we propose a linear mathematical model and an ant
colony-based algorithm to solve this problem. The remainder of this chapter is
organized as follows: in the second section we explain the details of the studied
problem, the mathematical model is highlighted in the third section, the fourth part
is dedicated to our ant colony-based algorithm, in the fifth section we present our
numerical results, and in the sixth and last section we give a conclusion.

Context

We deal with the storage problem of inbound containers in a modern container
terminal. When a containership comes to port, the inbound containers are unloaded
by the quay cranes and then placed on quays. Thereafter, they are collected
individually by the straddle carriers which store them to the container yard. The
collection order is the same as the unloading order. This avoids congestions on quays
and decreases the waiting time of straddle carriers. We determine the exact storage
location of each container and assume the six following main hypotheses.

1. Containers stored in a stack have the same sizes.
2. In a stack, containers are arranged following the order that they are unloaded

from ships.
3. Each stack has a capacity equal to the difference between the maximum height

authorized and the number of containers which are already within it.
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Fig. 1 A reshuffle

4. We take into account the departure times of containers which are already stacked
before the actual storage period.

5. After every reshuffle, the moved containers are placed in an empty stack.
6. If a stack is empty then containers will be stored within it following the

decreasing order of their departure times, else two cases can occur.

(6a) If containers assigned to this stack have departure times inferior or equal
to those of containers which are already within, then they will be stored
following the descending order of their departure times.

(6b) Otherwise, the newly incoming containers will be stored following the
ascending order of their departure times. Thereby, upon retrieving the
containers which are at the bottom, the remaining containers will be
arranged following the descending order of their departure times into
another stack, as shown in Fig. 1.

Mathematical Modeling

Notations

We use the following notations:

Indices
p: stack
i: empty slot
k: container

Data
N: number of containers
Np: number of stacks
Cp: number of empty slots in the stack p
rp: type of container which can be placed in the stack p



66 N.F. Ndiaye et al.

tp: departure time of the container which was on the top of the stack p at the
beginning of the new storage period

Rk: type of the container k
Tk: departure time of the container k
Ok: unloading order of the container k from ships
dk

p: traveled distance to transport the container k from quay to stack p
M: a great integer

Decision variables

xkp;i D
�
1 If container k is assigned to the empty slot i in the stack p
0 Otherwise

ykp D
�
1 If container k is assigned to stack p and this may cause reshuffles
0 Otherwise

The Proposed Model

We model the problem as follows.

Minimize
NX
kD1

NpX
pD1

cpX
iD1

xkp;i d
k
p CM

NX
kD1

NpX
pD1

ykp (1)

NpX
pD1

cpX
iD1

xkp;i D 1; 8k D 1; : : : ; N (2)

NX
kD1

xkp;i � 1; 8p D 1; : : : ; Np; i D 1; : : : ; cp (3)

NpX
pD1

cpX
iD1

xkp;iRk � rp D 0; 8k D 1; : : : ; N (4)
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NX
kD1

.N �Ok/ xkp;i �
NX
kD1

�
N �Ok

�
xkp;iC1

8p D 1; : : : ; Np; i D 1; : : : ; cp�1

(5)

ykp �
cpX
iD1

xkp;i ; 8p D 1; : : : ; Np; k D 1; : : : ; N (6)

�
Tk � tp

� cpX
iD1

xkp;i � Mykp

8p D 1; : : : ; Np; k D 1; : : : ; N

(7)

NX
kD1

Tkx
k
p;i �

NX
kD1

Tkx
k
p;iC1 � �M

NX
kD1

ykp

8p D 1; : : : ; Np; i D 1; : : : ; cp�1

(8)

NX
k0D1

.M � Tk0/ xk
0

p;i �
NX

k0D1

�
M � Tk0

�
xk

0

p;iC1 � M
�
ykp � 1

�

8p D 1; : : : ; Np; i D 1; : : : ; cp�1; k D 1; : : : ; N

(9)

The objective function (1) minimizes simultaneously the number of reshuffles and
the total distance traveled by SC between quays and the container yard. Constraints
(2) require that each container is assigned to a single location. Constraints (3) ensure
that several containers are not assigned to a same empty slot. Constraints (4) secure
the compatibility between containers and stacks. Constraints (5) guarantee that in
each stack, containers are arranged following the increasing order of their unloading
from ships. Constraints (6) and (7) determine the number of induced reshuffles. If no
rehandle is occasioned in a stack, constraints (8) impose that containers are stored
there following the descending order of their departure times. Otherwise, if one of
the containers assigned to a stack has a departure time superior to those of containers
which are already within, then constraints (9) force that the newly stacked containers
are arranged following the ascending order of their departure times.
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Ant Colony Algorithm

In 1996, Dorigo et al. [6] have created a new optimization method based on ant
colonies, which is named the ant system. Natural ants have the ability to find the
shortest path between their anthill and a place where there are food. At the beginning
of the research, each ant follows the path which seems to be the shortest. Throughout
the collection of food, each ant puts down a natural substance called pheromone
along all paths that it has taken. Therefore, when an ant detects the presence of
pheromone on a path, it concludes that this leads to food and follows it if it is shorter
than the others. As the pheromone evaporates over time, at the end, it will remain
only on the shortest path.

The ant colony algorithm mainly includes two steps: the construction of a
solution by an ant and the update of pheromone. It can be summarized by the
following flowchart.

Each ant builds a solution

Last iteration ?

Update the best solution

Update pheromone

Yes
Stop

No

Solution Representation

A solution is formulated as an array having two rows and N columns. Stacks are
mentioned in the first row, and in the second there are containers. For example,
let’s assume that we have to store six containers in three stacks. A solution can be
represented as follows:

This means the following assignment:

• Container 4 to stack 1
• Containers 3 and 1 to stack 2
• Containers 2, 6, and 5 to stack 3
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The appearance order is important to know the exact location of a container, if
several containers are assigned to a same stack. In this case, the first container which
appears in the solution is assigned to the lower location and so on. In fact containers
of the example must be stacked in the following manner:

Construction Method of a Solution

In a solution, each column is a couple of container and stack which are compatible.
Before the beginning of the solution search, we must firstly construct the set of
couples. For this, we look for all pairs (p,k) of container and stack which satisfies
two conditions:

• cp> 0 (ensures that the stack p is not full)
• Rk D rp (verifies that the stack p and the container k have the same type)

To construct a solution, each ant chooses arbitrarily a starting duo. Then the set
of options is updated in order to delete all pairs which can occasion violation of
constraints if they are added to the solution. For each of the remaining couples
a probability is calculated, and the ant chooses the one which has the highest
probability. Whenever a duo is added to the solution, the set of options is updated,
and the probability of each remaining option is determined in order to choose the
next pair and so on until there is no available couple.

At the end of the construction of each solution, a check is performed to ensure
that all containers are assigned. If a solution has a number of columns inferior to the
number of containers, that means all containers are not assigned. So, this solution is
eliminated and the ant starts the construction of another one.

Update the Set of Couples

In order to secure the feasibility of the solutions, the set of options is updated every
time a pair (k,p) is chosen. For this, all couples having container k are deleted.
Similarly, if the stack p is full, then all options containing it are eliminated. For every
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other pair, checks are done to prevent violations of the order constraints (5), (8), and
(9). Thus each duo (k0,p0) such that Ok >Ok

0 is obliterated, likewise if (Tk � tp and
Tk0 > Tk) or (Tk > tp and Tk

0< Tk).

Probability Calculation

Let S be the current set of options, ˛ and ˇ two positive real numbers, (p,k) an
element of S, and �(p,k) the pheromone rate of (p,k).

The probability formula is

P.p;k/ D
�
�.p;k/

�˛ �
�

1

dkp

�ˇ

X
.p;k/2S

�
�.p;k/

�˛ �
�

1

dkp

�ˇ

where dk
p is the traveled distance to transport the container k from the quay to stack

the p and 1

dkp
the visibility of (p,k).

Update Pheromone

At the beginning of the algorithm, each member of the initial set of couples has
a pheromone rate equal to the maximum threshold �max. But since in real life,
pheromone is a substance which evaporates over time, we apply this property to
our algorithm. For this, it is necessary to update progressively the pheromone rate
of each option. So, at the end of each iteration, when all ants have constructed
solutions, we reduce the pheromone rate of every element of the initial set
of couples. Let � be the evaporation rate and �min the minimum threshold of
pheromone. We multiply by (1�� ) the pheromone rate of each duo in order to
reduce it. If the result is less than �min, then we set it to �min. Since the real ants
secrete continuously pheromone during all the time required to collect food, there
must be more pheromone on the most used path. It corresponds logically to the
current shortest path. To reflect this in our algorithm, we add the following value
to the pheromone rate of every option belonging to the best solution of the current
iteration:

1

1C jObjbest �Objbestcour j
where Objbest is the value of the best solution found since the beginning until the
end of the current iteration, and Objbestcour is the best solution found in the present
iteration.
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After each increase, we verify if the new rate exceeds �max. If so, then we set it
to �max.

Numerical Results

We perform our algorithm in a computer DELL PRECISION T3500 with an Intel
Xeon 5 GHz processor. At first, we look for the best values of the parameters, and
after that, we test the performance of our algorithm.

Setting the Parameters

The evaporation rate � , the pheromone exponent ˛, and the visibility exponent ˇ
are very important because they have an impact on the numerical results. Thus, to
find the best values of these parameters, we have tested twenty different instances.
For each of them, we consider ten values between 0.1 and 1 of every parameter.
And then, we select the values which give best results at most cases. We obtain the
following results: �D 0.2, ˛D 0.3, and ˇD 0.9.

After performing several tests, we fix the number of ants to 10 and the number
of iterations to 50. �min is set equal to 1 and �max to 10.

Comparison with CPLEX

CPLEX is an optimization software package which is generally used to do integer
linear programming. Usually, it gives optimal results; thus, to know the quality of
the solutions obtained by CSP-ANT, we calculate the percentages of deviation using
the following formula:

dev D Obj.CSP�ANT / �Obj.CPLEX/

Obj.CPLEX/
� 100

where Obj(CSP - ANT) is the value of the solution obtained by CSP-ANT and
Obj(CPLEX) is the value of the optimal solution found by CPLEX.

All algorithms are coded in CCC language, and we use the version 12.5 of
CPLEX. In Table 1, we report the percentages of deviation of several instances.

—means that the computer memory is insufficient to resolve this instance.
The numerical results show that CSP-ANT is very efficient and gives very good

solutions which are very close to the optimal solutions. In addition to this, it is able
to solve large instances which cannot be solved using CPLEX because it requires a
lot of computer memory.
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Table 1 Numerical results N Np Obj(CPLEX) Obj(CSP-ANT) dev (%)

10 100 1; 624 1; 624 0
15 100 2; 475 2; 487 0.48
20 100 3; 334 3; 371 1.11
25 100 4; 257 4; 363 2.49
30 100 5; 265 5; 510 4.65
35 100 6; 361 6; 510 2.34
40 100 7; 514 7; 814 3.99
45 100 8; 757 9; 352 6.79
50 100 10; 081 10; 538 4.53
55 100 11; 506 11; 791 2.47
60 100 12; 953 13; 229 2.06
65 100 14; 480 14; 641 1.11
70 100 16; 058 16; 957 5.59
75 100 17; 706 18; 318 3.45
80 100 19; 402 19; 976 2.95
85 100 21; 162 21; 500 1.59
90 100 23; 826 24; 397 2.39
95 100 26; 293 26; 812 1.97
100 100 28; 346 28; 871 1.85
200 3; 500 – 33; 592 –
300 3; 500 – 51; 727 –

Conclusion

In this chapter, we address the container storage problem in a port terminal. We
improve widely the work that we did in [5] by minimizing simultaneously reshuffles
and the total distance traveled by SC between quays and the container yard. We
consider additional constraints such as the order in which containers are unloaded
from vessels in order to avoid reshuffles at quays; we also determine the exact
location assigned to every container. The major contributions of this chapter are
the linear mathematical model and the effective ant colony-based algorithm (CSP-
ANT). In fact the proposed algorithm is able to find sometimes the optimal results,
and in most cases it gives very good solutions which are close to the optimal results.
Its average percentage of deviation is equal to 2.73 %; this proves that CSP-ANT is
more effective than the hybrid algorithm that we had proposed in [5], which has a
percentage deviation equal to 10.22 %.

References

1. Sauri, S., Martin, E.: Space allocating strategies for improving import yard performance at
marine terminals. Transport Res. Part E 47(6), 1038–1057 (2011)

2. Kim, K.H., Kim, H.B.: Segregating space allocation models for container inventories in port
container terminals. Int. J. Prod. Econ. 59(1–3), 415–423 (1999)



An Ant Colony Algorithm to Solve the Container Storage Problem 73

3. Cao, J., Shi, Q., Der-Horng, L.: A decision support method for truck scheduling and storage
allocation problem at container. Tsinghua Sci. Technol. 13(Suppl 1), 211–216 (2008)

4. Mingzhu, Y., Xiangtong, Q.: Storage space allocation models for inbound containers in an
automatic container terminal. Eur. J. Oper. Res. 226(1), 32–45 (2013)

5. Moussi, R., Ndiaye, N.F., Yassine, A.: Hybrid genetic simulated annealing algorithm (HGSAA)
to solve storage container problem in port. Intelligent Information and Database Systems
(ACIIDS), Lecture Notes in Computer Science, vol. 7197, pp. 301–310. (2012)

6. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating
agents. IEEE Trans. Syst. Man Cybernet. Part B 26(1), 1–13 (1996)



FEM Post-processing in Identifying Critical
Points in an Image

I.C. Cimpan

Abstract Separatrix segmentation is a data-driven method involving detection of
ridges and valleys, which combines advantages of more widely used edge and region
based techniques. Identifying saddle points is a vital step because ascending and
descending slope lines are generated from the saddle points to define the separatrices
that will generate the ridges (ascending slope lines) and valleys (descending slope
lines). In our laboratory [2], we identified an important source of separatrix
segmentation errors which were traced to the detection of an excess of saddle points
in rectangular pixel images. The goal of this work is to compute a rigorous notion
of critical point regardless of pixel shape (rectangular, hexagonal, triangular) and
regardless of the number of neighbours. We want a well-defined discrete analogue
of the Hessian test to determine if a critical point is a local minimum, maximum
or saddle (Discrete Hessian Approach) This solution will consider FEM (Finite
Element Method) Post-Processing techniques to estimate an image gradient and
calculate critical points using rigorous mathematics.

Keywords Separatrix segmentation • FEM post-processing • Critical points

Flow of Ideas

Flow of Ideas: Segmentation

• Image segmentation (what it means, why we need it)
• Segmentation methods (vast literature in classifying them). Watershed and

separatrix segmentation:

– Identifying critical points in the image
– Constructing separatrices starting from saddle points
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• Issues in defining critical points: different number of saddles due to different
grids and different choice of nearest neighbourhood

• Aim: correct number of critical points regardless of pixel shape (rectangular,
hexagonal, triangular) and regardless of the number of neighbours

– We want to apply definitions accepted in continuous domain to a discrete
domain in order to find the correct number of critical points in an image
(Discrete Hessian Approach)

Flow of Ideas: Discrete Hessian Approach

• Mesh the image into triangulated elements [1]
• Construct basis functions on each node (vertex) of the image
• Estimate the gradient using basis functions and distributional derivative
• Calculate the zeroes of the estimated gradient
• Calculate the derivative of the estimated gradient and apply “Hessian test”
• Results in two-dimensional space and images

Introduction

Image Segmentation and Segmentation Methods

Image segmentation means partitioning the image into objects with respect to some
characteristics like colour, intensity and texture. There is a vast usage of image
segmentation, from which we mention: to identify/study anatomical structures,
diagnosis, locate tumours and other pathologies.

The process of segmenting an image is difficult and time consuming and can be:
manual, semi-automatic and automatic.

There are many segmentation methods including: region growing, classifiers
artificial neural networks, Markov random field models, deformable models, atlas
guided approaches, watershed methods and level set methods.

Watershed/Separatrix Segmentation

Low level cues derived from an image can be employed by data-driven segmenta-
tion, without any further information (e.g. models or templates) being necessary.
Contrary to model based segmentation, which is concerned with a particular set
of objects properties and types, data-driven segmentation focuses on generic-object
detection.
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The concepts of separatrices can be traced back to the work of [1] and of
Maxwell in the nineteenth century. Cayley analysed the relation between a local
minimum, saddle points and local maxima to evaluate water catchment areas in
hydrology. He defined a watershed as a ridge line that “passes from summit to
summit, through a single intervening knot (saddle point)”. Separatrix theory thus
can be easily related to watershed segmentation which has been used widely in
recent years [2–4]. The “multiple-saddle point problem” that appears in rectangular
images using an 8-neighbourhood was identified by Rosin in [5]. He showed that
four (4)-neighbour connectivity type detected insufficient saddle points; eight (8)-
neighbour connectivity type detected too many saddle points; and six (6)-neighbour
connectivity type indicated a more appropriate number of saddle points. In the
figures below are shown examples of critical points in different lattices, rectangular
and hexagonal, and different chosen neighbourhood (Fig. 1a) and separatrices in an
example image (Fig. 1b) (see [6]).

Having identified the source of separatrix segmentation errors to be an excess
of saddle points in the images, we want a well-defined discrete analogue of the
Hessian test to determinate if a critical point is a local minimum, maximum or saddle
(Discrete Hessian Approach). Our aim is to have a stronger definition for identifying
critical points that can be applied to any pixel grid regardless of pixel shape (squared,
rectangular, hexagonal or triangular) and regardless of number of pixels considered
in the nearest neighbourhood (you have the option of 4-neighbours or 8-neighbours
in rectangular and squared pixels). The goal is to compute a rigorous notion of
critical point regardless of pixel shape (rectangular, hexagonal, triangular) and
regardless of the number of neighbours. This method will use FEM (Finite Element
Method) Post-Processing techniques and estimate a gradient based on hat functions.

Material and Methods

Separatrix segmentation is a data-driven method involving detection of ridges and
valleys, which combines advantages of more widely used edge and region based
techniques. Identifying precise critical points is a vital step because ascending and
descending slope lines are generated from the saddle points towards maxima and
minima to define the separatrices that will generate the ridges (ascending slope lines)
and valleys (descending slope lines) (Fig. 2a).

Two separatrices running uphill to maxima from one saddle point correspond to
the watersheds used in watershed segmentation.

The method to identify extremum and saddle points relates to the nearest
neighbourhood only. The relationship between the grey value of a hexagonal pixel
and the grey values of its neighbours (whether each difference is positive, negative
or zero) is analysed and according to the number of sign changes critical points are
identified. If we have no sign changes (all positive or all negative), then the point
is an extremum, a maximum if all signs are negative, a minimum if all are positive.
More than four sign changes identifies a saddle point.
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Fig. 1 Critical points and separatrices. (a) (Left) critical points in the hexagonal image and
(right) critical points in the rectangular image (8-neighbourhood). Comparison: two different grids
showing different number of critical points. (28) Minima in the hexagonal image and (37) minima
in the original image. (26) Minima from the hexagonal image were in the same position or shifted
with a distance less than the maximal hexagon diameter. (b) Separatrices on a hexagonal mesh

As we refine the mesh, we get more critical points using this definition of sign
change, up to infinite number of critical points. Our interest is, by refining the mesh,
to get, in a discrete domain, the critical points that are very close (or exact) to the
critical points in the continuous domain.

We consider a function u W � 2 R
2 ! R generated by an MRI scan to be a

pixelated image whose value over a pixel grid T is a piecewise constant uh 2 P
0.T /.

The goal is to compute some notion of critical point of function u. We want to use
the “Hessian test” to determinate if a critical point is a local minimum, maximum
or saddle (we want to use a well-defined discrete analogue of the Hessian test).
Considering for simplicity the notation: uh 2 P

0.T / as a piecewise constant over
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Fig. 2 Separatrices. (a) Ridges and valleys
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the pixels, in the pixelated image T , we use the distributional derivative to derive a
formula for ruh:

< ruhj >H�1�H1
0
D� < uhjr >L2�L2 as uh 2 L2.�/

D �
Z

�

uhr 

D �
X
�k2T

Z

�k

uhr (1)

for any  2 C1
0 .�/

where:

�k= one element in the domain T

 2 C1
0 .�/

H1
0 D f 2 L2.�/jr 2 L2.�/ and  j@� D 0g

Let Vh be a finite dimensional subspace of H1
0 . For all  2 Vh we have:

< GŒuh;  >L2�L2D< ruhj >H�1�H1
0

(2)

GŒuh D
X
n2N

dn n.x/ (3)

where:

dn D n dimensional vector with constant elements (the unknowns)

 n.x/ D
(
1; if x D n (on vertex)

0; on any other vertices

GŒuh will capture the distributional derivative of uh over the finite element space
Vh.

Considering Eq. (2), we transform equation (1)
< ruhj >D � P

�k2T
R
�k

uhr into:

< GŒuh;  >D �
X
�k2T

Z

�k

uhr (4)

From Eqs. (3) and (4) results:

Z

�

GŒuh D
Z

�

.
X
j2Nv

dj j / i D
X
j2Nv

Z

�

dj j i D



FEM Post-processing in Identifying Critical Points in an Image 81

X
j2Nv

X
�k2T

Z

�k

dj j i D
X
j2Nv

dj
X
�k2T

Z

�k

 j i D

X
j2Nv

dj

Z

�

 j i D �
X
�k2T

Z

�k

uhr i

(5)

with i; n D 1;Nv and k D 1;Ne

and where:

Nv = number of vertices in T
Ne = number of elements in T

Equation (5) becomes:

X
�k2T

X
n2Nv

dnM
k
ni D �bi ; (6)

where we have used the following notation:

Mk
ni D R

�k
 n i whereMni D P

�k2T
Mk
ni is called mass matrix

bi D � R
�

uhr i is called load vector.

with i; n D 1;Nv and k D 1;Ne

and where:

Nv = number of vertices in T
Ne = number of elements in T

So we need to calculate Mni and bi from the input data in order to find dn which
are the unknowns when trying to calculate the estimated gradient GŒuh. Enforced
boundary conditions were used on the boundary. The estimated gradient values were
replaced with the exact gradient values in order to avoid high oscillations.

Once we know the estimated gradient GŒuh we can calculate the zeroes x0 of
GŒuh and the derivativeDGŒuh.x0/

DGŒuh.x0/ D
X
n2Nv

dn 
0
n.x0/ (7)

GŒuh.x0/ D P
n2Nv

dn n.x0/

Having now an estimated second derivative DGŒuh we can apply the well-
known Hessian Test defined on a continuous domain.

In conclusion we have uh approximating u, GŒuh to estimate ru andDGŒuh to
estimate D2u. We can analyse how closed are these approximations to the exact
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data. We want the error to converge to zero as the mesh size h is refined. The
convergence results will appear in a forthcoming paper.

Results on Two-Dimensional Functions and Images

Results on Two-Dimensional Functions

Experimental tests on two-dimensional functions show that the estimated gradient
GŒuh resembles the exact gradient closely on well-behaved functions. One signifi-
cant result is plotted in Fig. 3 for the function sin.2�x/ sin.2�y/: estimated gradient
versus exact gradient in Fig. 3a and estimated critical points plotted on the mesh of
exact function.

Initial Results on Images

Initial results on images show that, on sharp edges, the estimated gradients present
oscillations that lead to inaccurate critical points. While the estimated gradients for
two-dimensional functions can be adjusted by refining the mesh, on images we need
to consider smoothing algorithms in order to avoid high oscillations on sharp edges.
Figures 4 and 5 show two examples of cropped images: the original image and
estimated critical points on the image mesh.

Conclusions and Further Work

The solution GŒuh presented for two-dimensional functions give proper experi-
mental results on well-behaved functions. Figure 3 shows quality results for the
estimated gradient and estimated critical points on two-dimensional functions.
Furthermore, we can show mathematically and experimentally that the estimated
gradient is converging towards the exact gradient, the derivative of the estimated
gradient converging towards the exact second derivative and the estimated critical
points converging towards the exact critical points.

Challenges appear when applying this solution on MRI images, because even
the high-resolution MRI are not smooth enough, so we need additional smoothing
algorithms. Different solutions like smoothing and resampling the image can be
considered in a future work. Also, it is important to implement accurate boundary
conditions on images, for this solution.

Further Work Next steps of this work require implementation of new boundary
conditions for images: a polynomial interpolant of degree nx , where nx is the
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Fig. 3 Estimated gradient GŒuh versus exact gradient and critical points using GŒuh definition
for function sin.2�x/ sin.2�y/. (a) Estimated gradient GŒuh and exact gradient. (b, c) Critical
points calculated from zeroes of GŒuh
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Fig. 4 Example 1 MRI for critical points using GŒuh definition on image mesh. (a) Original
image (cropped). (b) Critical points of the original image

number of nodes in x direction. We also need a rigorous mathematical proof for the
computational results above. Once we achieve accurate critical points on images,
we can construct separatrices to enable automatic segmentation.

Acknowledgements We would like to acknowledge the helpful conversations with Tristan Pryer.
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Fig. 5 Example 2 MRI for critical points using GŒuh definition on image mesh. (a) Original
image (cropped). (b) Critical points of the original image
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Global and Local Segmentation of Images
by Geometry Preserving Variational Models
and Their Algorithms

Jack Spencer and Ke Chen

Abstract The imaging science as a research field is increasingly used in many
disciplines (Mathematics, Statistics, Physics, Chemistry, Biology, Medicine, Engi-
neering, Psychology, Computer and Information Science, etc.) because the imaging
technology is being developed in a fast pace (with cost down and resolution up).
The advance in imaging brings unprecedented challenges and demands on better
image analysis techniques based on optimisation, geometry and nonlinear partial
differential equations, beyond the traditional filtering-based linear techniques (FFT,
wavelets, Wiener filters, etc.). Of course, in addition to modelling and analysis, there
is an urgent need for advanced, accurate and fast computational algorithms.

In this paper we shall first discuss variational models that are frequently used for
detecting global features in an image, i.e. all objects and their boundaries. These
include the Chan-Vese (IEEE Trans Image Process 10(2):266–277, 2001) model
of the Mumford and Shah (Commun Pure Appl Math 42:577–685, 1989) type and
other related models. We then present a review on newer models that are designed
to incorporate geometric constraints and detect local features in an image, i.e. local
objects and their boundaries. In our first ever attempt, we compare six of such local
selection models. Various test results are given to illustrate the models presented.
Some open challenges are also highlighted.

Keywords Image processing • Selective segmentation • Level set function
• Convex relaxation

Introduction

Image segmentation is a fundamental task in artificial intelligence for computer
vision and imaging applications. Automatic segmentation is necessary and only
accurate segmentation is useful. Among all the methods proposed for segmentation
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in the vast literature, variational methods are capable of achieving these two
requirements [1–3].

Given an image z D z.x; y/; .x; y/ 2 � � R
2, the segmentation model by

Mumford-Shah [4] (MS) solves

min
u;K

FMS.u; K/ D˛

Z

�nK
jruj2dxdy C H1.K/

C �

Z

�

.u � z/2dxdy (1)

for the reconstruction of an automatically segmented image u and the features’
boundary set K , with H1.K/ the length of K . It is known that computing K
numerically is a nontrivial matter and there are no direct solvers yet. A special
case by the MS model, where u is a piecewise constant, can be solved with the
help of level set functions as proposed in the Chan-Vese model [5]. The image
is reconstructed as a cartoon of the original where each region, �i , consists of
homogeneous intensity (with i D 1; : : : ; L), separated by an edge set � , a closed
subset of �. The two-phase example .L D 2/ is of particular interest with
�1 D in.�/ and�2 D out.�/,

PC.�;c1; c2/ D Length.�/„ ƒ‚ …
regularisation

C �

Z

in.�/
.z � c1/

2 d� C �

Z

out.�/
.z � c2/

2 d�

„ ƒ‚ …
fitting terms

: (2)

The above models have been widely used and extended to include new functionali-
ties. Here we emphasise that most of such studies serve the original aims of MS, i.e.
to identify all objects or boundaries present in a given image z.

However, in many practical applications, identifying all objects is expensive,
challenging and above all not needed. Below we focus our attention on the so-called
local and selective models (or interactive segmentation models) where only certain
objects of the image are desired.

Selective Segmentation with Active Contours

The variational models discussed here are based on the work of two earlier papers:
Le Guyader and Gout (2008) presented “Geodesic active contour under geometrical
conditions” [6] that aimed to stop a developing contour on edges in the vicinity of a
set of given markers, and Badshah and Chen [7] incorporated this idea to the global
intensity fitting idea of Chan-Vese [5], with the model [7] given as
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F.�; c1; c2/ D�

Z

�

d.x/g.jrzj/ ds C �1

Z

in.�/
.z � c1/

2 d�

C �2

Z

out.�/
.z � c2/

2 d�:

The details of the functions d.x/ and g.x/ are discussed later. This formulation is
altered to extend the domain of the integrals to the entire domain, by using the level
set approach [5], based on the work of Osher and Sethian [8]:

FLS.�; c1; c2/ D�

Z

�

ı�.�/gjr�j d�

C �1

Z

�

.z � c1/2H.�/ d�

C �2

Z

�

.z � c2/2
�
1 �H.�/

�
d�

The functional is minimised, using a regularised Heaviside and delta function, that
will also be discussed later, by finding the Gateaux derivatives of FLS . The Euler-
Lagrange equation for � can be considered as the steady state of the following PDE:

@�

@t
D�ı�.�/r �

�
gr�
jr�j

�
C ˛W.x/jr�j

� ı�.�/
�
�1.z � c1/2 � �2.z � c2/2

�
;

with Neumann boundary conditions. Minimisation for c1 and c2:

c1.�/ D
R
�

zH�.�/ d�R
� H�.�/ d�

;

c2.�/ D
R
�

z
�
1 �H�.�/

�
d�R

�

�
1 �H�.�/

�
d�

: (3)

Model 1: Dual Level Set Model

The first model we look at is a dual level set model [9] introduced by Rada et al.,
motivated by the fact that the fitting term in Badshah and Chen [7] performs a global
segmentation, and so new terms are needed to perform local segmentation. In the
following, �G is a contour that finds the global result and �L finds the local result.
This results in three additional terms: one for the regularisation of the local contour
and three for local fitting. The variational model:
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FA.�; c1; c2/ D�1

Z

�L

d.x; y/g.jrzj/ ds

C �2

Z

�G

g.jrzj/ ds

C �1G

Z

in.�G/
.z � c1/

2 d�

C �2G

Z

out.�G/
.z � c2/

2 d�

C �1

Z

in.�L/
.z � c1/

2 d�

C �2

Z

out.�L/\in.�G/
.z � c1/2 d�

C �3

Z

out.�L/\out.�G/
.z � c2/2 d�: (4)

Rada-Chen, which we will refer to as the dual model, uses the level set formulation
of [5], to represent inside and outside each contour. This gives an equivalent of (4):

FLS
D .�; c1; c2/ D �1

Z

�

d.x; y/g.jrzj/ı�.�L//jr�Lj d�

C �2

Z

�

g.jrzj/ı�.�G/jr�Gj d�

C �1G

Z

�

.z � c1/
2H.�G/ d�

C �2G

Z

�

.z � c2/
2
�
1 �H.�G/

�
d�

C �1

Z

�

.z � c1/2H.�L/ d�

C �2

Z

�

.z � c2/2
�
1 �H.�L/H.�G/ d�

C �3

Z

�

.z � c2/2
�
1 �H.�L/

��
1 �H.�G/

�
d�: (5)

This functional is minimised using the Gateaux derivatives to derive the following
PDEs for the global contour:

@�G

@t
D�2ı�.�G/r �

�
gr�G
jr�Gj

�
� ˛gjr�G j
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� ı�.�G/
�
�1G.z � c1/2 � �2G.z � c2/

2

C �2.z � c1/2
�
1 �H.�L/

�

� �3.z � c2/2
�
1 �H.�L/

��
;

and the local contour:

@�L

@t
D�1ı�.�L/r �

�
W r�L
jr�Lj

�
� ˛gjr�Lj

� ı�.�L/
�
�1.z � c1/

2 � �2.z � c2/
2H.�G/

C �2.z � c1/2
�
1 �H.�G/

�

� �3.z � c2/
2
�
1 �H.�G/

��
;

with Neumann boundary conditions. Minimisation for c1 and c2 follows, whereHG
� ,

HL
� denoteH�.�G/ andH�.�L/, respectively:

I1 D�1G

Z

�

zHG
� d�C �1

Z

�

zHL
� d�

C �2

Z

�

z
�
1 �HL

�

�
HG
� d�;

I2 D�1G

Z

�

HG
� d�C �1

Z

�

HL
� d�

C �2

Z

�

�
1 �HL

�

�
HG
� d�;

I3 D�2G

Z

�

z
�
1 �HG

�

�
d�

C �3

Z

�

z
�
1 �HL

�

��
1 �HG

�

�
d�

I4 D�2G

Z

�

�
1 �HG

�

�
d�;

C �3

Z

�

�
1 �HL

�

��
1 �HG

�

�
d�:

Then

c1.�/ D I1

I2
; c2.�/ D I3

I4
:
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Model 2: Coefficient of Variation Model

Badshah et al. introduced a new model [10], linked to their previous model discussed
earlier. The fitting term uses the variance given by

Var.z/ D 1

N

X
i;j

�
zi;j �Mean.z/�2 ;

where zi;j denotes the image intensity at .i; j / and Mean.z/ is the mean intensity.
The coefficient of variation (CoV) is defined as

CoV 2 D Var.z/

.Mean.z//2
:

This value is larger in areas of the image where there are edges and is employed in
this model as a fitting term:

FCoV .�; c1; c2/ D�

Z

�

d.x; y/g.jrzj/ ds

C �1

Z

in.�/

.z � c1/
2

c21
d�

C �2

Z

out.�/

.z � c2/
2

c22
d�:

This is adjusted as before with the level set formulation:

FLS
CoV .�; c1; c2/ D�

Z

�

d.x; y/g.jrzj/ı�.�/jr�j d�

C �1

Z

�

.z � c1/
2

c21
H.�/ d�

C �2

Z

�

.z � c2/
2

c22

�
1 �H.�/� d�:

The PDE is derived by minimising this functional, to give

@�

@t
D�ı�.�/r �

�
W.x; y/r�

jr�j
�

C ˛W.x; y/jr�j

� ı�.�/
�
�1
.z � c1/2
c21

� �2
.z � c2/2
c22

�
;
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with Neumann boundary conditions and where W.x; y/ D d.x; y/g.jrzj/.
Minimisation for c1 and c2:

c1.�/ D
R
�

z2H�.�/ d�R
� z
�
1 �H�.�/

�
d�

;

c2.�/ D
R
�

z2
�
1 �H�.�/

�
d�R

� z
�
1 �H�.�/

�
d�

:

Model 3: Area Model

This model, introduced by Rada et al., is again based on [7], whilst the growth of the
contour is limited by the introduction of two new terms. Given a number of markers
within the object of choice, the size of the object inside and outside the object
respectively can be approximated by A1 and A2. This stops the contour evolving
past the desired solution, by penalising the growth of the contour. The model is
given as

FA.�; c1; c2/ D�

Z

�

g.jrzj/ ds C �1

Z

in.�/
.z � c1/

2 d�

C �2

Z

out.�/
.z � c2/

2 d�

C �
�Z

in.�/
d	d�� A1

�2

C �
�Z

out.�/
d	d� �A2

�2
:

Adjusted, it gives the level set formulation:

FLS
A .�; c1; c2/ D �

Z

�

g.jrzj/ı�.�.x; y//jr�.x; y/j d�

C�1
Z

�

.z � c1/2H.�.x; y//d�

C�2
Z

�

.z � c2/2
�
1 �H.�.x; y//

�
d�

C�
� Z

�

H.�.	; �/ d	d� � A1

�2

C�
� Z

�

�
1 �H.�.	; �/� d	d� �A2

�2
:
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The PDE is then:

@�

@t
D�ı�.�/r �

�
g.jrzj/r�

jr�j
�

� ˛g.jrzj/jr�j

� ı�.�/

�
�1.z � c1/

2 � �2.z � c2/
2

�

C �ı�.�/
� Z

�

Hd� �A1
�2

C �ı�.�/
� Z

�

�
1 �H

�
d� � A2

�2
;

with Neumann boundary conditions. Minimisation for c1 and c2 is as before (3).

Model 4: P-Model

This model is linked to the area model of the previous section. Given the same set
of markers, a polygon P is formed. A new term, Pd , is then introduced that assigns
each pixel a value based on its distance from P , i.e. 0 inside P and increasing
as .i; j / gets further from P . This term, in a similar way to the area model [11],
penalises the growth of the contour whilst providing additional information about
the object, such as its location and boundary. The model is defined:

FP .�; c1; c2/ D�

Z

�

g.jrzj/ ds C �

Z

in.�/
Pd d�

C �1

Z

in.�/
.z � c1/

2 d�

C �2

Z

out.�/
.z � c2/

2 d�:

Adjusted, it gives the level set formulation:

F LS
A .�; c1; c2/ D�

Z

�

ı�.�/gjr�j d�

C �

Z

�

PdH.�/ d�

C �1

Z

�

.z � c1/
2H.�/ d�

C �2

Z

�

.z � c2/
2
�
1 �H.�/�d�:
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The functional is minimised, giving the PDE:

@�

@t
D�ı�.�/r �

�
gr�
jr�j

�

� ı�.�/
�
�1.z � c1/2 � �2.z � c2/2 C �Pd

�
;

with Neumann boundary conditions. Minimisation for c1 and c2 is as before (3).

Model 5: Local Information Model

This model develops the Badshah-Chen model, using the geometrical constraints
of [6, 7] but only including pixels in a neighbourhood of the zero level set used in
the data fitting. Results can be improved by only using information from this fixed
narrow band, but the width is problem dependent and therefore causes problems
with reliability. Zhang et al. [12] present a variable band that adjusts adaptively
as the curve evolves, a local information (LI) model. The model generalises the
Badshah-Chen model, with the addition of a local fitting energy function:

b.�; �in; �out / D H.� C �in/
�
1 �H.� � �out /

�
;

that characterises the domain �� which is a narrow band region surrounding the
boundary � . Inside �� , b D 1 and outside b D 0. The level set formulation of the
model is given as

FLS
JP .�; c1; c2/ D�

Z

�

ı�.�/W jr�j d�

C �1

Z

�

.z � c1/
2bH.�/ d�

C �2

Z

�

.z � c2/
2b
�
1 �H.�/

�
d�;

where W D g.jrzj/d.x/. Zhang et al. discuss the details of how the width of the
band is selected automatically in [12]. As before, the following PDE is derived:

@�

@t
D�ı�.�/r �

�
gr�
jr�j

�

� �1

�
ı.�/b C @b

@�
H.�/

�
.z � c1/2

C �2

�
ı.�/b � �

1 �H.�/� @b
@�

�
.z � c2/

2;
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with Neumann boundary conditions. Minimisation for c1 and c2:

c1.�/ D
R
� zH�.�/b d�R
�
H�.�/b d�

;

c2.�/ D
R
�

z
�
1�H�.�/

�
b d�R

�

�
1 �H�.�/

�
b d�

:

Model 6: Interactive Segmentation Model

The interactive segmentation (IS) model employs the idea of Chan et al. [13] and
Bresson et al. [14], to reformulate nonconvex models as convex ones. Two-phase
segmentation involves a binary constraint, i.e. 1 inside and 0 outside the object.
By allowing a function u to take intermediate values, this constraint is relaxed.
When computing the global minimiser, u�, thresholding the function at any value
p 2 .0; 1/ gives the contour of the object. Nguyen et al. formulate the problem as
follows:

min
0�u�1

�Z

�

gb.x/jruj d�C �

Z

�

hr.x/u d�

�
: (6)

The fitting term, hr.x/, is given based on user input; the foreground and background
regions are marked on a subjective basis. A probability map P.x/ is used, based on
the geodesic distances to the foreground and background regions, denoted byDF .x/

and DB.x/, respectively. This idea is based on the work of Sapiro et al. [15]. The
estimate of the probability a pixel x belongs to the foreground is given as

P.x/ D DB.x/

DF .x/CDB.x/
:

The model also uses foreground and background Gaussian mixture models
(GMMs) introduced in [16]. Denote byP r.xjF / andP r.xjB/ the probabilities that
pixel x fits the foreground and background GMMs, respectively. The normalised log
likelihood that x belongs to the foreground and background is

PF .x/ D � logPr.xjF /
� logP r.xjF / � logP r.xjB/;

PB.x/ D � logPr.xjB/
� logP r.xjF / � logP r.xjB/:

The fitting term is then given as

hr.x/ D ˛.PB.x/ � PF .x//C .1 � ˛/.1 � 2P.x//;
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where ˛ is an automatically selected trade-off parameter based on the distance
between the foreground and background GMMs.

Implementation

We will briefly discuss some of the details of implementing each of these models,
which use similar ideas. Each functional is adjusted with the level set method, which
incorporates the Heaviside function, H , into the formulation. In order to compute
the first-order optimality conditions given by the derivatives of the functionals, H
is replaced by an analytic approximation H� . In the papers discussed and the tests
conducted, there are two choices for this approximation:

H1
� .x/ D

8
<
:
0; x < ��
1
2

�
1C x

�
C 1

�
sin.�x

�
/
�
; jxj � �;

1; x > �;

and

H2
� .x/ D 1

2

�
1C 2

�
arctan

�x
�

��
: (7)

Some of the models use a distance function to keep the contour in the vicinity of a
set of given markers. The distance function is chosen as

d.x/ D
mY
iD1

�
1 � exp

�
�jx � Oxi j2

2�2

��
;

with [12] using a variable � that alters the effect of d based on the positions of the
markers. The edge detector in each model is given as

g.jrzj/ D 1

1C jrzj2 : (8)

Nguyen et al. introduce an alternative edge detector, where the probability map
PF .x/ is used in the following way. They apply the edge detector (8) to PF .x/
and the image z, given as gc and ge , respectively. The weighting edge term is then
given by

gb.x/ D ˇ � gc.x/C .1 � ˇ/ � ge.x/;

where ˇ is computed in a similar way to ˛, based on the GMM map. This term picks
up weaker edges than (8) alone.
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Models 1–4 use an additive operator-splitting method (AOS), proposed by Tai
et al. [17] and Weickert [18], involving the spatial reduction of a two-dimensional
problem into two one-dimensional ones. Model 5 uses a banded time-marching
scheme, and Model 6 uses a Split Bregman solver, first used in the convex
segmentation context by Goldstein et al. [19].

Results

In this section we discuss the results for each model for three difficult test problems,
shown in Fig. 1. These are challenging for a number of reasons. Each object contains
intensity inhomogeneity and has other objects in close proximity, without a clear
edge separating them. In these cases especially, selective segmentation models can
be sensitive to both initialisation and parameter selection. For this reason it is
important to examine the robustness of each model, by checking their performance
under such variation. As a measure of accuracy, we use a region overlap measure,
called the Tannimoto Coefficient (TC) [20], with A as the region segmented and B
as the ground truth region, and TC is given by

Fig. 1 Rows 1–3 show Sets 1–3 respectively. On the left is the given image, the middle is ground
truth segmentation, and the right is the desired object
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Table 1 Results for dual
model

Set 1

s1 s2 s3 s4

M1 37:88 37:19 39:39 34:60

M2 93:10 92:42 93:01 59:96

Set 2

s1 s2 s3 s4

M1 81:14 83:42 80:17 82:47

M2 81:61 80:51 81:03 79:46

Set 3

s1 s2 s3 s4

M1 85:17 86:60 80:74 79:83

M2 85:65 84:65 80:57 78:52

TC D N.A\ B/
N.A[ B/;

where N.�/ indicates the number of pixels in the enclosed region. In each model
the initial contour, �0, is initialised as a polygon given by markers provided
by the user. Ideally, success would not be too dependent on the choice of this
polygon. We use two different marker sets for each test problem; M1 is a naive
input within the chosen object and M2 is a refined selection that considers image
information. We then compare the performance of each model for M1 and M2,
under a variation of at least one parameter. In each table, where there is a visually
successful segmentation the best result for each set, in terms of TC, is given in bold.

Model 1: Dual Model

The results for the dual model [9] by Rada and Chen are presented in Table 1.
The parameters used in [9] are in most cases fixed. However, results can vary based
on the choice of the regularisation of the Heaviside function for each level set.
Specifically, both the choice of regularisation (7) and the choice of � for each can
be adjusted. Here, for �L, H1

� is used and, for �G , H2
� is used, and the choice of �

is tested. In Table 1 s1 � s4 refers to permutations of the choices of this parameter.
We can see that a good result is achieved in all but one case, that is, Set 1 for M1.
This is especially the case for Set 1, M2 which has exceptionally good results. One
weakness of the model is that it is hard to predict what choice of s is appropriate;
intuition does not play a role so that even a user experienced with the model cannot
predict reliably what will work. Compounding this drawback is that the dual level
sets require the computation of �G and �L at each iteration, increasing time taken
to compute a solution. That being said, the results in these challenging test sets are
consistently good and excellent for some.
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Table 2 Results for CoV
model

Set 1

�1 �2 �3 �4 �5 �6

M1 29:71 28:76 23:43 26:29 34:67 34:29

M2 62:17 62:86 70:67 79:24 87:90 87:59

Table 3 Results for area
model

Set 1

s11 s12 s13 s14 s15 s16
M1 60:65 61:22 57:22 66:02 88:64 82:32

M2 66:58 66:80 87:09 44:95 45:60 72:73

Set 2

s21 s22 s23 s24 s25 s26
M1 80:62 80:28 80:39 81:10 81:40 80:99

M2 50:28 34:71 34:64 70:43 70:35 69:82

Model 2: CoV Model

The results for the CoV model [10] are shown in Table 2. In [10] the parameter
that was adjusted in their tests was the regularisation parameter, �, and is varied
here within the range set by Badshah et al. for their tests. The results were poor for
Sets 2 and 3, so they have not been included. It is possible that the model is not
capable of dealing with the intensity difficulties within the object selected in these
two images. For Set 1 successful results were obtained for M2, which was typical
for this model. Successful results were very dependent on initialisation, with very
poor results when markers are not near the boundary of the object.

Model 3: Area Model

In Table 3 results for Sets 1 and 2 are presented. The results obtained for Set 3 were
substandard for all parameters tested, indicating it was too challenging a problem
for this model. In [11], the parameters that were adjusted for each problem were
� and �, the regularisation and area constraint parameters, respectively. In Table 3,
s1 � s6 refer to some permutation of these two parameters within the range given in
[11]. These were not the same for each problem set, so s1 and s2 refer to Sets 1 and
2, respectively. A positive of this model is that, for Sets 1 and 2, there is a successful
result for the naive M1 marker set, suggesting that little user knowledge is required
for initialisation. There are also good results for a range of parameters that can be
selected in a predictable way.



Global and Local Segmentation of Images by Geometry Preserving Variational. . . 101

Table 4 Results for P-model Set 1

�11 �12 �13 �14 �15
M1 87:62 88:00 87:81 67:62 88:00
M2 66:81 66:90 67:09 67:37 67:75

Set 2

�21 �22 �23 �24 �25
M1 69:92 68:89 67:95 65:88 65:06

M2 82:23 82:19 80:28 79:49 78:56

Set 3

�31 �32 �33 �34 �35
M1 64:74 80:10 78:14 72:93 69:26

M2 65:59 66:59 66:76 67:56 69:13

Model 4: P-Model

The results for the P-model are presented in Table 4, varying the area constraint
parameter, � , for the different marker sets. The range of � is different for each test
and is referred to by �1 � �3 for Sets 1–3, respectively. They show that the model
achieves at least 80 % for each test, which is good. They also show that in Sets 1 and
3, this is achieved by the naive marker set M1. However, in those cases an improved
marker set fails for the same parameter range. This highlights one drawback of the
model. That is, it is sensitive to the area constraint. The selection of this parameter,
� , is dependent on the size and location of the polygon selected by the user and the
size and shape of the desired object. In this case, the boundary of the polygon given
by M2 is much closer to the boundary of the object than for M1. This means that for
any new marker set, a new range of � for which a successful segmentation will be
achieved applies and therefore has to be discovered; consequently it is quite difficult
to use intuitively. In the cases where there was a successful segmentation for M1, the
corresponding TC percentage was given, although successful results were acquired
for M2 as well.

Model 5: LI Model

The results for the LI model [12] for different marker sets are shown in Table 5.
In [12] the parameter that is generally adjusted for their examples is the regulari-
sation parameter, �. The results show that a good result is achieved for Sets 1 and
2, whilst an acceptable result is achieved for Set 3. However, these results are all
for the refined marker set M2; in Sets 1 and 3, we can see that for the simple M1
the LI model fails completely across the varied parameter, and Set 2 has a poor
result. This indicates that the model is dependent on the initialisation, requiring
some understanding of what image features will make an initialisation fail, i.e. for
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Table 5 Results for LI
model

Set 1

�1 �2 �3 �4 �5

M1 20:19 20:19 20:19 20:19 18:29

M2 88:40 88:40 88:21 82:13 74:19

Set 2

�1 �2 �3 �4 �5

M1 70:59 70:59 70:59 69:65 68:90

M2 81:20 81:20 81:20 81:10 78:50

Set 3

�1 �2 �3 �4 �5

M1 15:01 15:01 14:94 14:94 04:39

M2 75:33 75:33 75:84 76:54 53:74

Sets 2 and 3 the structure of the brain tissue involves intensity inhomogeneity that
can be interpreted by the model as a series of objects, so that a simple initialisation
can pick up some internal structure as the final result. An adjusted initialisation,
nearer the boundary, produces a successful segmentation. The results are consistent
across the range of the varied regularisation parameter, which indicates a strength
of the model.

Model 6: IS Model

When testing the IS model [21], Nguyen et al. fixed the fitting parameter as � D 100.
Although this can be varied, with a smaller � yielding a smoother contour, it is kept
fixed in these tests. Instead, we look at four different foreground and background
seed regions, In, for n D 1; :::; 4. We try a simple user input, I1, which marks
the object in a straightforward way. As n increases we incorporate more image
information, such as difficult boundaries or awkward object shape. An example of
this, in the case of Set 3, is shown in Fig. 2. This is an attempt to establish the level of
detail required for user input in challenging cases. Table 6 shows the results for the
IS model for the four different initialisations. They show that for the most basic user
input, the model tends to fail. Slight refinement of the input produces consistently
good results and in the case of Set 1 an excellent result. Whilst the TC percentage
does not always increase as n increases, the speed of the Split Bregman solver means
that repeat attempts can be made with intuitive adjustments of the input, until there
is a successful result.
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Fig. 2 These are the user
initialisations for Set 3, from
I1 on the left to I4 on the
right. Similar progressions
are used for Sets 1 and 2.
Blue and red represent
background and foreground
regions, respectively

Table 6 Results for IS
model

Set 1

I1 I2 I3 I4

62:50 89:38 89:60 92:40
Set 2

I1 I2 I3 I4

63:04 82:94 74:84 76:35

Set 3

I1 I2 I3 I4

47:73 61:87 88:23 86:91

Future Developments

It is possible to explore the benefits of extending models 1–4 to the convex
framework. In the nonconvex setting, the solutions computed are sometimes local
minima, which are incorrect. Early results suggest some success by incorporating
the work of [13] and [14], especially for the P-model. The IS model demonstrates
the advantages of a fitting term that does not model the image as being piecewise
constant. Incorporating and developing such ideas will be imperative to the future
improvement of selective segmentation models. Examples of recent models that
tackle intensity inhomogeneity within objects are region-scalable fitting [22], where
Li et al. introduce a fitting term that incorporates intensity information in a local
region at a controllable scale. This model uses the level set framework of models
1–5. A recent model, by Chen et al. [23], estimates a bias field estimator that adjusts
the piecewise constant image model which can extend the type of image where
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Table 7 Comparative results
for all models

Model Set 1 Set 2 Set 3

Dual 93:10 83:42 86:60

CoV 87:90 58:50 48:72

Area 87:09 81:40 61:30

P 88:00 82:83 80:10

LI 88:40 81:20 76:54

IS 92:40 82:94 88:23

selection of objects is viable. Other image information, rather than intensity, can
be utilised, such as texture and shape. Klodt and Cremers use moment constraints
[24] as a shape prior for segmentation, which can also aid the accurate selection of
objects. These models [23, 24] use the convex relaxation framework of model 6.

Conclusions

We have examined the results for all six models, for three difficult test problems. In
Table 7, a summary of the best results is presented. The CoV model wasn’t effective
for two test problems, perhaps indicative that it is not suitable for segmentation of
the brain, due to the intensity structure of the desired object. The area model is of
similar quality for two test sets, but fails in the third. Despite this, it is a model very
capable of selectively segmenting difficult images, where other models would fail.
The results show that the most accurate models are the dual model [9] of Rada and
Chen and the IS model [21] of Nguyen et al., with the former best in Sets 1 and 2
and the latter best in Set 3. However, for the dual model there are some drawbacks
on the choice of regularising the Heavisides for each level set in the functional (5),
which is difficult to do intuitively. The interactive user input, together with the fast
Split Bregman solver that allows repeat attempts, makes the IS model the most
appropriate for selective segmentation. Alternatives, which are very reliable for all
three problems, are the P-model and the LI model [12]. Each has good results, robust
to variation, that can be used with a reasonable level of naivety on the part of the
user.
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Positive and Negative Interval Type-2
Generalized Fuzzy Number as a Linguistic
Variable in Interval Type-2 Fuzzy Entropy
Weight for MCDM Problem
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Abstract Generalized fuzzy number is an extended method of fuzzy number.
Generalized fuzzy number has received significant attention from researchers in
many areas. However, most of the generalized fuzzy number is defined only on
one side which is in positive generalized fuzzy number. Therefore, the aim of this
paper is to introduce a new generalized fuzzy number which considers positive
and negative side in the concept of interval type-2 fuzzy set (IT2FS). Then, a new
linguistic variable is established from the concept of new generalized fuzzy number.
This new linguistic variable is applied into the interval type-2 entropy weight for
multi-criteria decision-making (MCDM) method. Interval type-2 entropy weight is
chosen as the weight in MCDM because the determination of this weight in the
existing project delivery decision-making model relies on experts’ knowledge and
experience excessively. An aggregation process in MCDM method is modified in
line with the new linguistic variable. An illustrative example is used in order to
check the efficiency of the new method. This approach offers a practical, effective,
and simple way to produce a comprehensive judgment.
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Introduction

A fuzzy number is a fuzzy set on real numbers [1] or we can say that a fuzzy number
is a fuzzy subset in support real number which is both “normal” and “convex” [2].
Fuzzy number is linked to the development of fuzzy sets from [3]. Beníteza et al.
[4] stated that fuzzy number is an extremely suitable methodology that embraces
adequately subjective knowledge and objective knowledge.

In 1985, Chen [5] proposed the concept of generalized fuzzy numbers, one of the
extend method from the idea of Zadeh [3]. Generalized fuzzy number is believed
can point out many cases it is not to possible to restrict the membership function
to the normal form [6]. Since then, tremendous efforts are spent and significant
advances are made on the development of numerous methodologies for comparing
of generalized fuzzy numbers. For example, Cho et al. [7] introduced the notion
of generalized fuzzy numbers and generalized fuzzy mappings and give Fubini
theorem for integrals of generalized fuzzy mappings. Chen and Chen [8] proposed
a fuzzy risk analysis on the ranking of generalized trapezoidal fuzzy numbers
(GTFNs). Chen and Chen [9] also established a fuzzy risk analysis based on the
ranking of generalized fuzzy numbers with different heights and different spreads.
Farhadinia and Ban [10] extended a similarity measure of GTFNs to similarity
measures of generalized trapezoidal intuitionistic fuzzy numbers (GTIFNs) and
generalized interval-valued trapezoidal fuzzy numbers (GIVTFNs) such that the
initial properties are to be preserved.

Since that, various authors have discussed on generalized fuzzy number method
in decision making field. For example, Wei et al. [11] developed a generalized
triangular fuzzy correlated averaging (GTFCA) operator. The GTFCA operator has
been successfully applied to the multiple attribute decision-making problems with
triangular fuzzy information. Su et al. [12] extended the induced generalized ordered
weighted average (IGOWA) operator to a new aggregation operator called induced
generalized intuitionistic fuzzy ordered weighted averaging (IG-IFOWA) operator
for multi-attribute group decision-making. Yu et al. [13] distributed a new fuzzy
multi-criteria decision-making (MCDM) approach for generalized fuzzy numbers
based on the proposed ranking fuzzy numbers.

Generalized fuzzy number stated only on a positive range fuzzy set and neglect-
ing the negative side. Banking on the premises of the statement that every matter
has two sides such as negative and positive and bad and good [14]. It has proven
by Ying and Yang’s theories; where it is becoming one rotundity when both side
turn into complementary. Specifically the objective of this paper is to propose a
new generalized fuzzy number which considers both sides which are positive and
negative fuzzy numbers in terms of IT2FSs. This new generalized fuzzy number
is implemented as a linguistic number and applied into the interval type-2 entropy
weight for MCDM method. Moreover, a modified distance measure is performed in
tandem with the new fuzzy linguistic variable.

In recent years, there are lots of papers discussed on an interval type-2 fuzzy
TOPSIS, but too little attention has been paid focused on a new positive and
negative generalized fuzzy number as the linguistic variable in interval type-2 fuzzy
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entropy weight for interval type-2 fuzzy TOPSIS manner. For example, Chen and
Lee [15] presented an interval type-2 fuzzy TOPSIS (IT2 FT) method to handle
fuzzy multiple attribute group decision-making problems based on IT2FSs where
the weights of the attributes and ratings for alternatives were in interval type-2 fuzzy
linguistic variable terms. In another example, Chen and Lee [16] presented a new
method to handle fuzzy multiple attribute group decision-making problems based
on the ranking values and the arithmetic operations of IT2FSs.

For these reasons, this new method gives broad space to consider uncertain
and vague because it uses IT2FS rather than fuzzy set. This approach is seen
to provide a new perspective in fuzzy type-2 decision-making environment. They
offer a practical, effective, and low-risk computation to produce a comprehensive
judgment.

Preliminaries

Interval Type-2 Fuzzy Sets

This section briefly reviews some definitions of type-2 fuzzy sets and IT2FSs from
Mendel et al. [17].

Definition 2.1 [17]. A type-2 fuzzy set QQA in the universe of discourse X can be
represented by a type-2 membership function � QQA, shown as follows:

QQA D
n�
.x; u/ ; � QQA .x; u/

�
j8x 2 X;8u 2 Jx 	 Œ0; 1 ; 0 � � QQA .x; u/ � 1

o
; (1)

where Jx denotes an interval in [0, 1]. Moreover, the type-2 fuzzy set QQA also can be
represented as follows:

QQA D
Z

x2X

Z

u2Jx
� QQA .x; u/ = .x; u/ ; (2)

where Jx 	 Œ0; 1 and
“

denotes the union over all admissible x and u.

Definition 2.2 [17]. Let QQA be a type-2 fuzzy set in the universe of discourse X
represented by the type-2 membership function � QQA. If all � QQA D 1, then A is called

an IT2FSs. An IT2FS QQA can be regarded as a special case of a type-2 fuzzy set,
represented as follows:

QQA D
Z

x2X

Z

u2Jx
1= .x; u/; (3)

where Jx 	 Œ0; 1.
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Entropy Weight

Definition 2.2 [18]. Entropy weight is a parameter that describes how much
different alternatives approach one another in respect to a certain attribute [18].
Conversely, low information entropy is a sign of a highly organized system. In
information theory, the entropy value can be calculated as in Eq. (4)

H .p1; p2; : : : ; pn/ D �
nX

jD1
pj lnpj ; (4)

where H is the level of entropy and pj is the probability of occurrence of event.

Szmidt and Kacprzyk [19] proposed a new entropy method for IFS. In their paper,
they proposed the IF entropy as a ratio of distances between (F, Fnear) and (F, Ffar).
The expression is given as follows:

ESK.F / D .F; Fnear /�
F;Ffar

� (5)

where (F, Fnear) is the distance from F to the nearer point Fnear among positive ideal
point and negative ideal point and (F, Ffar) is the distance from F to the farther point
Ffar among positive ideal point and negative ideal point. De Luca and Termini [20]
have already proposed the axioms of entropy for FSs. Szmidt and Kacprzyk [19]
then expressed IF entropy in the following definition:

Generalized Fuzzy Number

Let Ã be a generalized trapezoidal fuzzy number, QA D �
a1; a2; a3; a4I w QA

�
, where

a1, a2, a3, and a4 are real values, wÃ is the maximum membership value of
the generalized trapezoidal fuzzy number Ã, and w QA 2 Œ0; 1. If �1 � a1 �
a2 � a3 � a4 � 1, then Ã is called a standardized generalized fuzzy number.
If w QA D 1, then Ã becomes a traditional fuzzy number and it can be represented
as QA D .a1; a2; a3; a4/. If a2 D a3, then Ã is a triangular fuzzy number. If
a1 D a2 D a3 D a4, then Ã is crisp values.

According to Wang and Luo [21], the membership function �Ã of a generalized
fuzzy number Ã is defined as follows:

�A.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

f L
QA .x/; a1 � x � a2;

w QA; a2 � x � a3;

f R
QA .x/; a3 � x � a4;

0; otherwise;

(6)

where f L
Ã
(x) and f R

Ã
(x) are continuous mapping functions and w QA 2 Œ0; 1.



Positive and Negative Interval Type-2 Generalized Fuzzy Number. . . 113

Some examples of generalized fuzzy numbers, shown as follows:
The combination between three basic concepts (“interval type-2 fuzzy sets,”

“entropy weight,” and “generalized fuzzy number”) will produced a new linguistic
variable shown in section “Development of PNIT2GFN.” This new linguistic
variable is applied into an interval type-2 entropy weight in MCDM method in
section “Decision-Making Based on the Interval Type-2 Entropy Weight.” Then,
a numerical example from Yu et al. [13] is presented to test the effectiveness of the
new model (shown in section “Numerical Example”).

An Algorithm

This section focuses on the developing of a new generalized fuzzy number in section
“Development of PNIT2GFN.” Then, the new linguistic variable is applied into
the interval type-2 entropy weight in MCDM method in section “Decision-Making
Based on the Interval Type-2 Entropy Weight.”

Development of PNIT2GFN

This section critically develops a new positive and negative generalized fuzzy
number with IT2FS. From this new generalized fuzzy number, a new linguistic
variable can be formed for MCDM method (will be discussed in section “Decision-
Making Based on the Interval Type-2 Entropy Weight”).

A linguistic data is a variable whose value is naturally language phase in
dealing with too complex situation to be described properly in conventional
quantitative expressions [22]. A linguistic variable is a variable whose values are
words or sentences in a natural or artificial language [23]. Linguistic variable is
the most important component in MCDM method. In today’s highly competitive
environment, an effective linguistic variable proofs to be an advantage and also a
vital requirement in any entity. In the practical decision-making process, sometimes,
because of the time pressure and lack of knowledge or data or the decision-
makers (DMs) have limited attention and information processing capacities, the
DMs cannot provide their preference with single exact value, a margin error, or
some possibility distribution on the possible values, but several possible values [24].
Thus, to overcome all the above difficulties, a new linguistic variable is developed
using the generalized fuzzy number considering both positive and negative aspects
in IT2FS concepts. The whole of this process is shown as follows:

Figure 2 shows the flow of PNIT2GFN. It starts with Fig. 2a, where Zadeh
[23] came out with the idea of fuzzy numbers. Figure 2b shows the generalized
fuzzy number and Fig. 2c shows the interval type-2 trapezoidal fuzzy number. The
combination between “Fig. 2b and c ” and the idea from “example of Set 6 in Fig. 1”
will distribute Fig. 2d. The flow for distribution of PNIT2GFN is shown in Fig. 2.
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Fig. 1 Eight sets of generalized fuzzy number [8, 9]
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Fig. 2 The flow of positive
and negative interval type-2
generalized fuzzy number
(PNIT2GFN). (a) Two
trapezoidal fuzzy numbers
[23], (b) generalized fuzzy
number [5, 25, 26], (c)
interval type-2 trapezoidal
fuzzy number [15],
(d) PNIT2GFN
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The PNIT2GFN in Fig. 2d can be represented by QQB , where QQB D � QBL; QBU
� D���d;�c; c; d IH1

� QBL
��
;
��f;�e; e; f IH2

� QBU
���

. The values of �d;�c; c; d
and �f;�e; e; f are the reference points of the PNIT2GFN QQB , and thenH1

� QBL
� D

w1
� QBL

�
and H2

� QBU
� D w2

� QBU
�

denote the second membership value in the

membership function. The membership function � QQB.x/ of a PNIT2GFN QQB is
defined as follows:

��

B
.x/U D

0
BB@
f
Negative

�

B
.x/ �d � x � �c

f Posi t ive
�

B
.x/ c � x � d

0 otherwise

(7)

��

B
.x/U D H2

� QBU
� 8H2

� QBU
� 2 Jx 	 Œ0; 1 (8)

and

��

B
.x/L D

8
<̂
:̂

f
Negative

QB .x/ �f � x � �e
f Posi t ive

QB .x/ e � x � f

0 otherwise

(9)

��

B
.x/L D H1

� QBL
� 8H1

� QBL
� 2 Jx 	 Œ0; 1 (10)

where

��

B
.x/ D

h
��

B
.x/L; ��

B
.x/U

i
: (11)

Then, the arithmetic operations of the PNIT2GFN are presented as follows:

Proposition 1. The addition operation between two PNIT2GFN QQB1 D � QB1; QB1
� D���d1;�c1; c1; d1IH1

� QBL
��
;
��f1;�e1; e1; f1IH2

� QBU
���

and
QQB2 D � QB2; QB2

� D ���d2;�c2; c2; d2IH2

� QBL
��
;
��f2;�e2; e2; f2IH2

� QBU
���

is defined as follows:

QQB1 ˚ QQB2 D ���d1;�c1; c1; d1IH1

� QBL
��
;
��f1;�e1; e1; f1IH2

� QBU
���˚

���d2;�c2; c2; d2IH1

� QBL
��
;
��f2;�e2; e2; f2IH2

� QBU
���

D
0
@
.�d1 ˚ �d2;�c1 ˚ �c2; c1 ˚ c2; d1 ˚ d2/ ;

.�f1 ˚ �f2;�e1 ˚ �e2; e1 ˚ e2; f1 ˚ f2/ I�
min

�
H1

� QBL
�
;H1

�
BL
��� �

min
�
H2

� QBU
�
;H2

� QBU
���

1
A :

(12)
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Proposition 2. The subtraction operation between two PNIT2GFN QQB1 D� QB1; QB1
� D ���d1;�c1; c1; d1IH1

� QBL
��
;
��f1;�e1; e1; f1IH2

� QBU
���

and
QQB2 D � QB2; QB2

� D ���d2;�c2; c2; d2IH2

� QBL
��
;
��f2;�e2; e2; f2IH2

� QBU
���

is defined as follows:

QQB1 � QQB2 D
���d1;�c1; c1; d1IH1

� QBL
��
;��f1;�e1; e1; f1IH2

� QBU
��
�

�
���d2;�c2; c2; d2IH1

� QBL
��
;��f2;�e2; e2; f2IH2

� QBU
��
�

D
0
@
..�d1/ � .�d2/ ; .�c1/� .�c2/ ; c1 � c2; d1 � d2/ ;

..�f1/� .�f2/ ; .�e1/ � .�e2/ ; e1 � e2; f1 � f2/ I�
min

�
H1

� QBL
�
;H1

�
BL
��� �

min
�
H2

� QBU
�
;H2

� QBU
���

1
A :

(13)

Proposition 3. The multiplication operation between two PNIT2GFN QQB1 D
� QB1; QB1

� D
���d1;�c1; c1; d1IH1

� QBL
��
;��f1;�e1; e1; f1IH2

� QBU
��
�

and QQB2 D � QB2; QB2
� D

���d2;�c2; c2; d2IH2

� QBL
��
;��f2;�e2; e2; f2IH2

� QBU
��
�

is defined as follows:

QQB1 ˝ QQB2 D
���d1;�c1; c1; d1IH1

� QBL
��
;��f1;�e1; e1; f1IH2

� QBU
��
�

˝
���d2;�c2; c2; d2IH1

� QBL
��
;��f2;�e2; e2; f2IH2

� QBU
��
�

D
0
@
.�d1 ˝ �d2;�c1 ˝ �c2; c1 ˝ c2; d1 ˝ d2/ ;

.�f1 ˝ �f2;�e1 ˝ �e2; e1 ˝ e2; f1 ˝ f2/ I�
min

�
H1

� QBL
�
;H1

�
BL
��� �

min
�
H2

� QBU
�
;H2

� QBU
���

1
A :

(14)

Proposition 4. The arithmetic operation between the PNIT2GFN QQB1 D� QB1; QB1
� D ���d1;�c1; c1; d1IH1

� QBL
��
;
��f1;�e1; e1; f1IH2

� QBU
���

and the
crisp value k is defined as follows:

k QQB1 D �
k QB1; k QB1

� D
���d1 � k;�c1 � k; c1 � k; d1 � kIH1

� QBL
��
;��f1 � k;�e1 � k; e1 � k; f1 � kIH2

� QBU
��
�

(15)

QQB1

k
D
�

QB1 � 1

k
; QB1 � 1

k

�

D
���d1 � 1

k
;�c1 � 1

k
; c1 � 1

k
; d1 � 1

k
IH1

� QBL
��
;��f1 � 1

k
;�e1 � 1

k
; e1 � 1

k
; f1 � 1

k
IH2

� QBU
��
�
: (16)

From all the formulas and arithmetic operations of PNIT2GFN, we can define
the new linguistic variable for PNIT2GFN as follows:
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Table 1 The new linguistic variables for the ratings of attributes

Linguistic variables for the ratings of the vehicles

Very low (VL) ((�0.2, �0.15, 0.15, 0.2; 1), (�0.2, �0.15, 0.15, 0.2; 0.9))
Low (L) ((�0.4, �0.2, 0.2, 0.4; 1), (�0.4, �0.2, 0.2, 0.4; 0.9))
Medium (M) ((�0.6, �0.4, 0.4, 0.6; 1), (�0.6, �0.4, 0.4, 0.6; 0.9))
High (H) ((�0.8, �0.6, 0.6, 0.8; 1), (�0.8, �0.6, 0.6, 0.8; 0.9))
Very high (VH) ((�1, �0.8, 0.8, 1; 1), (�1, �0.8, 0.8, 1; 0.9))

Here, this study uses five basic linguistic terms as “very low” (VL), “low” (L),
“medium” (M), “high” (H), and “very high” (VH). Thus, the new linguistic variable
of PNIT2GFN shown in Table 1.

This new linguistic variable is still new. Therefore, we applied this new linguistic
variable in interval type-2 entropy weight for MCDM method (shown in section
“Decision-Making Based on the Interval Type-2 Entropy Weight”). Then, we test
this new linguistic variable by using a numerical example which is Yu et al. [13].
Further calculations will be shown in Section “Numerical Example.”

Decision-Making Based on the Interval Type-2
Entropy Weight

In this section, we focus on handling method for a new linguistic variable of
PNIT2GFN in MCDM method. The new linguistic variable is applied in interval
type-2 entropy weight in Step 2. In Step 4, the distance measure is lightly modified in
line with the new linguistic variable. Therefore, the full six steps of MCDM method
are shown as follows:

Step 1: Establish a decision matrix
Establish a decision matrix where all the values are dedicated by the experts.

C1 C2 � � � Cj

D D
f1

f1
:::

f1

2
666664

QQf 11
QQf 12 � � � QQf 1jQQf 21
QQf 22 � � � QQf 1j

:::
:::

: : :
:::

QQf i1
QQf i2 � � � QQf ij

3
777775

(17)

where f1, f2, : : : , fi represents the alternative and C1, C2, : : : , Cj represents the

criteria. Each entry value is considered as IT2FSs values, which is denoted as QQf ij .

Then, QQf ij D QQBij D
� QBL

ij ;
QBU
ij

�
D
0
@
�
�dij ;�cij ; cij ; dij IH1

� QBL
ij

��
;�

�fij ;�eij ; eij ; fij IH2

� QBU
ij

��
1
A.
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Step 2: Calculate the entropy-based objective weighting
The information about weight QQwj of the criterion Cj .j D 1; 2; : : : ; n/ is com-

pletely unknown, we establish an interval type-2 entropy weight for determining the
criteria weight in line with the new linguistic variable.

In this step, entropy-based objective weighting method is used. In order to
determine the objective weights by entropy measures, the decision matrix needs to
be normalized for each criterion Cj .j D 1; 2; : : : ; n/ to obtain the projection value
for each criterion QQpij .

QQpij D
�

Qpij L; Qpij U
�

D

0
B@
0
@ QsijXm

i;jD1 Qsij

1
A
L

;

0
@ QsijXm

i;jD1 Qsij

1
A
U
1
CA

where

QsLij D

vuuuut
Xn

iD1

2
64
�
.�d/nearij � ��dij

��2 C
�
.�c/nearij � ��cij

��2

C
�
cnearij � cij

�2 C
�
dnearij � dij

�2

3
75

vuuuut
Xn

iD1

2
64
�
.�d/farij � ��dij

��2 C
�
.�c/farij � ��cij

��2

C
�
c
far
ij � cij

�2 C
�
d
far
ij � dij

�2

3
75

(18a)

and

QsUij D

vuuuut
Xn

iD1

2
64
�
.�f /nearij � ��fij

��2 C
�
.�e/nearij � ��eij

��2

C
�
f near
ij � fij

�2 C
�
enearij � eij

�2

3
75

vuuuut
Xn

iD1

2
64
�
.�f /farij � ��fij

��2 C
�
.�e/farij � ��eij

��2

C
�
f
far
ij � fij

�2 C
�
e
far
ij � eij

�2

3
75

(18b)

then, QQsij D
�

QsLij ; QsUij
�

.

After normalizing the decision matrix, calculate the entropy values QQEj as

QQEij D
� QEL

ij ;
QEU
ij

�
D

0
B@
0
@�k

nX
jD1

Qpij ln Qpij
1
A
L

;

0
@�k

nX
jD1

Qpij ln Qpij
1
A
U
1
CA : (19)

k is a constant; let k D .ln.m//�1.
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Then, the degree of divergence QQ�j of the intrinsic information of each criterion
Cj .j D 1; 2; : : : ; n/ may be calculated as

QQ�ij D
�

Q�Lij ; Q�Uij
�

D
��
1 � QEij

�L
;
�
1 � QEij

�U �
: (20)

The value QQ�j represents the inherent contrast intensity of Cj. The higher the QQ�j is,
the more important the criterion Cj is for the problem. Then, the objective weight
for each criterion can be calculated.

QQwij D
�

QwLij ; QwUij
�

D

0
B@
0
@ Q�ijXn

i;jD1 Q�ij

1
A
L

;

0
B@
0
@ Q�ijXn

i;jD1 Q�ij

1
A
U
1
CA

1
CA : (21)

Step 3: Weighted decision matrix
Construct the weighted decision matrix Y w;

x1 x2 � � � xj

Y wij D
� QQvij

�
m�n D

f1
f2
:::

fi

2
6664

QQv11 QQv12 � � � QQv1j
QQv21 QQv22 � � � QQv2j
:::

:::
:::

:::
QQvi1 QQvi2 � � � QQvij

3
7775 ;

(22)

where QQvij D
�

QvLij ; QvUij
�

, QvLij D QwLij ˝ QBL
ij , and QvUij D QwUij ˝ QBU

ij , 1 � i � m, and

1 � j � n.
Step 4: Calculate the distance measure
Calculate the new distance measures using the n-dimensional Euclidean distance.

The separation of each alternative from the ideal solution is given as

D�
j D

vuuut
nX

i;jD1

� QQv�
ij � QQvLij

�2 C
0
@

nX
i;jD1

H1

� QBL
ij

�1
AC

0
@

nX
i;jD1

H2

� QBL
ij

�1
A

C

vuuut
nX

i;jD1

� QQv�
ij � QQvUij

�2 C
0
@

nX
i;jD1

H1

� QBU
ij

�
1
AC

0
@

nX
i;jD1

H2

� QBU
ij

�
1
A; j D 1; : : : ; J:

(23a)

Similarly, the separation from the negative ideal solution is given as
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D�
j D

vuuut
nX

i;jD1

� QQv�
ij � QQvLij

�2 C
0
@

nX
i;jD1

H1

� QBL
ij

�
1
AC

0
@

nX
i;jD1

H2

� QBL
ij

�
1
A

C

vuuut
nX

i;jD1

� QQv�
ij � QQvUij

�2 C
0
@

nX
i;jD1

H1

� QBU
ij

�1
AC

0
@

nX
i;jD1

H2

� QBU
ij

�1
A; j D 1; : : : ; J:

(23b)

Step 5: Relative closeness
Calculate the relative closeness to the ideal solution. The relative closeness of the

alternative fi is defined as

Pj D D�
j

D�
j CD�

j

; 1 � j � n: (24)

Step 6: Rank the values
Sort the values of Pj in a descending sequence, where 1 � j � n. The larger the

value of Pj, the higher the preference of the alternatives fi, where 1 � i � n.
In this MCDM framework, we introduced a new linguistic variable of

PNIT2GFN. This new linguistic variable is applied into the interval type-2 entropy
weight to capture the completely unknown information about criteria weights. Then,
follow by the modification of the distance measures to capture the new linguistic
variable. This new linguistic variable is hoped to be one of the standard scales in
solving the decision-making problems.

Numerical Example

In this section, we give a numerical example to test the ability of the proposed
method in handling MCDM problems. Example in this section refers to MCDM
problem used in Yu et al. [13].

Assume that there are three committee members consist of D1, D2, and D3, to
assess the suitability of the potential furniture supplies. A committee is formed
to select the best among three furniture suppliers, A1, A2, and A3, based on nine
criteria: price of product (C1), cost of transportation (C2), promotion (C3), quality
of product (C4), delivery time (C5), store image (C6), origin (C7), ergonomic (C8),
and customization (C9). These three committees used the linguistic terms shown in
Table 1 to represent the evaluating values of the alternatives with respect to different
attributes, respectively. Based on the proposed method, the new linguistic terms
shown in Table 1 can be represented in Table 2.
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Table 2 Linguistic of
decision matrix

Decision-makers
Criteria Alternatives D1 D2 D3

C1 A1 H VH H
A2 VH VH H
A3 H M M

C2 A1 H H H
A2 H VH H
A3 H H VH

C3 A1 H H H
A2 H VH H
A3 H H H

C4 A1 H VH H
A2 H H VH
A3 H H H

C5 A1 H H M
A2 VH H M
A3 H H H

C6 A1 H M H
A2 VH H M
A3 H H H

C7 A1 M H H
A2 H H H
A3 M M H

C8 A1 H H VH
A2 VH VH VH
A3 H H H

C9 A1 M M L
A2 H H H
A3 M H L

Step 1: Establish a decision matrix
Establish a decision matrix where all the values are dedicated by the committee

members.
Step 2: Calculate the entropy-based objective weighting
Use interval type-2 entropy weight formulas (Eq. (19)) to calculate the entropy

value in the decision matrix. Therefore, the entropy value is represented in Table 3.
Then, the maximal entropy value is shown in Table 4:
The weight of attributes is calculated using the weight formula (Eq. (21)). The

result is shown in Table 5.
Step 3: Weighted decision matrix
Next, Eq. (22) is applied respectively to yield the interval type-2 fuzzy weighted

normalize decision matrix.
Step 4: Calculate the distance measure
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Table 3 Interval type-2
entropy for each criterion

A1 A2 A3

C1 1.634889 1.555493 2.005027
C2 1.732051 1.634889 1.634889
C3 1.732051 1.634889 1.732051
C4 1.634889 1.634889 1.732051
C5 1.852682 1.732051 1.732051
C6 1.852682 1.732051 1.732051
C7 1.852682 1.732051 2.005027
C8 1.634889 1.489803 1.732051
C9 2.460931 1.732051 2.201398

Table 4 Maximal entropy
value

A1 A2 A3

C1 0.664338 0.898064 0.910797
C2 0.703819 0.943904 0.742659
C3 0.703819 0.943904 0.786796
C4 0.664338 0.943904 0.786796
C5 0.752838 1 0.786796
C6 0.752838 1 0.786796
C7 0.752838 1 0.910797
C8 0.664338 0.860138 0.786796
C9 1 1 1

Table 5 Entropy-based
weights for each attribute

QQaj QQT j QQwj
C1 0.8244 2.473199 0.071001
C2 0.796794 2.390383 0.08501
C3 0.811506 2.434519 0.077425
C4 0.798346 2.395037 0.084197
C5 0.846545 2.539634 0.060424
C6 0.846545 2.539634 0.060424
C7 0.887878 2.663635 0.042093
C8 0.770424 2.311272 0.099329
C9 1 3 0

Based on Eqs. (23a) and (23b), we can calculate the new distance measures using
the n-dimensional Euclidean distance.

Step 5: Relative closeness
Based on Eq. (24), we can calculate the relative closeness to the ideal solution.

The relative closeness of the alternative fi is defined as Table 6.
Step 6: Rank the values
We can calculate the relative degree of closeness C(xj) of each alternative xj with

respect to the positive ideal solution xC, where 1 � j � 3, shown in Table 7.
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Table 6 Ideal solutions dC

�
xj
�

d�

�
xj
�

A1 1.622526 0.047437
A2 1.776002 0.056858
A3 1.562626 0.043947

Table 7 Final ranking order C(xj)

A1 0.027679
A2 0.030229
A3 0.026653

The preferred order of the alternatives A1, A2, and A3 is: A2>A1>A3. That is,
the best alternative among A1, A2, and A3 is A2. The ranking order of the proposed
method is consistent with Yu et al.’s example.

Conclusion

This paper has critically introduced a new generalized fuzzy number or can be
known as “PNIT2GFN.” This new PNIT2GFN considered both sides which are
positive and negative side. It is due to the statement that “every matter has two sides
such as negative and positive, bad and good, and etc.” [14]. Besides, the concept of
second membership function in IT2FS is successfully applied into the PNIT2GFN.
The concept of IT2FS is believed to threat the imprecise sources, information
ambiguity, and uncertain factors [27, 28]. From this new PNIT2GFN, we developed
a new linguistic variable. The linguistic variable is applied into the interval type-
2 entropy weight for MCDM method. An aggregation process in MCDM method
is modified in line with the new linguistic variable. An illustrative example from
Yu et al. [13] was tested in order to check the efficiency of the new method. The
efficiency of using new method is proven with a straightforward computation in
illustrative examples. This approach is seen to provide a new perspective in type-2
decision-making area. They offer a practical, effective, and simple way to produce
a comprehensive judgment. This research can further be extended by using non-
symmetrical interval triangular and trapezoidal T2FS.
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The Number of Complex Roots of a Univariate
Polynomial Within a Rectangle

Ganhewalage Jayantha Lanel and Charles Ching-An Cheng

Abstract Let f .z/ be a nonzero complex univariate polynomial and let R be a
rectangle in the complex plane. The number of complex roots of f .z/ inside R is
given by the winding number of f .z/ on R if f .z/ has no roots on the boundary
of R. In this paper the result is extended to all rectangles R even when f .z/ has
roots on the boundary of R under the condition that f .z/ is square-free. It can also
be used to formulate an algorithm that isolates the complex roots of any polynomial.

Keywords Polynomial • Real root isolation • Complex root isolation

Throughout f .z/ will be a polynomial with complex coefficients and R a rectangle
in the complex plane. The real part and imaginary part of f are polynomials
f1; f2 2RŒx; y such that f .z/ D f .x C iy/ D f1.x; y/ C if2.x; y/. We shall
identify a complex point P with its coordinates .x; y/ in the plane. A complex
point P is axial if f1.P / or f2.P / is zero but not both. Geometrically, this means
that f .P / lies on an axis but is not the origin.

Let O be the origin and W1;W2 two nonzero points in the complex plane.
Then the pseudo argument change from W1 to W2 is �

4
n where n is the least

number of times the ray
��!
OP approaches or leaves a half-axis when the nonzero

point P is revolved about O counterclockwise from the quadrant or the half-axis
containingW1 to that containingW2. We shall denote this value by
parg.W1;W2/.
For example, if W1;W2 are in the same quadrant (or on the same half-axis), then

parg.W1;W2/ D 0. If W1 is on the positive x-axis and W2 in the second quadrant
not on any axis, then 
parg.W1;W2/ D 3�

4
and
parg.W2;W1/ D 5�

4
.
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Let N be a standard polygon, i.e., a polygon whose edges are either horizontal
or vertical. If an edge E of N contains infinitely many axial points, then f1 or f2
must be identically zero on E , i.e., f .E/ lies on an axis. Let P be an axial point
on the boundary @N of the polygonN . Then there exist points A;B on the adjacent
edge(s) to P such that A;P;B are oriented counterclockwise on @N and each of
AP and BP either contains no axial points exceptP or contains infinite many axial
points (thus must consist of axial points only). If AP and BP do not both contain
infinitely many axial points, then P is said to be critical and A;B isolate P . More
explicitly, if P is a non-corner point, then it is critical if and only if there exist points
A;B 2 @N on opposites of P such that AB contains no axial point except P . If
P is a corner point of R then it is critical if not both AP and BP consists of axial
points.

Define the pseudo argument change attributed to a critical point P relative to
@N by


@Nparg.P / D
(

parg.f .A/; f .B//; if 
parg.f .A/; f .B// � �=2

�
parg.f .B/; f .A//; otherwise:

Hence, if one of f .AP / and f .PB/ is and the other is not on an axis, then
j
@Nparg.P /j D �=4. If both f .AP / and f .PB/ are not on an axis, then
j
@Nparg.P /j D �=2 or 0. Therefore, 
@Nparg.P / D 0;˙�=4 or ˙�=2. It
is not hard to see that it is independent of the choice of A and B .

Since the pseudo argument changes attributed to critical points count the
“number” of times f crosses an axis, the result below follows directly from the
Argument Principle (see [3]).

Proposition 1. Suppose f .z/ 2 CŒz, N is a standard polygon and suppose Pi ,
i D 1; : : : ; s, are all the critical points of f on @N . If there is no root of f on @N ,
then the number of roots of f in the interior of N is given by

1

2�

sX
iD1


@N parg.Pi /:

Proof. Assume P1; : : : ; Ps are oriented counterclockwise on @N . We will
choose points T1; : : : ; Ts on @N such that Ti is between Pi and PiC1,
subscripts modulo s. If f .Pi / and f .PiC1/ are on “neighboring” half-axes, i.e.,
j
@N arg.f .Pi /; f .PiC1//j D �=2, then .Pi ; PiC1/ are of type I, and we use the
Intermediate Value Theorem to choose Ti such that j
@N arg.f .Pi /; f .Ti //j D �=4

and j
@N arg.f .Ti /; f .PiC1//j D �=4. Otherwise, f .Pi / and f .PiC1/ are on the
same half-axis, i.e.,
@N arg.f .Pi /; f .PiC1// D 0. Since there are no critical points
between Pi and PiC1, f@N .PiPiC1/ D ff .P /jP is between Pi and PiC1 on @N g
is either entirely on an axis or none of its points except f .Pi /; f .PiC1/ are on the
axis. In the first case, we say that .Pi ; PiC1/ is of type II and in the second case of
type III. In both cases, we choose Ti to be any point on @N between Pi and PiC1
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and so 
@N arg.f .Pi /; f .Ti //C
@N arg.f .Ti /; f .PiC1// D 0. It is not difficult to
see that if .Pj�1; Pj / and .Pk; PkC1/ are of type I or II and .Pi ; PiC1/ is of type III
for i D j : : : k � 1, then

kX
iDj

�

@N arg.f .Ti�1/; f .Pi //C
@N arg.f .Pi /; f .Ti //

�

D
kX
iDj


@Nparg.Pi /:

where j � k and subscripts modulo s.
Therefore, using the principle of argument, the number of roots of f in the

interior of N is given by

1

2�

sX
iD1

�

@N arg.f .Ti�1/; f .Pi //C
@N arg.f .Pi /; f .Ti //

�

D 1

2�

sX
iD1


@Nparg.Pi /:

Remark. Suppose f .z/ 2CŒz and E is a straight line in the complex plane. Using
the rotation of axes, it is easy to see that if f .z/ vanishes on infinitely many points
of E , then f .z/ vanishes at all points of the line. Using this observation, one can
remove the hypothesis from Proposition 1 that N must be standard.

Suppose Z is a root of f on @R. If Z is on an edge E and not a corner point
of the rectangle R, then there exist points A;B of E on opposite sides of Z such
that either there are no axial points on AB or f .AB/ lies on an axis. If Z is a
corner point of R, then there exist points A;B such that each of AZ and BZ
satisfies the following: either all points except Z are axial or none of them are.
For convenience we shall say that A;B isolate Z and assume that A;Z;B are
oriented counterclockwise on @R. Define the pseudo argument change attributed to
Z relative to @R by 
@Rparg.Z/ D �
parg.f .B/; f .A//. It is not hard to see
that this is independent of the choice of A;B .

Main Theorem. Suppose f .z/ 2CŒz is square-free and suppose R is a rectangle
in the complex plane. If Zi , i D 1; : : : ; m, are the roots of f on @R and Pi , i D
1; : : : ; n, the critical points of f on @R, then the number of roots of f in the interior
of R is given by

1

2�

 
mX
iD1


@Rparg.Zi /C
nX
iD1


@Rparg.Pi /

!
:
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Remarks. 1. The above result can be used to symbolically computing the number
of roots of a given polynomial within a rectangle. One first computes the largest
square-free divisor f of the given polynomial. Then its real part f1 and the
imaginary part f2 are computed. After computing gcd.f1; f2/ and the cofactors
of f1; f2, an existing real root isolation procedure can be used on them to
find the isolating intervals of the roots and critical points on the boundary of
the rectangle (see [2]). Next, bisection is used to make these intervals disjoint.
Then the endpoints of the intervals can be used as those that isolate the roots and
the critical points. Finally 
@Rparg.Zi / and 
@Rparg.Pi / can be computed
based on the signs of the real and imaginary parts of f .Ai /; f .Bi / where
fAi ; Bi g isolates Zi or Pi .

2. The hypothesis that f be square-free is needed for the Theorem. For instance,
f .z/ D z2 is not square-free with real part f1.x; y/ D x2 � y2 and
imaginary part f2.x; y/ D 2xy. Let R be the rectangle Œ�1; 1 � Œ�1; 0.
Then .0; 0/ is the only zero on @R and the critical points of f on @R

are .�1; 0/; .�1;�1/; .0;�1/; .1;�1/; .1; 0/. It is not difficult to check that

Rparg.0; 0/ D 0, 
Rparg.�1; 0/ D 
Rparg.1; 0/ D �=4 and

Rparg.�1;�1/ D 
Rparg.0;�1/ D 
Rparg.1;�1/ D �=2 so the
result of Main Theorem does not hold. In fact it can be shown that f .z/ D zn

has 4n critical points on the boundary of a small rectangle containing .0; 0/ each
attributing pseudo argument change of �=2. So if the Main Theorem is true for
the same rectangleR in this case, then the pseudo argument change attributed by
.0; 0/ would have to be n� .

Let R and T be standard rectangles such that the interior of T contains a root Z
of f on @R. We say that T is small relative to R if @R \ @T D fA;Bg is contained
in the edge(s) of R and A;B isolate Z. The inside boundary of T (relative to R) is
the set of all points of @T which lie inside R or on @R.

In order to prove the Main Theorem, we need the following Lemma whose proof
will be postponed until the end of the paper.

Lemma 2. Suppose R is a standard rectangle in the complex plane, f .z/ 2CŒz is
square-free andZ D x0 C iy0 is a root of f on @R. Then there exists a rectangle T
such that the following holds:

1. T is arbitrarily small (in length/width) and is small relative to R such that Z is
the only root of f contained in the interior of T .

2. Either both f1; f2 are strictly monotonic or one of them is in the upper-lower
cone and the other in the left-right cone formed by the lines y�y0 D ˙.x�x0/.

3. The pseudo argument change attributed by each critical point on @T is �=2.

Proof of Main Theorem. By (1) of Lemma 2, there exists disjoint rectangles Ti
small relative to R and each Zi is the only root of f contained in the interior of
Ti such that (2)–(3) hold. Let N D R � [m

iD1Ti and let Qi;j , j D 1; : : : ; `i be the
critical points on the inside boundary of Ti . Each of theseQi;j is also a critical point
on @N . Using (1) and (2) of Lemma 2, one sees that there are at most three critical
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points on the inside boundary of each Ti . By (3) of Lemma 2,
P

j 
@Nparg.Qi;j /

is between 0 and �3�=2. Hence, 
@Rparg.Zi / D P
j 
@Nparg.Qi;j /. Then the

number of roots of f in the interior of R is the same as those in the interior of N
which, by Proposition 1, is

1

2�

0
@

mX
iD1

`iX
jD1


@Nparg.Qij /C
nX
iD1


@Nparg.Pi /

1
A

D 1

2�

 
mX
iD1


@Rparg.Zi /C
nX
iD1


@Rparg.Pi /

!

since 
@Rparg.Pi / D 
@Nparg.Pi /.

Proof of Lemma 2. We first prove that if Z D x0 C iy0 is a root of f , then
.x0; y0/ is a non-singular point for both f1 and f2. Suppose @f1=@x.x0; y0/ D
@f1=@y.x0; y0/ D 0. Then, by Cauchy-Riemann, @f2=@y.x0; y0/ D @f1=@

x.x0; y0/ D 0 and @f2=@x.x0; y0/ D �@f1=@y.x0; y0/ D 0. Hence, f 0.z0/ D 0,
contradicting the fact that f is square-free. The same for f2 can be proved similarly.

Without loss of generality we may translate the axes so that .x0; y0/ D .0; 0/,
i.e., Z is the origin. Therefore, only two cases need to be considered: case (i) both
partials of f1; f2 are nonzero at .0; 0/; case (ii) one of f1; f2 has its x-partial vanish
at .0; 0/ and y-partial nonzero at .0; 0/, and the other has its x-partial nonzero at
.0; 0/ and y-partial vanish at .0; 0/.

In the first case, by the Implicit Function Theorem, there exists S1 D Œ�a; a�R
and S2 D R�Œ�b; b for positive real a; b over which f1 is a strictly monotonic.
We may choose each Si such that only one root of f , i.e., .0; 0/, is in it. Let
T1 D S1 \ S2. Then f1 is strictly monotonic in this arbitrarily small T1. Similarly
there exists arbitrarily small rectangle T2 over which f2 is strictly monotonic. Let
T D T1 \ T2. Then f1; f2 are strictly monotonic over T .

In the second case, we may assume that @f1
@x
.0; 0/ D 0;

@f1
@y
.0; 0/ ¤ 0;

@f2
@x
.0; 0/ ¤

0;
@f2
@y
.0; 0/ D 0: Since @f1

@y
.0; 0/ ¤ 0 and @f2

@x
.0; 0/ ¤ 0, by the Implicit Function

Theorem, there exist functions y D �1.x/ and x D �2.y/ defined on .�h1; h1/ and
.�h2; h2/ that agree with f1; f2 around .0; 0/. Since @f1

@x
.0; 0/ D 0 and @f2

@y
.0; 0/ D 0,

we have �0
1.0/ D 0 and �0

2.0/ D 0. Hence, there exists arbitrarily small positive
ı1; ı2 such that j�1.x/j < jxj for �ı1 < x < ı1 and j�2.y/j < jyj for �ı2 < y < ı2.
Let S1 D Œ�ı1; ı1� Œ�ı1; ı1, S2 D Œ�ı2; ı2� Œ�ı2; ı2 and T D S1 \ S2. Then T
is arbitrarily small, small relative to R. So one of f1; f2 is in the upper-lower cone
and the other in the left-right cone created by the lines y D ˙x. This proves (1)
and (2).

From (1) and (2), one sees that there are exactly four critical points on @T . Using
Proposition 1, one sees that the sum of pseudo argument changes of the critical
points on @T must be 2� . Since each pseudo argument change of a critical point is
between ��=2 and �=2,
@T parg.P / D �=2 for each critical point P on @T .
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Remark. Isolation of polynomial roots is an important area in Computer Algebra
(see [1]). Isolation of complex roots is discussed first in [4] although the algorithm
does not solve the problem completely, e.g., in case when all coefficients are
integral. Using the Main Theorem, one can formulate a symbolic algorithm for
isolating complex roots of a complex polynomial as follows. Using a root bound
theorem, find a rectangle in which all roots of the given polynomial lie. Subdivide
the rectangle into two sub-rectangles and count the number of roots in the interiors
and boundaries of the sub-rectangles. Repeat these on all sub-rectangles created,
keeping track of the number of roots in each sub-rectangle and outputting it when
it has exactly one root in it. In any case, the hypothesis that the given polynomial
must be square-free cannot be dropped. Wilf [5] avoids the problem by stopping the
algorithm when a fixed number of subdivisions found roots on the boundary.
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Proof of Fermat’s Last Theorem for n D 3
Using Tschirnhaus Transformation

B.B.U. Perera and R.A.D. Piyadasa

Abstract This paper gives a proof on Fermat’s last theorem (FLT) for n D 3 by
firstly reducing the Fermat’s equation to a cubic equation of one variable and then
using Tschirnhaus transformation to reduce it to a depressed cubic. By showing that
this last equation has nonrational roots, it was concluded that the Fermat’s equation
cannot have integer solutions.

Keywords Fermat’s last theorem • Tschirnhaus transformation • Integer roots

Introduction

Ever since Pierre de Fermat (1637) left an unfinished conjecture that the equation

xn C yn D zn (1)

(which is the so-called Fermat’s last theorem or FLT) cannot have integer solutions
for exponent n> 2, there has been many attempts to prove that the statement is true.
But until Andrew Wiles gave a 100-page long proof in 1995 which took him 7 years,
it was intractable. In fact, once it was in the Guinness Book of World Records for
the most difficult mathematical problems. Recently, there were many shorter proofs
for the theorem (see [1] and [2]) and for the case n D 3 (see [3–6]), in particular.

This paper attempts to prove the FLT for the case n D 3 using a different and
much direct and easier approach.
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Method

Consider the Fermat’s equation for n D 3:

x3 C y3 D z3; .x; y/ D 1 (2)

where (x, y) denotes the greatest common divisor of x and y; hence (x, y) D 1
meaning that x and y are co-prime.

Following a similar procedure as in [6], consider (2) in the form

.z � y/
h
.z � y/2 C 3zy

i
D x3

and (z, y) D (3, z) D 1. Hence we have (z�y) and
h
.z � y/2 C 3zy

i
are co-prime.

Hence (z�y) is a cube, say z�y D u3, where u is a factor of x.
Considering (2) again, in the form

.z � x/
h
.z � x/2 C 3zx

i
D y3

and (z, x) D (3, z) D 1. Hence we have (z�x) and
h
.z � x/2 C 3zx

i
are co-prime.

Hence (z�x) also is a cube, say z�x D h3, where h is a factor of y and (u, h) D 1.
Thus, we have

z � x D h3; and z � y D u3

where (u, h) D 1.
Thus, x D z � h3, and y D z � u3.
Substituting for x and y in (2) we get

z3 D �
z � u3

�3 C �
z � h3

�3

or

z3 � 3z2
�
u3 C h3

�C 3z
�
u6 C h6

� � �
u9 C h9

� D 0 (3)

This is a cubic equation in one variable z. Now if we can show that (3) has no integer
roots, then the proof follows.

Using Tschirnhaus transformation [7] we can remove the z2 term thus reducing
(3) to a depressed cubic (or monic trinomial).

Let z D t C u3 C h3. This transforms (3) into

t3 � 6u3h3t � 3u3h3
�
u3 C h3

� D 0 (4)
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This equation is in the form

t3 � 6vwt � v3 � w3 D 0 (5)

where v3 C w3 D 3u3h3
�
u3 C h3

�
and vw D 2u3h3. By using the method of

Tartaglia and Cardano for finding roots of a cubic equation, roots of (5) can be
written as

v C w; v! C w!2; v!2 C w!

where ! is the cube root of unity.
Now, v3, w3 are the roots of the equation

X2 � 3u3h3
�
u3 C h3

�
X C 8u9h9 D 0 (6)

Roots of (6) are

X D u3h3
 
3
�
u3 C h3

�˙ p
9h6 � 14u3h3 C 9u6

2

!
(7)

By observing that the expression inside the square root can be written as

9h6 � 14u3h3 C 9u6 D
�
3h3 � 7

3
u3
�2

C 32

9
u6 > 0

which is never zero or a perfect square for all nonzero u and h, we can see that the
two roots v3, w3 of (6) are irrational.

Now, suppose that v C w D k is an integer. Then

.v C w/3 D k3

v3 C w3 D k3 � 3vw .v C w/ D k3 � 6ku3h3

which is an integer since k, u, h are all integers. This contradicts the previous result
that v3, w3 are irrational.

Therefore, the only real root of vC w is also irrational so that t and in turn z also
are irrational meaning that the FLT for n D 3 cannot possibly have integer solutions.
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Geometrical Problems Related to Crystals,
Fullerenes, and Nanoparticle Structure

Mikhail M. Bouniaev, Nikolai P. Dolbilin, Oleg R. Musin,
and Alexey S. Tarasov

Abstract This paper focuses on three groups of geometrical problems, closely
related to material sciences in general and particularly to crystal/quasicrystal struc-
tures along with their formations and fullerenes. Some new results in mathematics
are presented and discussed, for example, in section one, new estimates of minimum
radius of local identity that guarantee that a Delone set is a point regular set. New
results related to locally rigid packings are discussed in section two. One of the goals
of the paper is to establish some internal (mathematically) and external (applications
to material science) connections between research agendas of various studies in
geometry and material sciences.

Keywords Component • Crystalline structures • Delone set • Tammes
problem • Packings • Irreducible graph • Contact graph fullerenes

Introduction

This paper focuses on three groups of geometrical problems related to material
sciences in general and particularly to crystal/quasicrystal structures and their
formations and fullerenes. The first group of problems connects local and global
descriptions of geometric structures related to crystals and quasicrystals; the second
one focuses on the local structure, namely, on packings and contact graphs; the
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last group is related to “proper” placing of a given set of points on n-dimensional
sphere. Some new results in mathematics are presented and discussed, for example,
in section one, new estimates of minimum radius of local identity that guarantee
that a Delone set is a regular point set. New results related to locally rigid packings
are discussed in section two, where we focus on packings of congruent N circles
on spheres (the Tammes problem) and flat square tori. Based on the concept of
irreducible (or locally rigid) contact graphs, we solved the Tammes problem for
N D 13. Moreover, recently we have found a complete list of all irreducible contact
graphs with N< 12 vertices. Toroidal packings are interesting for two practical
reasons—periodical packings of the plane by circles and the problem of super
resolution of images. We classified all locally optimal spherical arrangements up
to N D 11.

For packings on tori, we have found optimal arrangements for N D 6, 7, and 8.
Interestingly, for case N D 7, there are three different optimal arrangements. Our
proofs are based on computer enumerations of spherical and toroidal irreducible
contact graphs. One of the goals of the paper is to establish some internal (math-
ematically) and external (applications to material science) connections between
research agendas of various studies in geometry and material sciences.

How Small a “Small domain” Could Be to Describe
a Global Structure

It is worth mentioning that any of the problems identified above could be also
described as optimization problems in geometry. We’ll start with the development
of mathematical concepts motivated by the challenge to find the smallest possible
domain in a given discrete structure that contains a sufficient condition to provide a
global order of the entire structure in crystals or quasicrystals.

Since crystallization is a process resulting from a mutual interaction of just
nearby atoms, it was believed (L. Pauling, R. Feynman, et al.) that the long-range
order, first of all, the 3D periodicity of atomic structures of crystals, is determined
by local rules restricting the arrangement of nearby atoms.

The concept of crystalline structures was first developed in the nineteenth
century. Fundamental discoveries of Rene Just Hauy were based on the presentation
of a crystalline structure as a periodic lattice. Later on, Evgraf Fedorov introduced
a concept of a regular point system with a crystal as the union of such regular point
systems. Fedorov intuitively understood and argued that this new definition does not
cancel the lattice periodicity but generalizes this idea. The following definitions will
explain the concept.

Definition 1.1. Subset X of Rd is called a Delone set with parameters r and R (or
(r, R)-set) where r and R are some positive numbers if (r-condition) any open ball
Bo(r) of radius r has at most one point from X and (R-condition) if any closed ball
B(R) of radius R has at least one point from X.
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Remark. The definition of a Delone set requires the existence of numbers r and R
with specified properties. However, for the sake of shortening theorem statements
and proofs, we included these two parameters into the definition of a Delone set as
a characteristic of the set in the assumption that they exist. It is clear that the choice
of either r or R is not unique.

Let us denote by B(x, Q) a closed ball of radius Q(Q> 0) centered at the point x,
Bo(x, Q) an open ball, and by Xx(Q) the intersection of X and B(x, Q).

Definition 1.2. Given a Delone set X and a point x from X, the set Xx(Q) is called
Q-neighborhood of the point x in X.

The following easy-to-prove statements add an additional illustration of the
concept of a Delone set.

Statement 1.1. If X is a Delone set with parameters r, R in Rd, then a family of balls
fB(x, r), x belongs to Xg is a packing of balls in Rd, and a family of balls fB(x, R),
x belongs to Xg is a covering of R by balls.

Statement 1.2. If X is a Delone set in Rd, then the dimension of the affine hull
Aff(Xx(2R)) is d for any point x that belongs to X.

Definition 1.3. Delone set X is called a regular point set if for any two points x and
y from X, there is a symmetry s of the X such that s(x) D y.

Statement 1.3. Delone set X is a regular point set if and only if there is a
crystallographic group G such that X is a G-orbit of some point x; in other words,
X D G(x) D fg(x)jg belongs to Gg.

Definition 1.4. We say that subset X of Rd is a crystal if X is the G-orbit of some
finite set X0, i.e., X is the union of orbits of several points with respect to the same
crystallographic group G.

Definition 1.5. Let Iso(d) be the complete group of all isometries of Euclidean d-
space Rd. A subgroup G of the group Iso(d) is called crystallographic if:

1. It is discrete (i.e., an orbit of any point of space is discrete).
2. Its fundamental domain is compact.

Remark. From the well-known Schoenflies–Bieberbach theorem (which was the
answer to Hilbert’s question stated in his XVIII problem), it follows that any
space group contains a translational subgroup with a finite index. This theorem
explains why under Definition 1.4, the periodicity of crystals in all dimensions is not
an additional requirement but a direct corollary from the Schoenflies–Bieberbach
theorem.

Remark. A mathematical model of an ideal crystal uses two concepts: the Delone
set (which is of local nature) and the crystallographic group (which is of global
nature).
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The main reason of the local theory is to develop a methodology of how to estab-
lish crystallographic symmetry in a crystalline structure from the pairwise identity
of local neighborhoods around each atom. Before the 1970s, there were neither
formal statements that used mathematical language and concepts nor rigorously
proven results in this regard until B. Delone and R. Galiulin formulated the problem
and Delone’s students N. Dolbilin and M. Stogrin developed a mathematically
sound local theory of crystals [1–5]. The core of the local theory is a statement
that a local identity of a point set or of another structure within certain radius R
implies a global regularity of the structure. Before we proceed, we would like to
give a formal definition of local identity.

Definition 1.6. Given a Delone set, we say that the Q-neighborhood of point x in
X is identical to the Q-neighborhood of point x0, if there is a space isometry g such
that g(x) D x0 and g(Xx(Q)) D Xx0 (Q).

It is clear that with a given Q, the relation to be identical is an equivalence relation
on a set of all Q-neighborhoods in X. Therefore, the set of all Q-neighborhoods in
X could be presented as a union of equivalence classes � i(Q). Let N(Q) stand for
the cardinal number of the set of the equivalence classes of Q-neighborhoods.

Definition 1.7. Set X is said to be of finite type, if for any Q> 0 there are just
finitely many classes of Q-neighborhoods, i.e., N(Q) is a finite number.

Statement 1.5. Given a Delone set of finite type, function N(Q) is defined for
all Q> 0. Moreover, N(Q) is a positive, continuous from the left, integer-valued,
monotonically nondecreasing step function.

Statement 1.6. A Delone set X is a crystal if and only if N(Q) is a bounded function,
i.e., there is a number N0 such that N(Q)<N0 for all Q> 0. max N(Q) is the number
of orbits in crystal X.

Remark. According to the last statement and Definition 1.3 of the regular point set,
a regular point set is a crystal such that N(Q) D 1 for all positive Q.

The requirement to be a set of finite type is a strong requirement. All crystals (see
the definition above) are sets of finite type. However, an inverse statement is false.
Moreover, recently, there were found sets of finite type such that for all Q>Q0, each
class � i(Q) occurs in X in infinitely many orientations. This property is present
in vertex sets of some mosaics (Pinwheel tilings by J. Conway and C. Radin).
The Pinwheel mosaics are not only non-periodic, but each of its finite fragments
occurs in infinitely many orientations. This is an unexpected property, for example,
contrarily to this property, in well-known non-periodic Penrose patterns, each local
fragment occurs only in a finite number of orientations.

Statement 1.7. A Delone set is of finite type if and only if N(2R) is finite.

In order to formulate the local theorem, we introduce the following definition.
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Definition 1.7. Given Delone set X, a point x, and a neighborhood Xx(Q), the
symmetry group Sx(Q) of the neighborhood Xx(Q) is a group of all isometries
(rotations around the x) which leave Xx(Q) invariant and maps x onto x.

Remark. It should be emphasized that the symmetry group contains not all symme-
tries of Xx(Q) but only those which leave the center fixed. Thus, there can be such
X, Q, x, and x0 where Xx(Q) and Xx0 (Q) are the same, but symmetry groups Sx(Q)
and Sx0 (Q) may be different. The difference can be a result of the requirement for a
rotation to keep the central point either x or x0 fixed. It should also be emphasized
that the symmetry group Sx(Q) can only decrease while the radius Q increases.

Theorem 1.1 (Local Theorem [1]). A Delone set X is a regular set if and only if
there is a positive number Q such that the two conditions hold:

1. N(Q C 2R) D 1.
2. Sx(Q) D Sx(Q C 2R) for any x from X.

Remark. For condition (1), all (Q C 2R)-neighborhoods are pairwise congruent.
Therefore, in condition (2), it suffices to require that two groups are equal for at
least one point x. For all the rest points x0 from X, the equality will follow from
condition (1).

Proof. We are going to prove two lemmas first.
Lemma 1 Let x and y be two arbitrary points from an (r, R)-point set X. There

is a finite sequence of points x1 D x, x2, : : : , xn D y that belong to X, such that
jxi � xiC1j< 2R for any i, 0< i< n.

We are going to call such sequence (x1 D x, x2, : : : , xn D y and jxixiC1j< 2R)
2R-sequence.

Let us take a segment [xy] and assume that its length jxyj is not less than 2R
(otherwise x, y is only one-step 2R-sequence). Let us draw a ball B1 with the
diameter [x1y]. The radius r(B1) is equal or larger than R. Otherwise, there would be
a ball of radius greater than R but free of points that belong to X that contradicts the
definition of a Delone set and selection of R. Let x2 be a point from X that belongs
to the ball B1. Since [x1y] is a diameter of B1, for any other point x2 from B1, the
distance jx2yj< jx1yj and jx1x2j< 2R. If jx2yj< 2R, then x1, x2,y is the required
sequence.

If jx2yj is equal or greater than 2R, we draw a new ball B2 with the diameter
jx2yj. For the previous argument applied to the ball B2, there is at least one more
point x3 such thatjx3yj< jx2yj and jx2x3j< 2R.

We can proceed this way until we get point xn�1 such that jxn�1yj< 2R.
Such point does exist because the sequence x1 D x, x2, : : : , xn�1 gets closer to y
(jxi�1xij< jxixiC1j). Therefore, the defined 2R-sequence has to be finite because in
the ball By(jxyj), centered at point y with radius jxyj, there is only finite subset of
the Delone set. Lemma is proved.

Lemma 2 Let a Delone set X fulfill both conditions of the local theorem.
Assume that an isometry g exists, such that g(x) D g(x0) and g(Xx(Q)) D Xx0 (Q). Then
g(Xx(Q C 2R)) D Xx0 (Q C 2R).
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For condition (1), all (Q C 2R)-neighborhoods are congruent. Therefore, there is
an isometry f such that f(Xx(Q C 2R)) D Xx0 (Q C 2R).

Let us put s D f�1 g, where g performs first, followed by f�1. It is easy to prove
that s(x) D x and s(Xx(Q)) D Xx(Q). Therefore, the isometry s is the symmetry of
the Q-neighborhood Xx(Q), i.e., the s belongs to the symmetry group Sx(Q).

For condition (2), s is also a symmetry of a greater neighborhood Sx(Q C 2R)
(i.e., s(Xx(Q C 2R)) D Xx(Q C 2R)). Since s D f�1 g, it follows that g D f s.

Since g(Xx(Q C 2R)) D f(s (Xx(Q C 2R))) D f (Xx(Q C 2R)) D Xx0 (Q C 2R),
g(Xx(Q C 2R)) D Xx0 (Q C 2R), and the proof is over. �

From these two lemmas, the theorem follows directly.
Let us take two points x and x0 from X, and let g be an isometry

which moves the (Q C 2R)-neighborhood of x onto (Q C 2R)-neighborhood of
x0:g(Xx(Q C 2R)) D Xx0 (Q C 2R).

We’ll prove that g is a symmetry of the entire set X. Let us take an arbitrary
point y from X, and let us connect it to x by 2R-sequence x1 D x, x2, : : : , xn D y.
By Lemma 1, such sequence exists.

Since jx1x2j< 2R, the Q-neighborhood Xx2(Q) of point x2 belongs to the
(Q C 2R)-neighborhoodXx1 (Q C 2R) of the x1.

Therefore, g(Xx2(Q)) D Xx02(Q) where g(x2) D x02. By Lemma 2, g(Xx2(Q C 2R))
D Xx02(Q C 2R). Next point x3 from 2R-sequence belongs to Xx2(Q C 2R).
Therefore, its Q-neighborhood Xx3(Q) belongs to Xx2(Q C 2R). It follows that
g(Xx3(Q)) D Xx03(Q), where g(x3) D x0

3. By Lemma 2, g(Xx3(Q C 2R)) D Xx03

(Q C 2R). Going along the 2R-sequence, we will obtain y such that g(y) D y0,
where y0 is a point from X.

We have proved that the g-image of any point y from X is a point y0 from X.
By the same argument, one can prove that any point from X has a g-preimage in X.
Therefore, g is symmetry of X. In other words, the symmetry group of X operates
on the set X.

Remark. ThÈ local theorem is true for all dimensions and for hyperbolic and sphere
spaces too.

For dimension d D 3 (the case of a real crystal), the following progress has been
made.

Lemma 3 (Shtogrin). Let X be a Delone set. If N(2R) D 1 (all 2R-neighborhoods
are identical), then the symmetry group of the 2R-neighborhood contains no n-fold
axis with n> 6.

The proofs of the theorems below follow from this lemma and the local theorem.

Theorem 1.2 (Shtogrin, Dolbilin). For any (r, R) Delone set X, N(10R) D 1
implies that X is a regular point set.

Even in this case of the 3-dimensional space, regardless of this progress, the
value 10R seems to be significantly overestimated. Probably, in dimension 3, radius
4R may be sufficient for the regularity of a Delone set. For dimension 2, there exists
the following theorem.
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Theorem 1.3. For any Delone set X in plane, if N(4R) D 1, then X is a regular
point set. Moreover, for any number 0< a< 4R, there is a Delone set X that is not a
regular point set, and N(4R � a) D 1 for this set.

Summarizing the current status of the local theory and answering the question,
“how small a ‘small domain’ could be to describe a global structure,” we can say
that it cannot be smaller than 4R, and we know now that it could be as small as
10R. There are also calculations showing that the identity of 8R-neighborhoods (i.e.,
N(8R) D 1) also implies the regularity.

For dimensions d> 3, it follows from the Local Theorem 1.1 that existence of
constant c D c(d, R/r) such that N(cR) D 1 implies the regularity of point set X in
Rd. Intuitively, it is quite clear that dependence of constant cof fraction R/r is not
really necessary. For dimension d D 4, it has been shown recently (N. Dolbilin, not
published) that the constant c(d, R/r) can be dropped from the ratio R/r.

We can identify the following agenda for the future research related to the local
theory:

1. To improve (decrease) the existing upper bounds for Q for dimension 3.
2. To drop c(d, R/r) as a parameter in front of ratio R/r in the theorems’ statements

for dimensions greater than 3 (where d is a dimension of the space and (r, R)
Delone set parameters).

3. To draw a line between crystals and quasicrystals in terms of local conditions.
This task has become relevant and important due to two discoveries. In the
1970s, R. Penrose found patterns in plane which contain repetitive arbitrary large
identical patches. On the other hand, these patches have the fivefold symmetry
that can’t occur in any structure with crystallographic symmetry. Later on
(1982), Shechtman obtained an alloy in his laboratory that had a sound fivefold
symmetry. This discovery is an argument for its non-crystallographic structure
(Nobel Prize in Chemistry, 2011).

4. A long-term goal is to fill the gap between the mathematical local theory and
empirical concepts of self-assembly that occurs during the formation of a natural
crystal/quasicrystal on the nanoscale. This goal will require a close cooperation
of mathematicians and specialists in crystallography and structural chemistry. In
the presentation, we will discuss some points of the local theory and challenges
ahead.

Focus on the Local Structure in Connection to Fullerenes
and Related Problems in Computational and Discrete Geometry

In this section, we will focus mostly on the local structure of a geometric model
of matter with carbon molecules as our inspiration and motivation. In the last few
decades, the study of nanoparticles in general and fullerenes and carbon tubes in
particular has been accompanied by geometric observations, computations, and
utilization of recent and classical results (like the Euler theorem or group theory
studies).
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With the current research of the subject by chemists and physical chemists and
interesting geometry, like the fivefold local symmetry of icosahedra, a noticeable
trend is developing to connect and relate results and problems in physical chemistry
to the cutting-edge research in discrete and computational geometry.

Though sphere packing, lattices, and polyhedral in general, and Platonic solids
in particular, have been studied by geometers for hundreds of years, these studies
have recently received a strong impetus because they arise in a number of diverse
problems in physics, chemistry, biology, nanotechnology, and a variety of other
disciplines. A lot of interesting mathematical results and its applications can be
found in [6–9].

We will focus on some specific areas of research in geometry with the goal
to establish an association between well-known (mostly still open or partially
solved) problems in geometry and nanoscience studies. We will also establish some
related to nanoscience terminological equivalencies between various problems in
mathematics, like the Tammes problem [10], and well-distributed points on the
sphere problem [7].

Though some researchers define fullerene as any molecule composed entirely
of carbon in the form of a hollow sphere, ellipsoid, or tube, we will adopt “more
geometric” definition [11].

Definition 2.1. A fullerene as a closed cage molecule containing only hexagonal
and pentagonal faces.

It follows from Euler’s theorem that a fullerene must contain exactly 12 pentag-
onal faces but can differ in the number of hexagonal faces. Theoretically, fullerene
C20 is feasible with only 12 pentagonal faces and no hexagonal faces. In 1970,
Osawa [12] suggested that an icosahedral C60 molecule might be chemically stable.
Experimental work of Kroto, Smalley, and coworkers in mid-1980s established the
stability of C60 molecule in the gas phase [13].

Though theoretically C60 is the smallest stable carbon molecule, the number of
vertices (carbon atoms) in the fullerene can be very large, C70, C80, C90, and others.
Thus, C70 molecule contains 37 faces, 25 hexagons, and 12 pentagons with a carbon
atom at the vertices of each polygon and a bond along each polygon edge (Fig. 1).

Number Nc carbon atoms in the icosahedral fullerene can be found by the
formula

Fig. 1 C60 and C70
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Nc D 20
�
n2 C nm C m2

�
(1)

where n and m are integers that specify 20 equilateral triangles that an icosahedron
consists of. When (n, m) D (1, 0), we get 20 carbon atoms and 12 pentagonal faces.
We obtain C60, when (n, m) D (1, 1).

The diameter of a corresponding icosahedron is given by

di D 5 � sqrt.3/ � ac�c
�
n2 C nm C m2

�
(2)

where ac–c is the nearest neighbor carbon–carbon distance on the fullerene.
Using formula (1), we can claim that theoretically huge molecules as C80, C140,

C180, : : : , C740, : : : exist.
Experiments demonstrate that some atoms can be placed inside fullerenes (even

inside C60). We also know that C60 via nucleophilic addition reactions may undergo
multiple attachments of primary amines [7]. Experimental data indicates that there
exist a plethora of problems in discrete and computational geometry that could be
attributed to two or three types and broadly described as:

1. What (how many/much) might be inside a cage-type molecule or spheres
associated with it, for instance, inscribed or subscribed spheres.

2. How to place circular areas (cups) on these spheres to maximize/minimize certain
values.

3. What is the configuration of projections of carbon atoms on these spheres. This
question is particularly interesting because of the observation that the distance
between various pairs of atoms in fullerene (C60 is an example) is not exactly the
same. What is the relation between an optimal configuration, as defined in [7],
and the projections on associated spheres.

The first problem is naturally related to the packing problem in geometry.

Definition 2.2. Sphere packings where all spheres are constrained by their neigh-
bors to stay in one location are called locally rigid (or jammed).

Definition 2.3. Let P be any circle packing of a sphere. Let us connect centers of
any two tangent circles in P by edge. Then we obtain a planar graph which is called
a contact graph.

Definition 2.4. A contact graph is called irreducible if P is locally rigid (Figs. 2
and 3).

There are several connections between geometric problem (2) and other sphere
packing problems. Note that in physics in most cases minimum energy configura-
tions of particles are also locally rigid [4].

Problem (2) is also directly related to the Tammes problem. W. Habicht, K.
Schutte, B.L. van der Waerden, and L. Danzer applied irreducible contact graphs
for the kissing number and the Tammes problem. Formally, the Tammes problem
can be stated as follows:
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Fig. 2 Irreducible graphs for
n D 7

Fig. 3 Irreducible graphs for
n D 8

How should N congruent non-overlapping spherical caps be packed on the
surface of a unit sphere so that the angular diameter of spherical caps will be as
large as possible [10]?

The Tammes problem is presently solved only for several values of N: for N D 3,
4, 6, and 12 by L. Fejes Toth (1943); for N D 5, 7, 8, and 9 by Schutte and van der
Waerden (1951); for N D 10 and 11 by Danzer (1963); and for N D 24 by Robinson
in 1961.

We have recently solved the Tammes problem for the case N D 13 [14]. The
optimal arrangement of 13 circles on the unit sphere was conjectured more than 60
years ago [15]. Our proof is based on a computer enumeration of irreducible contact
maximum graphs with 13 vertices. Namely, we applied the following method.

Definition 2.5. Let X be a finite set in the unit sphere in 3-space. (We call such
sets spherical subsets.) The contact graph CG(X) is the graph with vertices in X and
edges (x, y), where x and y are from X and such that dist(x, y) D F(X), where F(X)
denotes the minimum angular distance between distinct points in X.
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Definition 2.6. Let X be a spherical subset with jXj D N. We say that CG(X) is
maximal if F(X) is maxima as possible. We denote this graph by G(N).

It is not hard to prove the following statements:

Lemma 2.1. Let CG(X) be a maximal graph G(N). Then for N> 5, this graph is
irreducible.

Lemma 2.2. Let the graph CG(X) be irreducible. Then (1) CG(X) is a planar graph;
(2) degrees of its vertices can take only the values 0 (isolated vertex), 3, 4, and 5; (3)
all faces of CG(X) are equilateral convex polygons of side length F(x); (4) all faces
of CG(X) are polygons with at most 2 /F(x) vertices.

Theorem 2.1. The spherical arrangement of 13 points P(13) is the best possible
and the maximal arrangement unique up to isometry (Figs. 4 and 5).

Here we provide a sketch of our computerized proof. For more details, see http://
dcs.isa.ru/taras/tammes13/ . The proof consists of two parts: (1) create list L(13) of
all graphs with 13 vertices that satisfy Lemma 2.1; (2) using linear approximations
and linear programming, remove from the list L(13) all graphs that do not satisfy
the geometric properties of G(13) (see [14, Propositions 3.6–3.11].

Fig. 4 The spherical
arrangement of 13 points
P(13)
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Fig. 5 The contact graph of
P(13)
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http://dcs.isa.ru/taras/tammes13/
http://dcs.isa.ru/taras/tammes13/
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To create list L(13), we use the plantri program [http://cs.anu.edu.au/~bdm/
plantri/] developed by Gunnar Brinkmann and Brendan McKay. This program is
the isomorphic-free generator of planar graphs, including triangulations, quadran-
gulations, and convex polytopes.

Using this method, we have recently found a complete list of all irreducible
contact graphs with N< 12 vertices. Particularly, we created lists L(N) of all
planar graphs with N< 12 vertices that satisfy Lemma 2.1 and then using linear
approximations and linear programming removed from this list all the graphs that
do not satisfy the geometric properties of irreducible graphs.

That gave us enumeration of all locally rigid arrangements where around a central
point, we have N< 12 points.

Problem (3) is related to the “best” configuration of points on sphere with the
following explanations below what “the best” means [7].

Definition 2.7. Given an N-point configuration

¨N D fX1; : : : ;XN g

on sphere S2, we define its generalized energy as

E’ .¨N/ D †i¤j

ˇ̌
Xi-Xj

ˇ̌
’:

The question is how to maximize E’(¨N) when ’> 0 and minimize when ’< 0
and how to minimize logarithmic energy

E0 .¨N/ D †i¤j log
�
1=
ˇ̌
Xi-Xj

ˇ̌�

or maximize the product

P .¨N/ D exp .�E0 .¨N// ; when ˛ < 0:

Definition 2.8. A collection of points that minimizes the logarithmic energy is
called an optimal configuration. The points are referred to as logarithmic points.

If ’D 1, then with the exception of small N, it is a long-standing open problem in
discrete geometry (L. FejesToth—1956); for small negative numbers ’, the problem
is equivalent to the Tammes problem and could be stated as “how to maximize
the minimum distance between any pairs of given numbers of points on sphere.”
The study of fullerenes sparks an interest in the Thompson problem, the case
when ’D �1 (Fekete Points). The problem for case ’D 0 (logarithmic points) was
formulated by L.L. Whyte in 1952.

In conclusion, we consider periodic planar circle packings with the maximal
circle radius, i.e., packings of congruent circles on a square flat torus [16]. This
problem is interesting due to another practical reason—the problem of super reso-
lution of images. We have found optimal arrangements for N D 6, 7, and 8 circles.

http://cs.anu.edu.au/~bdm/plantri/
http://cs.anu.edu.au/~bdm/plantri/
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Surprisingly, for the case N D 7, there are three different optimal arrangements. Our
method is based on a computer enumeration of toroidal irreducible contact graphs.
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Tomographic Inversion Using NURBS
and MCMC

Zenith Purisha and Samuli Siltanen

Abstract A new approach in tomographic inversion using nonuniform rational
B-splines (NURBS) combined with Markov Chain Monte Carlo (MCMC) is
discussed. Low dimension of parameters is the benefit in using NURBS, but the
resulting inverse problem is nonlinear. MCMC comes forth to tackle this problem.
Another advantage is that the result will be directly in CAD software so that it will
be convenient for optimizing the shape. A numerical example with simple simulated
data, a simple homogeneous simple shape with attenuation one inside the curve and
zero outside the curve, is given. The result is compared with filtered back projection
and Tikhonov regularization. The potential drawback of the proposed method is
heavy computation.

Keywords Tomographic • NURBS • Bayesian inversion • MCMC

Introduction

Tomography is a useful way to study unknown structures of the object. In tomog-
raphy, the measurement data of the object are collected from various directions.
One example is X-ray tomography, based on the absorption of X-rays as they pass
through the different parts of an object. Another example is an electron microscopy
(EM), which uses a beam of electrons to create an image of a specimen and produce
a magnified image.

In some applications of tomography, the dataset is limited [2, 4–6, 12]. One
example is in the medical environment, where it is important to avoid a high X-ray
dose to the patient. This situation leads to the production of only sparse data. In EM,
the specimen cannot be tilted in all directions, leading to a limited-angle problem,
and making the reconstruction task is very ill posed (i.e., extremely sensitive
to measurement noise and modeling error). Therefore, a process of introducing
additional information in order to solve this problem is needed. Therefore, some
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additional information needs to be introduced for making the recovery process
reliable and robust against noise. Such information is called a priori knowledge.
Commonly, a penalty for complexity term emerges on the basis of the information.

Here, we propose a new approach for tomographic reconstruction from sparse
data. The unknown parameter is modeled using nonuniform rational B-splines
(NURBS) [9]. In 2D, the curve is determined by a parameter vector called the
knot vector and some points called control points. There are advantages in using
NURBS:

• The number of parameters is small, because we only need to recover the control
points, which are very few in number compared to the points of the curve. Having
fewer parameters leads to more robust algorithms.

• By working in NURBS, the results are readily in a form used by computer-aided
design (CAD) software, because NURBS is the building block of CAD systems,
and the computer numerical control (CNC) machines of industrial production
devices use NURBS to describe the shapes of objects to be manufactured.
Therefore, it is convenient in creating, modifying, analyzing, or optimizing.
Most modern factories use CNC machines, and relatively cheap (less than USD
5000) devices are available for small-scale production. Having the result of
reconstruction immediately in an industrially producible form can save time
in research and development and enable new kinds of production possibilities
for start-up companies located anywhere in the world, including developing
countries.

The difficulty in the proposed method is that the linear inverse problem of
tomography becomes nonlinear (observing only the control points). Nonlinear
inverse problem have more complex relationships between the data and model.
This is why we use the flexible computational approach called Bayesian inversion
[3, 4, 12].

Statistical (Bayesian) inversion provides an effective way to complement insuf-
ficient and incomplete measurements with a priori knowledge of the unknown. In
any particular application there is typically some understanding about the types of
objects one is looking for. Markov Chain Monte Carlo (MCMC) is one of the most
popular techniques for sampling from probability distributions and is based on the
construction of a Markov Chain that has the desired distribution as its equilibrium
distribution [10, 13]. With the increasing availability of computer power, Monte
Carlo techniques are being increasingly used. Monte Carlo methods are especially
useful for simulating systems with many coupled degrees of freedom.

This paper presents the first feasibility study on the new approach. In this
preliminary analysis, we use simulated data and a relatively simple problem, but
the reconstruction works successfully. This approach is quite promising for solving
more complex problems.
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NURBS

NURBS is a parametric representation for describing and modeling curves and
surfaces which are basically piecewise polynomial functions. NURBS curve
and surface is a standard system in CAD because NURBS model is powerful
and flexible.

There are 3 important things in NURBS, those are control points, knots, and basis
functions.

1. Control points (pi )
Control points are a set of points by which the positions can determine the shape
of NURBS curves. The curve can be managed easier by connecting the control
points by the line sequentially, called control polygon. The shape of control
polygon will be followed by the curve.

2. Knot vector
A knot vector is a set of coordinates in the parametric space. In one dimension a
knot vector is written

t D ft1; t2; : : : ; tnCpC2g;

where ti 2 R is the i th knot, i D 1; 2; : : : ; nC p C 2 is the knot index, nC 1 is
the number of basis function, and p is the degree of polynomial function.
The knot vector gives information how width the each interval of knot affects
the shape of the curve by the changing of control points. Inserting and removing
knots are possible to handle the curve in the proper space.
Basically, there are two types of knot vector:

• uniform if the knots are equally spaced in the parametric space.
• nonuniform knot vectors may have either spaced or multiple internal knot

elements.

If the first and last knot vector elements appear pC1 times, then it is called open
knot vector; otherwise, it is called periodic knot vector. The knot vector has to be
monotonically increasing, ti � tiC1.
Formally, an open uniform knot vector is given by

ti D 0; 1 � i � k

ti D i � k; k C 1 � i � nC 1

ti D n � k C 2; nC 2 � i � nC k C 1;

where k D p C 1.
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3. Basis function
Basis function, Ni;p.t/, is a function that gives information how strongly the i th
control point, pi , attracts the curve in specific interval, where i is the index of
control point.
The basis functions have the following form:

Ni;0.t/ D
(
1 if ti � t < tiC1;

0 otherwise:

Ni;p.t/ D t � ti
tiCp � ti

Ni;p�1.t/C (1)

tiCpC1 � t
tiCpC1 � tiC1

N1Ci;p�1.t/:

The general form of NURBS curve can be written as follows:

S.t/ D
nX
iD0

phi Ni;p.t/;

where the phi s are the four-dimensional homogenous control polygon vertices for
the nonrational four-dimensional B-spline curve.

From (1), the four-dimensional space is projected back into three-dimensional
space by dividing with the homogeneous coordinate which yields the rational
B-spline curve as follows:

S.t/ D
Pn

iD0 piNi;p.t/!iPn
iD0 Ni;p.t/!i

D
nX
iD0

piRi;p.t/; (2)

where pi s are the three-dimensional control points for the rational B-spline curve,
!i are the weights, and

Ri;p.t/ D !iNi;p.t/Pn
iD0 !iNi;p.t/

; (3)

are the rational B-spline basis function. The !i � 0 for all i . The weight can be
one of the controllers in attracting the curve to the control points. A curve with all
weights which set to 1 has the same shape as if all weights set to 10. The shape
of different curves will change if the weights of control points are different, while
other elements are fixed as in [8, 11].
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Basically, the shape of NURBS curve is defined by the knot vectors and location
of the control points and the weights. Most designers assume that the knot vectors
are fixed and only allow to modify the control points and the weights. In this
simulation data, the weights are assumed to be equal. The open uniform knot vector
is chosen as a common knot vector used in CAD.

NURBS has several important qualities which make it powerful for modeling.
NURBS provides the flexibility to design many variety of shapes (standard analytic
shapes and free-form shape of curves and surfaces) by manipulating the control
points and the weights. The amount of information or parameters required for a
NURBS representation is much smaller than the amount of information required
by other common representations. Those conditions bring to the evaluation which
is reasonably fast and computationally stable. Invariant under-scaling, rotation,
translation, and shear as well as parallel and perspective projection are also
interesting and important properties of the NURBS curve.

Tomographic Measurement Model

In this preliminary result we measure the simple shape. We build homogeneous
simple bottle shape from the closed NURBS curve.

To avoid inverse crime [7], we produce the synthetic phantom using NURBS
with ten parameters and knot vector

Œ0 0 0
1

10

2

10

3

10

4

10

5

10

6

10

7

10

8

10

9

10
1 1 1;

and equal weight for all control points. In the inversion, eight parameters are
recovered with different open knot vectors.

From the NURBS curve, we set the X-ray attenuation becomes one inside the
curve and zero outside the curve.

Consider the operator B as Fig. 1 which has the following form:

B.p/ D
(
1 if pixel inside the NURBS curve;

0 if pixel outside the NURBS curve:

The vector f comes from the mapping of the parameter p applied to operator B.
Our proposed shape is as Fig. 2.

The object is measured with pixel size 64� 64 using parallel-beam geometry; as
an example see Fig. 3.

From the source, the wave will be penetrated through the matter and the detector
will record the projection images from different directions. All X-ray imaging are
based on the absorption of X-ray as they pass through the different parts of the
object.
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Fig. 1 Mapping from p to f

p ∈ Rd →
B

f ∈ R64¥64

Fig. 2 Homogeneous simple
shape NURBS

Fig. 3 Parallel-beam X-ray measurement geometry. There are 5 different directions (angles) and
11 lines. Black dots show the locations of the X-ray source at different times of measurement. The
thick line represents the detector measuring the intensity of the X-rays after passing through the
target. High attenuation is shown here as darker shade of gray and low attenuation as lighter shade
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In this simulated data, we collected projection of the images of the object from
18 directions (i.e., the measured angles are 0ı; 10ı; 20ı; : : : ; 170ı), using 95 lines
for each direction.

Bayesian Inversion

Here, we construct the measurement model as follows and consider the indirect
measurement

m D A.f/C ";

where m 2 R
k is the measurement data, A is an operator of projection image

from Radon transform where f is the quantity of interest, and " is the error of the
measurement.

The inverse problem is to find f which depends on p, the parameters (control
points) of the NURBS curve.

We use the probability theory to model our lack of information in the inverse
problem. MCMC method can be used to generate the parameters according to the
conditional probability

�.p jm/ D �.p/�.m j p/
�.m/

;

called the posterior distribution and with the likelihood function

�.m j p/ D C exp.� 1

2�2
kA.Bp/�mk22/:

Assume that the angle of each parameter is not less than .i � 1/45 and not
more than .i C 1/45, where i is the index of parameter and the radius of each
parameter from the central point of the object is not less than 0 and not more than 15.
This information becomes our prior information and it guarantees that the behavior
of the parameters will not switch each other during the computation. We formulate
the angle condition as follows:

A.�i / D

8
ˆ̂<
ˆ̂:

1 � j�i�� 0

i j
45

for � 0
i � 45 � �i � � 0

i C 45

0; otherwise;

where � 0
i D 45i:
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The radius terms are as follows:

R.ri / D

8̂
<̂
ˆ̂:

1 � jri�1j
15

for 0 � ri � 15

0; otherwise:

Hence,

�.p/ D A.�i / � R.ri /

as our prior distribution.
To get a useful answer to our inverse problem, we need to draw a representative

estimate from the posterior probability distribution. We study the conditional mean
estimate (CM) defined as the integral

pCM WD
Z

RN

p�.p jm/dp: (4)

However, the integration in (4) is over a high-dimensional space, and standard
numerical integration quadratures are ineffective. We resort instead to MCMC
methods, whose basic idea is to generate a random sequence p.1/; p.2/; : : : ; p.N/

of samples with the property that

pCM � 1

N

NX
kD1

p.k/; (5)

and denote

pCM
N D 1

N

NX
kD1

p.k/: (6)

The sequence p.1/; p.2/; : : : ; p.N/ of vectors can, of course, be analyzed more
thoroughly than just by taking their average. In recent years, statisticians have
been increasingly drawn to MCMC methods to simulate nonstandard multivariate
distributions. The Gibbs sampling algorithm is one of the best known of these
methods, but a considerable amount of attention is now being devoted to the
Metropolis–Hasting algorithm [1, 14]. We use the Metropolis–Hastings algorithm
to get the parameter sequences. The algorithm takes the form:

1. Set n D 1 and initialize p.1/, where p.1/ depends on � .1/ and r.1/.
2. Draw a random integer k from 1 to number of control points.
3. Set � WD �k C �k and r WD rk C �k . Set p.k/ D .r cos �; r sin �/ then p will

contain the proposed p.k/.
4. If �.pjm/ � �.p.n/jm/ then set p.nC1/ WD p.
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5. If �.pjm/ < �.p.n/jm/, draw a random number s from uniform distribution on
Œ0; 1.

If s � �.pjm/
�.p.n/jm/ , then set p.nC1/ WD p; else set p.nC1/ WD p.n/.

6. If n D N then stop; else set n WD nC 1 and go to 2nd step.

Applying the CM estimate parameter, pCM
N , to the NURBS curve (2), we denote

by SCM
N . Then apply it to operator B, we get the reconstruction of the shape,

fCM
N D B.pCM

N /:

Let us make a remark concerning the convergence properties of our tomographic
reconstruction algorithm. The posterior probability is a compactly supported prob-
ability density in R

n, and consequently its mean value is well defined and unique.
By the basic theory of Monte Carlo integration, our computation will produce an
approximation to the mean value with accuracy increasing when the chain becomes
longer. It is another question whether the recovered shape is close to the actual
measured object. The closeness of the shapes is related to the number of knots
and control points used in the NURBS model and on the smoothness properties
of the boundary of the measured object. Precise analysis of the reconstruction error
is outside the scope of this paper, which is essentially an initial feasibility study for
the general approach.

Computational Result

We present a numerical example to demonstrate our proposed method with eight
parameters of interest. The knot vector is fixed in each iteration which becomes the
open uniform knot vector degree 2:

Œ0 0 0
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1 1 1:

The object is measured by Radon transform using 0.1 % noise. Using
Metropolis–Hasting algorithm, we get the average of the parameters’s chains for
the reconstruction of the curve for some iterations as in Fig. 4.

The iteration stops whenN D 1;000;000. The average of the control points, pCM
N ,

is shown in Table 1. By applying the control points to the NURBS curve (2), then
we get the curve SCM

N as in Fig. 5. The effect choosing the open knot vector and the
first control point as the last control point yields the kink in this point as in Fig. 4.
Finally, using the operator B, we get the shape reconstruction as in Fig. 6.

The reconstruction using filtered back projection and Tikhonov regularization is
also given. In filtered back projection, the object is recovered by using iradon
command in MATLAB as it is shown in Fig. 7. The Tikhonov regularization is
discussed in [7]. See Fig. 8. Both of the reconstruction use pixel size 64 � 64.

Computation time for all methods is recorded as in Table 2.
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Fig. 4 The thin black line is
the target curve. The thick
black line is the
reconstruction of the NURBS
curve, SCM

N . The black circle
markers are control
points, pCM

N
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Table 1 Eight control points,
pCM
1000000, are obtained from

the NURBS-MCMC
reconstruction

x y

6.24 6.07

1.33 12.7

�6.24 7.80

�4.50 0

�10.1 �10.1

0.03 �10.2

9.50 �10.2

4.55 �0.18

Fig. 5 The thin black line is
the target curve. The thick
black line is the
reconstruction of the NURBS
curve, SCM

1000000. The black
circle markers are control
points, pCM

1000000
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−15

−10

−5

0

5

10

15



Tomographic Inversion Using NURBS and MCMC 163

Fig. 6 Final reconstruction
using NURBS and MCMC in
image size 512 � 512

Fig. 7 Reconstruction using
filtered back projection with
error 0.1 %

Fig. 8 Reconstruction using
Tikhonov Regularization with
error 0.1 %
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Table 2 Consuming time
for all reconstruction methods

FBP Tikhonov regularization NURBS-MCMC

1.5 s 905 s 17,000 s

Discussion and Conclusion

In Fig. 6 we see the reconstruction using our proposed method in image size 512 �
512. Changing the resolution in this case does not matter because our reconstruction
is in vector graphics form. Only with 16 numbers (Table 1), this NURBS-MCMC
reconstruction can recover the data successfully and it is automatically in CAD
format or CNC machine.

In filtered back projection and Tikhonov reconstruction, we need 4,096 numbers
to give us the information of the object. Also we can see from Figs. 7 and 8 that it
is almost impossible to represent the shape of the object because there are so many
artifacts appearing. Because of this, these reconstructions cannot represent the result
directly in CNC machine. It is very different with NURBS-MCMC reconstruction,
which only has exactly two colors, black and white; hence, the shape of the object
is obvious.

The proposed method, NURBS-MCMC, is quite promising to be applied in
computational tomography inversion. The potential drawback of this method is
heavy in computation as we can see in Table 2, but this drawback can be solved
by using parallel computing.

Acknowledgements This work was supported by the Academy of Finland through the Finnish
Centre of Excellence in Inverse Problems Research 2012–2017, decision number 250215.
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Solving Fuzzy Differential Equation Using
Fourth-Order Four-Stage Improved
Runge–Kutta Method

Faranak Rabiei, Fudziah Ismail, and Saeid Emadi

Abstract In this paper the fuzzy improved Runge–Kutta method of order four for
solving first-order fuzzy differential equations is proposed. The scheme is two step
in nature and is based on the fourth-order improved Runge–Kutta method for solving
first-order ordinary differential equations. The numerical examples are tested to
illustrate the efficiency of method.

Keywords Fuzzy improved Runge–Kutta method • Fuzzy differential equations •
Two-step methods • Improved Runge–Kutta method

Introduction

Fuzzy differential equations (FDEs) are used for modeling the problems in science
and engineering. Most of the problems require the solution of FDEs which satisfied
fuzzy initial conditions. The concept of fuzzy derivative was first introduced by
Chang and Zadeh [1], and later Dubois and Prade [2] proposed the extension
principle for solving FDEs. It is difficult to find the exact solution of FDEs;
therefore, several numerical methods were developed to address this problem.
Abbasbandy and Allahviranloo [3] developed numerical algorithm for solving FDEs
based on Seikkala’s work [4]. Ahmad and Hasan [5] presented a new fuzzy version
of Euler’s method for solving FDEs with fuzzy initial values. In this paper the
improved Runge–Kutta method of order four with four stages given by Rabiei et al.
in [6] is developed for solving first-order fuzzy initial value problems.
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In sections “Preliminaries” and “Fuzzy Initial Value Problems,” some basic
definitions and theorem on FDEs are given. In the next section, the fuzzy improved
Runge–Kutta method of order four with four stages (FIRK4-4) is proposed and
numerical examples to illustrate the efficiency of a new method are given in the
section “Numerical Example.”

Preliminaries

The fuzzy set is a generalization of a classical set that allows membership function
to take any value in the unit interval [0, 1]. The formal definition of a fuzzy set is as
follows:

Definition 1 (See [1]) Let � be a universal set. A fuzzy set A in � is defined by a
membership function A(t) that maps every element in� to the unit interval [0, 1]. A
fuzzy set A in�may also be presented as a set of ordered pairs of a generic element
t and its membership value, as shown in the following equation:

A D
n
.t; A.t//

ˇ̌
ˇt 2 �

o

Definition 2 (See [1]) Let A be a fuzzy set defined in �. The support of A is the
crisp set of all elements in � such that the membership function of A is nonzero,
that is,

sup p.A/ D
n
t 2 �

ˇ̌
ˇA.t/ > 0

o
:

Definition 3 (See [7]) Let A be a fuzzy set defined in � by membership function
A(t):�! [0, 1]. Let us denote by RF the class of fuzzy subsets of the real axes (i.e.,
A: R! [0, 1]) satisfying the following properties:

1. 8A 2RF, A is normal, that is, there exists t0 2R such that A(t0) D 1.
2. 8A 2RF, A is convex, that is, for all t, y 2R and 0 ��� 1, it holds that

A .�t C .1� �/ y/ � min .A.t/; A.y// :

3. 8A 2RF, A is upper semicontinuous on R, that is, for any t0 2R, it holds that
A .t0/ � lim

t!t˙0

A.t/.

4. [A]0 D clft 2R j A(t) � 0g is a compact, where cl(U) denotes the closure of
subset U.

Then RF is called the space of fuzzy members. Obviously R�RF.

Definition 4 (See [1]) Let A be a fuzzy set defined in RF. The r cut of A is the
crisp set [A]r that contains all elements in R such that the membership values of A
is greater than or equal to r, that is,
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ŒAr D
n
t 2 R

ˇ̌
ˇA.t/ � r

o
; r 2 .0; 1 ;

ŒA0 D cl
n
t 2 R

ˇ̌
ˇA.t/ > 0

o
:

Definition 5 (See [7]) Let D: RF �RF !RC [ f0g, D(u, v) D Supr2[0 1] max
fju1(r) � v1(r)j, ju2(r) � v2(r)jg be the Hausdorff distance between fuzzy numbers,
where [u]r D [u1(r), u2(r)], [v]r D [v1(r), v2(r)]. The following properties are well
known:

D .u C w; v C w/ D D .u; v/ ; 8u; v;w 2 RF;

D.k:u; k:v/ D jkjD .u; v/ ; 8k 2 R; u; v 2 RF;

D .u C v;w C e/ D D .u;w/CD .v; e/ ; 8u; v;w; e 2 RF:

where (RF, D) is a complete metric space.

Definition 6 (See [4]) A function f : R!RF is said to be fuzzy continuous
function if f exists for any fixed arbitrary t0 2R and "> 0, ı > 0 such that
jt � t0j<ı) D[f (t), f (t0)]<".

Definition 7 (See [7]) Let x, y 2RF, if there exists z 2RF such that x D y C z,
then z is called H-difference of x, y and it is denoted by x � y. (Note that
x � y ¤ x C (�1)y D x � y.

Definition 8 (See [7]) Let f : (a, b) !RF and t0 2 (a, b). We say that f is H-
differentiable (differentiability in the sense of Hukuhara) at t0, if there exists an
element f 0(t0) 2RF, such that:

1. For all h> 0 sufficiently near to zero, 9 f (t0 C h) � f (t0), 9 f (t0) � f (t0 � h) and
the limits (in the metric D),

lim
h!0C

f .t0 C h/� f .t0/

h
D lim

h!0C

f .t0/� f .t0 � h/

h
D f 0 .t0/

f is called (1)-differentiable at t0 or
2. For all h< 0 sufficiently near to zero, 9 f (t0 C h) � f (t0), 9 f (t0) � f (t0 � h) and

the limits,

lim
h!0�

f .t0 C h/� f .t0/

h
D lim

h!0�

f .t0/� f .t0 � h/

h
D f 0 .t0/

f is called (2)-differentiable at t0.

Theorem (See [7, 8]) Let f : (a, b) !RF be a function denoted by f (t) D (f1(t, r),
f2(t, r)), for each r 2 [0,1]. Then,

1. If f is (1)-differentiable, then f1(t, r) and f2(t, r) are differentiable functions and
f 0.t/ D �

f 0
1 .t; r/ ; f

0
2 .t; r/

�
.
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2. If f is (2)-differentiable, then f1(t, r) and f2(t, r) are differentiable functions and
f 0.t/ D �

f 0
2 .t; r/ ; f

0
1 .t; r/

�
.

Fuzzy Initial Value Problems

Consider the fuzzy initial value problem

y0.x/ D f .t; y.t// ; y .t0/ D y0; t 2 Œt0T 

where f is a fuzzy function with r-level sets of initial value

Œy0
r D Œy1 .0I r /; y2. 0I r/ ; r 2 Œ0; 1 :

We have y .t; y/ D Œy1 .t I r/ ; y2 .t I r/ and f .t; y/ D Œf1 .t; y/ ; f2 .t; y/ where

f1 .t; y/ D F Œt; y1 .t I r/ ; y2 .t I r/ ;
f2 .t; y/ D G Œt; y1 .t I r/ ; y2 .t I r/ :

By using the extension principle, when y(t) is fuzzy number we have the member-
ship function

f .t; y.t// .s/ D sup
n
y.t/ .�/

ˇ̌
ˇs D f .t; �/

o
; s 2 R:

It follows that

Œf .t; y/r D Œf1 .t; yI r/ ; f2 .t; yI r/ ; r 2 Œ0; 1 ;

where

f1 .t; yI r/ D min
n
f .t; u/

ˇ̌
ˇu 2 Œy1.r/; y2.r/

o
;

f2 .t; yI r/ D max
n
f .t; u/

ˇ̌
ˇu 2 Œy1.r/; y2.r/

o
:

Throughout this paper we also consider fuzzy function which is continuous in
metric space D. Then the continuity of f (t, y(t); r) guarantees the existence of the
definition of f (t, y(t); r) for t 2 [t0, T] and r 2 [0, 1]. Therefore, the functions F and
G are defined (see [9]).
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Fuzzy Improved Runge–Kutta Method of Order Four
with Four Stages

Based on the construction of the improved Runge–Kutta method by Rabiei et al.
[6], the improved Runge–Kutta method of order four with four stages (IRK4-4) is
given by

ynC1 D yn C h

 
b1k1 � b�1k�1 C

4X
iD2

bi .ki � k�i /
!
;

for 1 � n � N � 1, where

k1 D f .tn; yn/ ; k�1 D f .tn�1; yn�1/ ;

ki D f

0
@tn C cih; yn C h

i�1X
jD1

aij kj

1
A 2 � i � 4;

k�i D f

0
@tn�1 C cih; yn�1 C h

i�1X
jD1

aij k�j

1
A 2 � i � 4:

c2, : : : , c4 2 [0,1] and f depends on both t and y, while ki and k�i depend on the
values of kj and k�j for j D 1, : : : , i � 1. In each step we only need to evaluate the
values of k1, k2, : : : , while k�1, k�2, : : : are calculated from the previous step.
Based on IRK4-4 methods we proposed the FIRK method of order four with four
stages in which the coefficients of method are given in Table 1. Let the exact solution
[Y(t)]r D [Y1(t; r), Y2(t; r)] where are approximated by [y(t)]r D [y1(t; r), y2(t; r)].
We define

[ki(t, y(t; r))]r D [ki1(t, y(t; r)), ki2(t, y(t; r))], for i D 1, : : : , 4. Note that the values
of k�i1((tn�1, y(tn�1; r)) and k�i2(tn�1, y(tn�1; r)), in each step, are replaced by
ki1(tn, y(tn; r)) and ki2(tn, y(tn; r)), i D 1, : : : , 4 from the previous step; therefore,
there is no need to evaluate them again.

Table 1 Table of coefficients for IRK4-4

c1 D 0

c2 D 1

5
a21 D 1

5

c3 D 3

5
a31 D 0 a32 D 3

5

c4 D 4

5
a41 D 2

15
a42 D 4

25
a43 D 38

75

b�1 D 19

288
b1 D 307

288
b2 D �25

144
b3 D 25

144
b4 D 125

288
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The fuzzy improved Runge–Kutta method of order four with four stages (FIRK4-
4) is given by

y1 .tnC1I r/ D y1 .tnI r/C h .b1k11 .tn; y .tnI r// � b�1k�11 .tn�1; y .tn�1I r//

C
4X
iD2

bi fki1 .tn; y .tnI r//� ki1 .tn�1; y .tn�1I r//g
!
;

y2 .tnC1I r/ D y2 .tnI r/C h .b1k12 .tn; y .tnI r// � b�1k�12 .tn�1; y .tn�1I r//

C
4X
iD2

bi fki2 .tn; y .tnI r//� ki2 .tn�1; y .tn�1I r//g
!
:

where

k11 .tn; y .tnI r// D min
n
f .tn; u/

ˇ̌
ˇu 2 Œy1 .tnI r/ ; y2 .tnI r/

o
;

k12 .tn; y .tnI r// D max
n
f .tn; u/

ˇ̌
ˇu 2 Œy1 .tnI r/ ; y2 .tnI r/

o
;

k21 .tn; y .tnI r// D min
n
f .tn C c2h; u/

ˇ̌
ˇu 2 Œz11 .tn; y .tnI r// ; z12 .tn; y .tnI r//

o
;

k22 .tn; y .tnI r// D max
n
f .tn C c2h; u/

ˇ̌
ˇu 2 Œz11 .tn; y .tnI r// ; z12 .tn; y .tnI r//

o
;

k31 .tn; y .tnI r// D min
n
f .tn C c3h; u/

ˇ̌
ˇu 2 Œz21 .tn; y .tnI r// ; z22 .tn; y .tnI r//

o
;

k32 .tn; y .tnI r// D max
n
f .tn C c3h; u/

ˇ̌
ˇu 2 Œz21 .tn; y .tnI r// ; z22 .tn; y .tnI r//

o
;

k41 .tn; y .tnI r// D min
n
f .tn C c4h; u/

ˇ̌
ˇu 2 Œz31 .tn; y .tnI r// ; z32 .tn; y .tnI r//

o
;

k42 .tn; y .tnI r// D max
n
f .tn C c4h; u/

ˇ̌
ˇu 2 Œz31 .tn; y .tnI r// ; z32 .tn; y .tnI r//

o
:

and

z11 .tn; y .tnI r// D y1 .tnI r/C ha21k11 .tn; y .tnI r// ;
z12 .tn; y .tnI r// D y2 .tnI r/C ha21k12 .tn; y .tnI r// ;
z21 .tn; y .tnI r// D y1 .tnI r/C h

2X
jD1

a3j kj1 .tn; y .tnI r// ;

z22 .tn; y .tnI r// D y2 .tnI r/C h

2X
jD1

a3j kj 2 .tn; y .tnI r// ;

z31 .tn; y .tnI r// D y1 .tnI r/C h

3X
jD1

a4j kj1 .tn; y .tnI r// ;

z32 .tn; y .tnI r// D y2 .tnI r/C h

3X
jD1

a4j kj 2 .tn; y .tnI r// :



Solving Fuzzy Differential Equation Using Fourth-Order Four-Stage Improved. . . 173

Numerical Example

In this section, we solved the fuzzy initial value problems to show the efficiency
and accuracy of the proposed methods. The exact solution [Y(t)]r D [Y1(t; r),
Y2(t; r)] is used to estimate the global error as well as to approximate the starting
values of [y(t1)]r D [y1(t1; r), y2(t1; r)] at the first step.

We define the

error .ti ; y .ti I r// D jy .ti I r/ � Y .ti I r/j
We tested the following problems and the numerical results of FIRK4-4 are given

in Tables 2, 3, 4, and 5 and Figs. 1 and 2.

Problem 1 (See [5])

Table 2 Numerical results of
y1 at tN D 1, N D 10 for
Problem 1

r FIRK 4-4 Exact Error FIRK4-4

0 �0:5000001348 �0:5000000000 1.34 � 10�7

0.1 �0:4743417769 �0:4743416490 1.27 � 10�7

0.2 �0:4472137161 �0:4472135955 1.20 � 10�7

0.3 �0:4183301262 �0:4183300132 1.12 � 10�7

0.4 �0:38729843895 �0:3872983346 1.04 � 10�7

0.5 �0:3535534859 �0:3535533906 9.52 � 10�8

0.6 �0:3162278514 �0:3162277660 8.52 � 10�8

0.7 �0:2738613526 �0:2738612788 7.38 � 10�8

0.8 �0:2236068582 �0:2236067978 6.02 � 10�8

0.9 �0:1581139257 �0:1581138830 4.26 � 10�8

1.0 0:0 0:0 0.0

Table 3 Numerical results of
y2 at tN D 1, N D 10 for
Problem 1

r FIRK 4-4 Exact Error FIRK4-4

0 0.5000001348 0.5000000000 1.34 � 10�7

0.1 0.4743417769 0.4743416490 1.27 � 10�7

0.2 0.4472137161 0.4472135955 1.20 � 10�7

0.3 0.4183301262 0.4183300132 1.12 � 10�7

0.4 0.38729843895 0.3872983346 1.04 � 10�7

0.5 0.3535534859 0.3535533906 9.52 � 10�8

0.6 0.3162278514 0.3162277660 8.52 � 10�8

0.7 0.2738613526 0.2738612788 7.38 � 10�8

0.8 0.2236068582 0.2236067978 6.02 � 10�8

0.9 0.1581139257 0.1581138830 4.26 � 10�8

1.0 0.0 0.0 0.0
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Table 4 Numerical results of y1 D y3 with h D 0.05, r D 1 for
Problem 2

t FIRK4-4 Exact Error FIRK4-4

0 1,000 1,000 0.0
0.5 863.029510248510 863.029510151307 1.06 � 10�7

1.0 745.137917180233 745.137917003690 1.83 � 10�7

1.5 643.667682659973 643.667682428077 2.36 � 10�7

2.0 556.331442427529 556.331442159126 2.71 � 10�7

2.5 481.160443818906 481.160443528665 2.91 � 10�7

3.0 416.460165712376 416.460165411589 3.01 � 10�7

Table 5 Numerical results of y2 D y4 with h D 0.05, r D 1 for
Problem 2

t FIRK4-4 Exact Error FIRK4-4

0 0:0 0:0 0.0
0.5 138:404191948935 138:404192056939 1.06 � 10�7

1.0 255:814845307619 255:814845503778 2.03 � 10�7

1.5 355:181724667715 355:181724925378 2.62 � 10�7

2.0 439:043335806680 439:043336104905 3.01 � 10�7

2.5 509:584216431359 509:584216753848 3.24 � 10�7

3.0 568:684246681833 568:684247016039 3.34 � 10�7

-0.4

0

0.2

0.4

0.6

r

0.8

fuzzy
1

-0.2 0

y (t; r)

0.2 0.4

Fig. 1 The approximated solution of y1(t) and y2(t) (solid line) and exact solution (points) with
h D 0.1, t 2 [0 1] for Problem 1
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y1 = y3

3
t

y

Fig. 2 The approximated solution of y1(t), y2(t), y3(t), and y4(t) (solid line) and exact solution
(points) with h D 0.1, r D 1 for Problem 2

y0.t/ D y.t/ .1 � 2t/ ; t � 0;

y.0/ D
"

�
p
1 � r
2

;
p
1�r
2

#
:

The exact solution is given by Y .t I r/ D
j

�
p
1�r
2

et�t 2 ;
p
1�r
2

et�t 2
k

.

Problem 2 (Radioactivity Decay Model, see [10])

y0.t/ D Ay.t/C f;

where
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y0.t/ D

2
664

y0
1.t/

y0
2.t/

y0
3.t/

y0
4.t/

3
775 ; y D

2
664

y1.t/

y2.t/

y3.t/

y4.t/

3
775 ;

A D

2
664

0 0 �0:4C 0:1r 0

0:2C 0:1r 0 0 �0:04C 0:01r

� 0:2 � 0:1r 0 0 0

0 �0:02 � 0:01r 0:4 � 0:1r 0

3
775 ;

f D

2
664

4:9C 5r

0

5:1 � 0:1r

0

3
775 ; y.0/ D

2
664

995C 5r

0

1; 005� 5r

0

3
775 :

The exact solutions for r D 1 are given by

Y1 .t I r/ D Y3 .t I r/ D 50

3
C 2; 950

3
e

�3
10 t ;

Y2 .t I r/ D Y4 .t I r/ D 500

3
� 29; 500

27
e

�3
10 t C 2; 500

27
e

�3
100 t :

Conclusion

For tested Problems 1 and 2, the approximated solution by FIRK4-4, exact solution,
and maximum global error are given in Tables 2, 3, 4, and 5. The numerical results
show that FIRK4-4 with four stages gives high error accuracy. Also Figs. 1 and
2 show the curve of approximated solution compared with the exact solution, and
we can see that the approximated solution by FIRK4-4 almost tends to the exact
solution which indicates the accuracy of method.

In this paper we developed the fuzzy improved Runge–Kutta methods for solving
first-order FDEs. The scheme is two step in nature and is based on the improved
Runge–Kutta method for solving ordinary differential equations. The method of
order four with four stages is proposed. Numerical results show that fuzzy improved
Runge–Kutta methods with high error accuracy are efficient for solving first-order
FDEs.
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Research, Universiti Putra Malaysia.



Solving Fuzzy Differential Equation Using Fourth-Order Four-Stage Improved. . . 177

References

1. Chang, S.L., Zadeh, L.A.: On fuzzy mapping and control. IEEE Trans. Syst. Man Cybern. 2,
30–34 (1972)

2. Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Set.
Syst. 8, 225–233 (1982)

3. Abbasbandy, S., Allahviranloo, T.: Numerical solution of fuzzy differential equations by Taylor
method. J. Comput. Methods Appl. Math. 2, 113–124 (2002)

4. Seikkala, S.: On the fuzzy initial value problem. Fuzzy Set. Syst. 24, 319–330 (1987)
5. Ahmad, M.Z., Hasan, M.K.: Anew fuzzy version of Euler’s method for solving differential

equations with fuzzy initial values. Sains Malays. 40(6), 651–657 (2011)
6. Rabiei, F., Ismail, F.: Improved Runge–Kutta methods for solving ordinary differential

equations. Sains Malays. 42(11), 1679–1687 (2013)
7. Akbarzadeh Ghanaie, Z., Mohseni Moghadam, M.: Solving fuzzy differential equations by

Runge–Kutta method. J. Math. Comput. Sci. 2(2), 208–221 (2011)
8. Chalco-Cano, Y., Roman-Flores, H.: On new solution of fuzzy differential equations. Chaos

Solitons Fractals 38, 112–119 (2008)
9. Friedman, M., Ma, M., Kandel, A.: Numerical solutions of fuzzy differential equations. Fuzzy

Set. Syst. 105, 133–138 (1999)
10. Solaymani Fard, O., Ghal-eh, N.: Numerical solution for linear system of first order fuzzy

differential equations with fuzzy constant coefficients. Inform. Sci. 181, 4765–4779 (2011)



Effect of Bird Strike on Compressor Blade

A. Ajin Kisho, G. Dinesh Kumar, John Mathai, and Vickram Vickram

Abstract Certification requirement demands for civil and military aircraft to
withstand the impact of foreign object damage at critical flight conditions. Exper-
imental tests for conducting bird impact analysis are costly and time-consuming,
and thus an accurate solution for designing a component against bird impact is
important. Bird impact on aircraft is a soft body impact; it requires the density of
a fluid, viscosity, and shape of bird projectile and length to diameter ratio should
be precisely selected. This paper investigates the effect and influence of all such
parameters due to bird impact. The initial degradation and failure of individual
compressor blades struck by a bird were investigated. Subsequent damage to other
fan blades and engine components is also evaluated. Results will be compared in
terms of pressure profile, and stagnation pressure at the center of the impact and the
bird trajectory after the impact. The bird strike velocity varied from 190 to 250 m/s.
A numerical model of this problem has been developed with the finite, non-nuclear
element program LS-DYNA. This paper presents the bird strike analysis using
Lagrangian, Arbitrary Lagrangian Eulerian (ALE) method, and Smooth Particle
Hydrodynamic (SPH) technique in LS-DYNA. Throughout the study, the most
influencing parameters have been identified and peak pressures and forces are
compared to those results available in the literature.

Introduction

Bird strikes present a significant safety and financial threat to aircraft worldwide [1].
The bird strikes were estimated to cost commercial aviation over one billion dollars
worldwide during 1999–2000. Despite the efforts provided to avoid collisions
between birds and aircraft and to produce bird-proof aircraft, bird strike causes
every year damages of millions of US-dollars and unacceptable losses in human
lives. Bird strike is a major threat to aircraft because the collision with a bird during
flight can lead to structural damage.
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Table 1 Number of strikes
in different phase

Phase Number of strikes Damage (%)

Landing/landing roll 1; 351 3

Approach 1; 130 7

Take-off 996 5

Climb 433 10

Parked/ground checks 53 13

Descent 30 10

Taxi 30 3

Although exterior aircraft structures are exposed to various foreign object
damage like runway debris or tire rubber impact, about 90 % of all incidences today
are reported to be caused by bird strike.

History

Since 1988, such incidents have claimed the life of over 195 people [1]. In United
States, more than 50,000 incidents of bird strikes were reported between 1990 and
2003. In India, there were 74 reports of bird hits from military and civilian airports
in 1997, 45 in 1998, and 39 in 1999. There were 26 more reports till September
2000 and there was no loss of life. The number of vultures have declined in North
India and there were very few incidents of vulture hits on aircraft. The bird strikes
of civil and military aircraft are reported into a National Wildlife Strike Database.
Table 1 shows the number of strikes in different phases.

Need for Simulation

The use of computer simulation to simulate the bird impact on new structural
components serves as a major tool for the development of new components by
minimizing the number of empirical testing [2]. It allows the impact of different
structural and material parameters to be studied before the actual fabrication of the
prototypes, thus reducing time and cost incurred in empirical testing. In view of
this, before being introduced into operational work, the aircraft components must
be certified for a certain level of bird impact resistance. After a bird strike, the
aircraft must be able to safely land. Full-scale tests with real flesh-and-bones birds
are mandatory for the homologation of new structures.

Bird strike tests are expensive, difficult to perform, and little repeatable [3].
The analytical and numerical schemes have been implemented to support the
development of new structures and hence to reduce time and cost.
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FAA Regulation on Bird Strike

Federal Aviation Regulation (FAR) 33.76 requires that engines be capable of
withstanding impact with birds ranging from 0.8 to 8 lb [3], without sustaining
damage that poses a fatal threat to passengers and crew.

To meet these standards, jet engine manufacturers depend heavily on a multiple
costly physical tests requiring the destruction of full-scale engines by simulating
bird strikes using birds or bird surrogates in accordance with FAA guidelines. The
failure rate of aircraft engines has reached extremely low. This means that many
flight crews will never have to face an engine failure during their career than
occurring in flight simulator. However, simulators are not fully representative of
engine failures because accelerations due to a failed engine, noise caused by an
engine stall, vibrations in the event of a blade rupture are hard to simulate.

The engine must continue to produce at least 75 % thrust for 5 m after ingesting
a bird. Fan integrity tests must demonstrate that the engine does not catch fire or
disintegrate after being struck by a single 4 lb bird.

Methodology

In the early stages of bird-strike simulations, the bird was represented by a pressure
pulse on the structure. This was based on the assumption that, since a bird is
mainly made of water, it could be represented by a jet of fluid [4]. Since then,
many progresses have been made. Table 2 refers the bird weight requirements as
per standards. The blade property, bird surrogates, bird model, and bird shape were
obtained from literature.

Blade Material

The material property of blade is taken as Titanium Ti-64 and following bilinear
material property [5] (Table 3).

Table 2 Bird weight
requirements

Component Bird weight (lb) Regulation far 25

Windshield 4 775
Wing leading edge 4 571
Empennage 8 571 and 571
Engine 4 Section 33



182 A.A. Kisho et al.

Table 3 Various parameters
of blade. Bird Properties
considered for the analysis

Material property Symbol Value

Density ¡ 4,420 kg/m3

Young’s modulus E 119.35 GPa
Hardening modulus Eh 0.959 GPa
Yield stress ¢y 1,311 MPa
Poisson’s ratio ¤ 0.3

Theory of Bird Strike

A bird undergoing impact at very high velocity behaves as a highly deformable
projectile where the yield stress is much lower than the sustained stress [6].
Accordingly, the impact can be categorized as a hydrodynamic impact. That, and
the fact that the density of flesh is generally close to the density of water, makes it
possible for a bird to be imagined as a lump of water hitting a target.

The bird strike event is divided into two stages, the initial shock (time at impact)
and steady flow. The pressure of the initial shock is called Hugoniot pressure and
is given by equation [4]; the pressure of the steady flow (stagnation pressure) is
calculated according to Bernoulli and is given by equation

Psh D ¡¤sh¤im (1)

Pstag D 1

2
¡¤2im (2)

Equation gives the stagnation pressure for an incompressible fluid; however, if
the fluid is compressible, its value will increase with respect to its porosity, z. Airoldi
gives a useful expression to calculate the modified stagnation pressure

Pstag z D 1

1 � z
Pstag (3)

Analytically, those two pressures are important since the Hugoniot pressure gives
the maximum possible value for the impact at its beginning and the stagnation
pressure gives the expected reading when the flow stabilizes. It is important that
the pressure is not dependent on the size of the projectile since the mass is not a
variable in the pressure equations. This implies that the pressure results are the same
regardless of the projectiles, provided that they share the same impact velocity. The
force and energy of a bigger projectile is proportionally larger and will cause more
damage.

The values of the variables needed to calculate the stagnation pressure are easily
available. On the contrary, the Hugoniot pressure depends on the impact velocity and
the shock velocity, which depends on the impact velocity. Moreover, the equation
changes even if the porosity is included or not, or if the fluid considered is water
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or a substitute. The equations given below apply to a projectile with an amount of
air mixed in, also called porosity, since experience has shown that porosity has a
non-negligible effect on the overall results and is closer to the behavior of a bird
upon impact.

¡1¤sh D ¡2 .¤sh � ¤im/ (4)

P1 � P2 D ¡¤sh¤im (5)

�1

�2
D .1 � z/.

P2

A
C 1/

�1
B

C z .1 � q/ (6)

With, A D �1C
2
0

4k�1 ,
B D 4k � 1 and

�2

�1
D 1

1 � q
(7)

z(1 � q) is the contribution of the air mixed and it is negligible.

Steps in Creating the Bird Model

The bird model is obtained theoretically and experimentally. It describes the theory
of the bird strike and provides a sample of the available experimental data [7]. Then
a demonstration is given as to how to evaluate a bird model based on the following
criteria:

1. Pressure profile at the center of impact
2. Mass loss
3. Impulse profile at the center of impact
4. Radial pressure distribution
5. Shape of the sustained deformations
6. Solution time

The three modeling methods mentioned earlier are presented in addition to a brief
parametric study [14] of the factors influencing the fluid–structure interaction [14].
They are compared and evaluated with respect to the theoretical and experimental
information available. The experimental data which are generally used as a reference
are evaluated with respect to the theory, demonstrating that although useful, they
should be referred to with care.



184 A.A. Kisho et al.

Bird Surrogates

The impact of a real bird is representative of that impact itself [7]. Considering the
impact of a real bird, not only the weight and the physical properties of the bird, but
also parameters such as the species, the age, and the size are relevant because of the
influence on the impact loads.

The jelly projectile model is generally accepted as a substitute of the real bird [2].
At high impact velocity, a bird impacting a rigid or deformable structure like an
aircraft behaves like a fluid. Hence, a hydrodynamic material model is a reasonable
approximation.

Bird Shape

The shape of the bird is important since both the impact force and pressure are
considered. In addition, the shape of the bird becomes important [8]; when it is
necessary to obtain specific load conditions, a blunt cylinder shape is used as a bird
surrogate for the bird strike on the compressor blade, while the rugby-ball shape is
recommendable to reproduce the impact loads of a real bird (Fig. 1).

Several representative bird geometries have been proposed for both impact
experiments utilizing bird surrogates and finite element models of high velocity bird
impact [8]. One of the most common is a cylinder with rounded hemispherical ends.
The ratio of total length to diameter for the bird geometry was 2.

It is necessary to define both a suitable material model and a pressure–volume
state equation for the bird. For majority of the interaction, the blade interacts with
the gelatin-like fluid and only interacts with the solid bird for a brief instant at the
moment of impact.

Fig. 1 Various shapes for
bird
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Table 4 Bird parameters S. no. Parameters Assumptions or values chosen

1 Bird mass 1.82 kg
2 Bird geometry Cylinder with hemispherical ends
3 Bird density 950 kg/m3

4 Bird material Viscous hydrodynamic fluid

Fig. 2 Hemispherical bird
model with dimensions

Bird Model

The bird models were defined by a hemispherical-ended cylinder and were based on
a standard volume of 1.917E C 06 mm3 and length 228 mm (Fig. 2). Table 4 shows
the bird parameters for the analysis.

Contact Algorithm

The fluid–structure interaction in the bird impact simulation is the contact algo-
rithm [9]. It helps to prevent penetrations and calculates reaction forces. The contact
algorithm helps for large deformations and splitting of the projectile, sliding of the
bird material over the target surface and the creation of multiple contact interfaces
due to possible fracture and penetration of the structure. Friction is another aspect,
whereas the study advises that best results compared to experimental results can be
obtained with zero friction.

Equation of State

Real birds and artificial gelatin birds are mostly made up of water. Therefore, a
hydrodynamic response can be considered as a valid approximation for a constitu-
tive model for bird strike analyses [10]. An equation of state (EOS) describes the
pressure–volume relationship with parameters of water at room temperature.
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The research works focus on the EOS of the bird. Initially, a polynomial EOS
with the parameters of the water at room temperature was used. Subsequently, these
parameters were modified to keep into account the porosity of the jelly used in the
tests. Hydrodynamic pressure–volume relation can be defined by an EOS in the form
of a third-degree polynomial [14].

P D C0 C C1�C C2�
2 C C3�

3 (8)

� D .¡/ = .¡0/� 1 (9)

where, � is relative density. For a material such as water which exhibits the linear
Hugoniot relation between shock velocity and particle velocity, the EOS can be
expressed in terms of the following coefficients

C0 D 0 (10)

C1 D ¡0C2 (11)

C2 D .2k � 1/C1 (12)

C3 D .k � 1/ .3k � 1/C1 (13)

Numerical Analysis

In recent years, explicit FE codes have been used to develop high efficiency bird-
proof structures. These codes adopted various finite element approaches to model
the impact phenomena: the Lagrangian approach, Eulerian or Arbitrary Lagrangian
Eulerian (ALE) approach, and Smooth Particle Hydrodynamics (SPH).

Lagrangian Approach

The Lagrangian modeling method is the standard approach for most structural finite
element analyses with the nodes of the Lagrangian mesh being associated to the
material [7, 11].

The major problem associated with the Lagrangian bird impact models is the
severe mesh deformation [11] (Fig. 3). Large deformations of the elements may lead
to inaccurate results, severe hour glassing, reduced time steps, and error termination,
which have to be reduced.
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Fig. 3 Meshed blade

The Lagrangian modeling method divides a volume into a large number of small
geometries called elements. Because those geometries are simple in shape, it is
possible to know the state of the solid by using mathematical relations. However,
when the deformations are large, it becomes increasingly difficult to calculate the
state and stresses in the elements because the time step, based on the aspect ratio,
keeps on decreasing. Moreover, the accuracy of the results obtained decreases. Also,
since in this method the material moves with the mesh, if the material undergoes
large deformations, the mesh will also suffer some deformation and this leads to
results which are inaccurate and numerical instabilities. The mesh size was found
to have the most influence on the result. The number of elements obtained in this
approach is 21,380 elements.

Arbitrary Lagrangian Eulerian Approach

A better alternative is the Eulerian modeling technique, where the mesh remains
fixed in space and the material flows through the mesh. Because the mesh is fixed,
mesh deformations do not occur and the explicit time step has no influence [12].
Stability problems do not occur due to excessive element deformation. The initial
idea of ALE modeling is taken from the Eulerian formulation for fluid flow where
a material moves through a fixed mesh. The main difference is that, here, the mesh
is allowed to deform and move so as to follow the flow of fluid. This represents a
major improvement with respect to the Eulerian mesh because it decreases the size
of the required mesh to a certain extent.
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In a bird strike simulation typically, only the impact is modeled as a fluid-like
body with Eulerian elements and the target as a solid structure with Lagrangian
elements. Because the mesh in the classical Eulerian technique is fixed in space,
the computational domain, a coupled Eulerian–Lagrangian approach, is used for
this fluid–structure interaction problem like bird strike problems. The computational
domain for the structural analyses with the classical Eulerian technique is large,
leading to high computational cost due to the high number of elements and the cost-
intensive calculation of element volume fractions and interactions. The element size
of the Eulerian mesh has to be very small in order to achieve accurate results.

In the classical Eulerian approach, the surrounding Eulerian box is not fixed in
space but can be moved if needed. The initial number of elements for the Eulerian
domain can be reduced, leading to computational time savings. However, due to
the wide spreading of the bird material, the lateral expansion of the Eulerian box is
significant and the size of the Eulerian elements is increased considerably. ALE,
which is multi-material Eulerian method, the material flows through a mesh, in
which each element is allowed to take two or more material (Fig. 4). In Eulerian
mesh, there is dissipation of mass of elements.

Smooth Particle Hydrodynamic Approach

SPH is particle method which is applicable to wide range of physics like Crash,
Mechanics, and fracture models in Brittle and Ductile materials of solids. It is
treated to be very easy for representing the physics, which makes SPH very
extraordinary method. Due to the reason that SPH is a very simple method, many
problems are hardly reproduced with classical methods. The fluid is represented as
set of particles moving with some flow velocity. And compared to ALE method,

Fig. 4 ALE approach model
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from computation point of view, SPH is more economical with its capabilities to
calculate only on particles. Because of the large deformation of a bird, this theory is
also applicable to bird strike analysis in spite of the much lower velocity [11].

The SPH method uses the Lagrangian formulation for the equations of motion,
but instead of a grid, it uses interpolation formula, called kernel functions, to
calculate an estimation of the field variables at any point (Fig. 5). The kernel
function is active only over a given neighborhood for each node, called support
domain. The method is said to be mesh-free because there is no predefined grid
of nodes restraining which nodes can interact together. The number of elements
obtained in this approach is 9,000 elements.

In practice, the SPH method uses fewer elements than the ALE method, avoids
the material interface problems associated with it, and has a shorter solution time. It
also follows the flow of the bird much more accurately than the previous methods,
especially in the case of secondary bird strike (if the bird is deflected to another
structural component).

Fig. 5 Meshed using SPH method

Similarly to the Lagrangian mesh, the size of the SPH particles, or the amount of
particles used, has an influence on the fluid–structure interaction, and hence the final
results. The particles are evenly distributed, which is important because for the time
being, the initial dimension of the support domain is the same for all the particles.

Results and Discussion

Lagrangian Approach

The deformation of the blade and the bird for this case are shown in Figs. 6 and 7.
The figure shows the evolution of the bird deformation during impact [13].
The severity of contact at the initial stages of impact will lead to plastic deformation
in the blade.
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Fig. 6 Variation of pressure with time by Lagrangian approach

Fig. 7 Deformation of
compressor blade by
Lagrangian approach
(a) T D 0, (b) T D 0.05,
(c) T D 0.1, (d) T D 0.2

The bird reaches its maximum impact force of 140 KN at about 0.16 ms after
initial contact. There are two dominant peaks for the hemispherical-ended bird, the
first reaches its maximum force of 38 KN at about 0.035 ms and the second reaches
its second peak of 123 KN at about 0.16 ms.
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Fig. 8 Variation of (a) displacement, (b) velocity, (c) acceleration, (d) kinetic energy vs. time by
Lagrangian approach

The kinetic energy of the bird, blade, and the system, which is composed of both
the bird and blade, have been plotted in Fig. 8. The kinetic energy is transmitted
from the bird to the compressor blade. But, the total kinetic energy decreases, as it
gets transformed into deformation energy of the compressor blade, as can be seen
from Fig. 8. The deformation energy of the blade is found to be much larger than
that of the bird, due to the inelastic fluid-like properties of the bird elements.

ALE Approach

At the beginning of the analysis, the highly denser material is concentrated in
one part of the mesh, but as the analysis progresses, the fluid is allowed to
flow throughout the model. Some finite elements analysis software even makes it
possible to only model the fluid. At each time step, the position of the material is
evaluated with respect to the nodes. The coupling with a solid structure is done by
tracking the relative displacements between the coupled Lagrangian nodes and the
bird. However, mesh distortion can become an issue with the ALE method if the
elements’ volume becomes negative, and it is often difficult to track material.

The interaction between the bird and the structure is controlled by the
*constrained-Lagrange–in-solid card in LS-DYNA. When using the ALE method,
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this card is critical to obtain good results. It is important to allow coupling only
between the bird and the structure, otherwise the gap of air can interfere. Also, the
minimum volume fraction required for an element to be computed should be high
enough so that the pressure rise is instantaneous once the bird strikes.

The impact force obtained by ALE approach is 0.080 MN. This result cannot
be compared with the Lagrange approach because the geometrical models in both
cases are not same. The variables used in the ALE cards for this case will be used
as reference to create an ALE model that fits the geometrical dimensions of a bird
strike analysis (Fig. 9). The maximum impact force obtained by this approach is
0.012 MN.

Finally, the most important parameter is the penalty factor which governs the
interaction between the fluid and the structure. Damping should be adjusted so that
the pressure remains positive at all times. There are two coupling options: one can
either adjust the penalty factor to a constant value, or use a load curve which will
increase the stiffness linearly according to the penetration. Both options have been
considered in the simulations (Figs. 10 and 11).

Contact Type Peak pressure value (MPa)
*Constraint Lagrange
in solid

Lagrange approach 101.98

*Control ALE ALE approach 124.28
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Fig. 9 Variation of pressure with time by ALE approach
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Fig. 10 Deformation of
compressor blade by ALE
approach (a) T D 0, (b)
T D 0.03, (c) T D 0.06,
(d) T D 0.1

E:\final\alelale1\matsum E:\final\ale\ale1\matsum

E:\final\ale\ale1\glstat

0.25

0.3

0.2

0.15

0.1

V
el

oc
ity

K
in

et
ie

 E
ne

rg
y 

(E
+

6)

0.05

0

0.38026

0.38024

0.38022

0.3802

0.38018

0.38016

0.38014
0 0.02 0.04 0.06 0.08

Time

0 0.040.02 0.06 0.08 0.1
Time

E:\final\ale\ale1\matsum

0.015

0.01

0.005D
is

pl
ac

em
en

t
A

cc
el

er
at

io
n

0

10

8

6

4

2

0
0 0.02 0.04 0.06 0.08 0.1

Time

0 0.02 0.04 0.06
Time

0.08 0.1

a b

dc

Fig. 11 Variation of (a) displacement, (b) velocity, (c) acceleration, (d) kinetic energy vs. time by
ALE approach



194 A.A. Kisho et al.

Conclusions

The importance of compressor blade and its influence on the aircraft engine, the
understanding of bird strike problem, and its proper analysis now have even more
significance. While manufacturers have high priority to certification, it is also
important to have an accurate numerical model to assess the bird impact resistance
on the compressor blades. To validate the present finite element formulation,
comparison with the experimental data for a bird striking a compressor blade can be
carried out. The Lagrangian bird, modeled using hydrodynamic constitution law, is
found to be appropriate for the bird strike analysis.

To understand the importance of bird geometry modeling, the frequently used
bird and configurations have been examined. It is found that the initial contact
area between the bird and compressor blade in the early phase of the impact has
a significant effect on the peak impact force value.

The impact force profile is also found to be highly dependent on the deformation
of the compressor blade. The maximum impact force increases with larger birds, but
for the maximum plastic strain of the blade due to the reduced density of the larger
bird.
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Asymptotic Density Crossing Points
of Self-Normalized Sums and Normal

Thorsten Dickhaus and Helmut Finner

Abstract We define generalized self-normalized sums as t-type statistics with
flexible norming sequence in the denominator. It will be shown how Edgeworth
expansions can be utilized to provide a full characterization of asymptotic crossing
points (ACPs) between the density of such generalized self-normalized sums and
the standard normal density. Although the proof of our main ACP theorem is
self-contained, we also draw connections to related expansions for the cumulative
distribution function of generalized self-normalized sums that we have derived in
previous work.

Keywords Edgeworth expansion • Large deviations • Likelihood ratio •
Student’s t

Introduction

Density crossing points (CPs) are important objects in statistical theory and practice.
To mention only one specific application, the CPs between two probability density
functions (pdfs) f and g (say) determine level sets of the likelihood ratio f=g. Such
level sets in turn characterize rejection regions of likelihood ratio tests or decision
boundaries of Bayes classifiers, respectively. For further possible applications, we
defer the reader to Appendix B in [1]. In [2], a systematic approach toward charac-
terizing (asymptotic) crossing points (ACPs) between the standard normal density
' and densities of standardized sums of independent and identically distributed
(iid) random variables fulfilling the conditions of the central limit theorem has
been worked out. Moreover, the authors derived the (asymptotic) density crossing
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points between ' and the Lebesgue densities f� of t-distributions with � degrees of
freedom (with � tending to infinity). According to [3], f� is given by

f�.z/ D � .�=2C 1=2/

� .�=2/

1p
��

�
1C z2

�

���=2�1=2
:

Recall that f� is the density of the self-normalized sum

Sn D
p
n. NXn � �/q

1
n�1

Pn
iD1.Xi � NXn/2

; (1)

assuming that n D � C 1, the random variables Xi W 1 � i � n are iid normally
distributed with mean � and variance �2 2 .0;1/, and NXn D n�1Pn

iD1 Xi .
The major results in Section 3 of [2] and Appendix A of [1] were that there

exist exactly two CPs of ' and f� for any � > 0 and that the positive solution z�
(say) of the equation '.z/ D f�.z/ converges monotonically to its limiting value

lim�!1 z� D
p
1C p

2 � 1:553773974. In the present work, we generalize the
latter findings by providing a theory of the ACPs of the pdfs of (generalized) self-
normalized sums and '. Our results are of quite general character. Especially, no
normal distribution has to be assumed for the initial random variables Xi , and the
norming sequence in the denominator of the self-normalized sum can take different
forms.

Notation and Preliminaries

Throughout the work, .Xi/i2N denotes a sequence of iid random variables with
values in R and EŒX2

1  < 1. Further moment conditions will be imposed where
necessary. Moreover, we require that the following condition holds true throughout
the remainder.

Condition 1. The distribution of X1 has a nondegenerate absolutely continuous
component with respect to the Lebesgue measure.

Condition 1 implies Cramér’s condition; see p. 45 in [4].
We denote the expectation ofX1 by� D EŒX1 and its variance by �2 D EŒ.X1�

�/2. In [5, 6] and [7], the statistic

Yn D
p
n. NXn � �/q

1
n

Pn
iD1.Xi � NXn/2

has been investigated with respect to Edgeworth expansions. Peter Hall’s result in
[7] was that
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FYn.y/ D ˆ.y/C
kX
iD1

n�i=2Pi .y/'.y/C o.n�k=2/ (2)

uniformly in y 2 R for any k � 1 for which the .k C 2/-nd moment of X1 exists
(“minimal moment condition”), provided that Condition 1 is fulfilled. The first four
polynomials on the right-hand side of (2) are given by

P1.y/ D ˛3

6
.2y2 C 1/;

P2.y/ D �y
�
˛23
18
.y4 C 2y2 � 3/� �

12
.y2 � 3/C 1

4
.y2 C 3/

�
;
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�

� 1
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where

˛` D EŒ.X1 � �/`

�`
; ` D 3; : : : ; 6; and � D ˛4 � 3; (3)
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assuming that the respective minimal moment condition holds true. The functional
� is usually referred to as the excess kurtosis of X1. The polynomials P1 and P2
are nowadays well known and can be found in various statistics textbooks. Two
different methods for deriving the approximation polynomials can be found in [6]
in an elementary way and in the textbook [4] under a broad scope of the so-called
smooth function models. Computational or algorithmic, respectively, methods for
the derivation of the Pi ’s in such smooth function models have been discussed
in [8]. The method of [6] has recently been worked up and described in a more
straightforward way; see [9].

In Section 11.4.1 of [10], an Edgeworth expansion for the self-normalized sum
Sn as in (1) with normalization constant .n � 1/�1 in the denominator is given.
The approximation polynomials in this case differ from the Pi ’s from above. This
shows that the norming sequence in the denominator of the self-normalized sum is
of importance for the asymptotic behavior of these t-type statistics. Therefore, we
investigate a more general statistic in this paper, namely,

Tn D
p
n. NXn � �/q

an
Pn

iD1.Xi � NXn/2

which differs from Yn with respect to the norming sequence an. However, it will be
assumed that limn!1 nan D 1.

In the remainder, we refer to Sn as a “Studentized sum,” to Yn as a “standard self-
normalized sum,” and to Tn as a “generalized self-normalized sum.” In order to study
pdfs, it seems tempting to take formal derivatives on both sides of (2). However,
since the derivative operator can induce singularities and diminish smoothness, an
extra assumption is necessary to carry the expansion (2) over to the pdf case. As
pointed out in Sect. 2.8 of [4], the assumption of a bounded density of NXn for some
n > 1 is crucial and will therefore appear in our main theorem.

ACP Theorem for Generalized Self-Normalized Sums

Since the polynomials Pi , 1 � i � 4, refer to the Edgeworth expansion of the
standard self-normalized sum Yn, let us first express the generalized self-normalized
sum Tn in terms of Yn. Setting bn D p

nan, we obtain Tn D p
.nan/�1Yn D Yn=bn

and, consequently,

FTn.t/ D P.Tn � t/ D P.Yn � bnt/ D FYn.bnt/: (4)

Equation (4) is the starting point for our considerations with respect to ACPs of
the pdf of Tn and the standard normal density '. The following lemma provides
asymptotic expansions for bn.
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Lemma 1. Let bn D p
nan, where an is given by

an D 1

n.1 �PM
jD1 Cj n�j=2/

(5)

for some integer M � 4 and real, given constants C1; : : : ; CM (implying
limn!1 nan D 1). Then, we have that limn!1 b

j
n D 1 for all j � 1, and

asymptotic expansions for bn and b2n D nan are given by

bn D 1C C1

2
p
n

C C2 C 3C 2
1 =4

2n
C C3=2C C1C2 C 9C 3

1 =16� C1=4
�
C2 C C2

1

�

n3=2

C 1

n2

"
C4

2
C C1C3 C C2

2

2
C 3C2C

2
1

2
� C1

�
C3 C 2C1C2 C C3

1

�

8

�
�
C2 C C2

1

�2
8

� C1
�
C3=2C C1C2 C C3

1 =2
�

4
C 59

128
C 4
1

C 3C 2
1

�
C2 C C2

1

�

16

#
CO

�
n�5=2� ;

b2n D 1C C1p
n

C C2 C C2
1

n
C C3 C C1C2 C C1

�
C2 C C2

1

�

n3=2

C 1

n2

�
C4 C C1C3 C C2

�
C2 C C2

1

�C C1
�
C3 C 2C1C2 C C3

1

��CO
�
n�5=2� :

Proof. The lemma is a simple application of the Taylor expansion for the square
root function. �
Remark 1. Actually, the expansion for b2n follows straightforwardly from that for
bn by working out the square. In an analogous manner, expansions for bjn for any
integer j � 3 can be obtained.

Theorem 1. Let Condition 1 be fulfilled, assume that EŒX4
1  is finite, and let ˛3 and

� be defined as in (3). Assume that NXn has a bounded density for some n > 1. Let
the norming sequence fangn2N in the denominator of Tn be as in (5). Then, the ACP
behavior of fTn and ' can be characterized as follows.

(i) If ˛3 ¤ 0 or C1 ¤ 0, we obtain ACPs between fTn and ' as solutions of the
equation

C1

2
C ˛3

2
t � C1

2
t2 � ˛3

3
t3 D 0:
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(ii) If ˛3 D C1 D 0 and (� ¤ 3 or C2 ¤ 3), ACPs between fTn and ' are given as
solutions of the equation B4t4 CB2t

2 CB0 D 0, where the real constants B4,
B2 and B0 are defined by

B4 D 1

4

�
1 � �

3

�
; B2 D � � C2

2
;

B0 D 1

2

�
C2 � � C 3

2

�
:

(iii) In case of ˛3 D C1 D 0 and � D C2 D 3, assume that ˛5 is finite. Then, if
˛5 ¤ 0 or C3 ¤ 0, we obtain ACPs between fTn and ' by solving the equation

C3

2
� 3˛5

8
t � C3

2
t2 C ˛5

20
t5 D 0:

(iv) If the assumptions of cases (i)–(iii) are not fulfilled and ˛6 is finite, ACPs are
given as solutions of the equation

�
˛6

45
� 3

2

�
t6 C

�
41

4
� ˛6

6

�
t4 C

�
3 � C4

2

�
t2 C ˛6

6
C 1

2

�
C4 � 45

2

�
D 0:

Proof. Due to the bounded density assumption regarding NXn, we take formal
derivatives on both sides of (4), resulting in

fTn.t/ D bn'.bnt/C
kX
iD1

n�i=2 d
dt
ŒPi .bnt/'.bnt/C o.n�k=2/;

fTn .t/

'.t/
D bn

'.bnt/

'.t/
C

kX
iD1

n�i=2

'.t/

d

dt
ŒPi .bnt/'.bnt/C o.n�k=2/: (6)

Plugging in '.t/ D exp.�t2=2/=p2� , we obtain that (6) is equivalent to

fTn.t/

'.t/
D exp

�
t2

2
.1 � b2n/

�

�
"
bn C

kX
iD1

n�i=2
�
d

dt
Pi .bnt/ � b2ntPi .bnt/

�#
C o.n�k=2/: (7)

Making use of the Taylor expansion exp.x/ D Pm
`D0 x`=`ŠCO.xmC1/, x ! 0, (7)

can equivalently be expressed by
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fTn.t/

'.t/
D

mkX
`D0

�
t2.1 � b2n/

�`
2``Š

�
"
bn C

kX
iD1

n�i=2
�
d

dt
Pi .bnt/ � b2ntPi .bnt/

�#
C o.n�k=2/ (8)

for a suitable integermk . Now, we subdivide the proof into the four different cases.
First, notice that P1.bnt/ D ˛3.2b

2
nt
2 C1/=6 and .d=dt/P1.bnt/ D .2b2n˛3t/=3.

With k D mk D 1, (8) consequently becomes

fTn.t/

'.t/
D
	
1C t2

2
.1 � b2n/




�
	
bn C n�1=2

�
2

3
b2n˛3t � b2nt

�˛3
6
.2b2nt

2 C 1/
��


C o.n�1=2/: (9)

Utilizing the first-order expansions (up to the n�1=2 terms) for bn and b2n that we
have reported in Lemma 1 in (9), we get

p
n

�
fTn.t/

'.t/
� 1

�
D C1

2
C ˛3

2
t � C1

2
t2 � ˛3

3
t3 C o.1/: (10)

Hence, the assertion under part (i) of the theorem follows.
For ˛3 D C1 D 0, we get that the summand corresponding to i D 1 in (8)

vanishes. Therefore, we have to utilize P2.bnt/ D .�=12�1=4/b3nt3 � .�C3/bnt=4

and .d=dt/P2.bnt/ D .� � 3/b3nt
2=4� .� C 3/bn=4 in (8) and we obtain

n

�
fTn.t/

'.t/
� 1

�
D
�
1

4
� �

12

�
b5nt

4 C nt2

2

�
	
�b3n
n

C .1 � b2n/.bn � .� C 3/bn

4n
/




Cn
�
bn � .� C 3/bn

4n
� 1

�
C o.1/

D 1

4

�
1 � �

3

�
b5nt

4

C
�
�b3n
2

� bnn.b
2
n � 1/

2
C � C 3

8
.b3n � bn/

�
t2

C1

2

�
2n.bn � 1/� .� C 3/bn

2

�
C o.1/:

Making use of the second-order expansions for bn and b2n including the n�1 terms,
we obtain
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n

�
fTn.t/

'.t/
� 1

�
D 1

4

�
1 � �

3

�
t4 C � � C2

2
t2 C 1

2

�
C2 � � C 3

2

�
C o.1/

and hence the assertion of part (ii).
If ˛3 D C1 D 0, � D C2 D 3, and ˛5 < 1, we obtain P3.bnt/ D

˛5=5.�b4nt4=4� b2nt2 � 1=8/ and .d=dt/P3.bnt/ D ˛5=5.�b4nt3 � 2b2nt/. Utilizing
these representations and the expansions for the norming sequences up to the n�3=2
terms in (8) leads to

lim
n!1

�
n3=2

�
fTn.t/

'.t/
� 1

��
D C3

2
� 3˛5

8
t � C3

2
t2 C ˛5

20
t5;

and the assertion of part (iii) follows.
Finally, in case of ˛3 D C1 D 0, � D C2 D 3, ˛5 D C3 D 0 and ˛6 < 1, we

have

P4.t/ D t5
�
3

2
� ˛6

45

�
C t3

2

�
˛6

9
� 31

4

�
C t

2

�
˛6

3
� 99

4

�
;

d

dt
P4.t/ D t4

�
15

2
� ˛6

9

�
C t2

2

�
˛6

3
� 93

4

�
C 1

2

�
˛6

3
� 99

4

�
:

Plugging these expressions, together with the approximations for bn and its powers
up to the n�2 terms into (8), we obtain the target equation

lim
n!1

�
n2
�
fTn.t/

'.t/
� 1

��
D
�
˛6

45
� 3

2

�
t6 C

�
41

4
� ˛6

6

�
t4 C

�
3 � C4

2

�
t2

C˛6

6
C 1

2

�
C4 � 45

2

�
;

completing the proof. �

Remark 2. The Studentized sum Sn is a special case of the generalized self-
normalized sum Tn for C1 D 0, C2 D 1, and Cj D 0 for all j > 2, and the
standard self-normalized sum Yn can be generated from Tn by setting Cj D 0 for
all j � 1. Therefore, the ACP results in Theorem 1 can directly be carried over
to Studentized and standard self-normalized sums. In this sense, Theorem 1 gives a
comprehensive answer to the ACP question for t-type statistics.

Example 1. For three commonly used normalization sequences, we get in case of
˛3 D � D 0 (as encountered if the Xi ’s are normally distributed) the following
ACPs according to case (ii) of Theorem 1.

(a) For an D 1=n, we have B4 D 1=4, B2 D 0, B0 D �3=4; hence, two ACPs are
given by ˙31=4.
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0.96

0.92

0.88

0.84

0.8

1.04

21−1−2 0

1.08

1.0

Fig. 1 Likelihood ratio �n.z/ D p
.n� 1/=nfn�1.

p
.n� 1/=n � z/='.z/ for n D 5; 10; 20; and

�2 � z � 2, where fn�1 denotes the pdf of Student’s t distribution with n�1 degrees of freedom.
The curves can be identified by noticing that �n.0/ is increasing in n. Asymptotic crossing points
(ACPs) are ˙31=4 as pointed out in case (a) of Example 1 and indicated by the two dashed vertical
lines

(b) For an D 1=.n � 1/, we have B4 D 1=4, B2 D �1=2, B0 D �1=4; hence, two

ACPs are ˙
p
1C p

2.
(c) For an D .n � 3/�1, we have B4 D 1=4, B2 D �3=2, B0 D 3=4; hence, four

ACPs are given by ˙
p
3˙ p

6. If the Xi ’s are normally distributed, this case
corresponds to the standardized t-distribution with Var.Tn/ D 1 for all n > 3.

We may recall that cases (b) and (c) are the examples originally studied in [2]. For
a plausibility check of case (a), we derived Fig. 1. In the case that the Xi ’s are
normally distributed, the standard self-normalized sum Yn has exactly the density
fYn.z/ D p

.n � 1/=nfn�1.
p
.n � 1/=n � z/ leading to the graphical representation

of the likelihood ratio �n.z/ in Fig. 1. In case of non-normal Xi ’s, a closed-form
representation of fYn is hardly available, cf., e.g., [11].

Remark 3. Let us analyze the number of ACPs in case (ii) of Theorem 1. For � ¤ 3,
the solutions of the equation B4t4 C B2t

2 CB0 D 0 can be expressed by

t D ˙
q
.� � 3/.3.� � 3/˙p

D.�; C2//

� � 3 ;
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where D.�; C2/ D 3.3C 2
2 � 4C2� C 2�2 � 6C2 C 9/ > 0. This representation

shows that there exist either two or four ACPs, depending on the signs of .� � 3/

.3.� � 3/˙p
D.�; C2//.

In case of � D 3 and C2 ¤ 3, we obtain B4 D 0 and B2 D �B0 ¤ 0; hence,
there exist exactly two ACPs, namely, ˙1.

Concluding Remarks

Although the classical Edgeworth expansion for Yn (where the norming sequence
is given by an D 1=n) reported in (2), together with asymptotic expansions for
bn and bjn for j � 2, is sufficient for the CP results in section “ACP Theorem
for Generalized Self-Normalized Sums,” we conclude this paper by relating our
findings to a formal expansion for the generalized self-normalized sum Tn that we
have derived in [9]. In the latter article, we computed the polynomials QPi (say)
appearing in an expansion of the form

FTn.t/ D ˆ.t/C
kX
iD1

n�i=2 QPi.t/'.t/C o.n�k=2/: (11)

Expansion (11) holds uniformly in t 2 R under the same conditions as required for
the expansion in (2). However, the coefficients of the polynomials QPi in (11) depend
not only on the cumulants of X1 but additionally on the constants Cj appearing in
the formal representation (5) of the norming sequence an. For instance, the first two
QPi are given by

QP1.t/ D ˛3 t
2

3
C ˛3

6
C C1t

2
;

QP2.t/ D 3tC 2
1

8
C ˛4t

3

12
C ˛23t

6
� t3C 2

1

8
� ˛23t

3

9

�˛
2
3t
5

18
C ˛3 C1t

2

4
C tC2

2
� t3

2
� ˛3C1t

4

6
� ˛4t

4
:

Taking formal derivatives in (11), we obtain

fTn.t/ D '.t/C
kX
iD1

n�i=2
	
d

dt
QPi .t/'.t/C QPi.t/ d

dt
'.t/



C o.n�k=2/

or, equivalently,

fTn.t/

'.t/
� 1 D

kX
iD1

n�i=2
	
d

dt
QPi.t/ � t QPi .t/



C o.n�k=2/:
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Therefore, the CP results in Theorem 1 can also be derived by solving the equations

d

dt
QPi.t/ � t QPi .t/ D 0; i D 1; : : : ; 4:

We double-checked our results from Theorem 1 by making use of this
connection.
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Exponential Ratio-Cum-Exponential Dual
to Ratio Estimator in Double Sampling

Diganta Kalita, B.K. Singh, and Sanjib Choudhury

Abstract A class of exponential ratio-cum-exponential dual to ratio estimators for
estimating a finite population mean in double sampling scheme is proposed. The
expressions for bias and mean squared error (MSE) of the proposed estimator have
been derived for two different cases. An asymptotic expression for MSE is obtained.
Empirical studies are carried out to illustrate the performance of the constructed
estimator over other estimators.

Keywords Exponential ratio-cum-dual to ratio estimator • Bias • Mean squared
error • Auxiliary information • Double sampling

Introduction

It is well established that the use of auxiliary variable x at the estimation stage
improves the precision of an estimate of the population mean of a character y under
study. When the correlation between study variable y and auxiliary variable x is
highly positive, the classical ratio estimator [1] is considered to be most practicable.
The product estimator of [2] and then by [3] is employed quite effectively in the
case of high negative correlation between study variable y and auxiliary variable
x. Further, if the relation between y and x is a straight line passing through the
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neighbourhood of the origin and the variance of y about this line is proportional to
auxiliary variable x, the ratio estimator is as good as regression estimator.

Let us consider a finite population U D fu1; u2; : : : ; uN g of size N units and the

value of the variables on the ith unit ui .i D 1; 2; : : : ; N /, be (yi, xi). Let Y D
NX
iD1

yi

N

and X D
NX
iD1

xi

N
be the population means of the study variable y and the auxiliary

variable x, respectively.
For estimating the population mean Y of y, a simple random sample of size n

is drawn without replacement from the population U. Reference [4] proposed an
exponential ratio and product estimators, respectively, as

yRe D y exp

 
X � x

X C x

!

and

and yPe D y exp

 
x � X

x CX

!
:

If the population mean X of the auxiliary variable x is not known before start of
the survey, a first-phase sample of size n1 is drawn from the population, on which
only the auxiliary variable x is observed. Then, a second-phase sample of size n is
drawn, on which both study variable y and auxiliary variable x are observed. Let

x1 D
n1X
iD1

xi

n1
denote the sample mean of size n1 based on the first-phase sample and

y D
nX
iD1

yi

n
and x D

nX
iD1

xi

n
denote the sample means of variables y and x, respec-

tively, obtained from the second-phase sample of size n. The double sampling ver-
sion of ratio and product estimators of population mean Y are respectively given by

ydR D y
x1

x
and ydp D y

x

x1
:

Reference [5] suggested an exponential ratio and product estimators for Y in
double sampling as

ydRe D y exp

�
x1 � x
x1 C x

�
and

ydPe D y exp

�
x � x1

x C x1

�
; respectively:
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Let x�d
i D .1C g0/ x1 � g0xi , i D 1; 2; : : : ; N , where g0 D n= .n1 � n/. Then

x�d D .1C g0/ x1 � g0x is an unbiased estimator of X and corr
�
y; x�d

�
D

�ve. Using this transformation, Ref. [6] suggested dual to ratio estimator in double
sampling as

y�d
R D y

x�d

x1
:

Utilizing the transformation x�d
i , the exponential ratio and product estimators

of [5] in double sampling are converted to exponential dual to ratio and product
estimators, respectively, as

y�d
Re D y exp

 
x�d � x1
x�d C x1

!

and y�d
Pe D y exp

 
x1 � x�d

x1 C x�d

!
:

In this paper, we have studied the properties of the class of estimators of the linear
combination of exponential ratio and exponential dual to ratio estimators in double
sampling. Numerical illustrations are given in the support of the present study.

The Proposed Estimator

We suggest the following exponential ratio-cum-exponential dual to ratio estimators
for Y in double sampling as

t D y

(
˛ exp

�
x1 � x

x1 C x

�
C ˇ exp

 
x�d � x1
x�d C x1

!)
(1)

where ˛ and ˇ are unknown constants such that ˛ C ˇ D 1.

Remarks

1. For .˛; ˇ/ D .1; 0/, the estimator t reduces to the ‘exponential ratio estimator in

double sampling’
�
ydRe

�
with its properties.

2. For .˛; ˇ/ D .0; 1/, the estimator t reduces to the ‘exponential dual to ratio

estimator’
�
y�d

Re

�
in double sampling with its properties.
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For the bias and MSE of the proposed estimators, the following two cases are
considered:

Case I: When the second-phase sample of size n is a subsample of the first-phase
sample of size n1

Case II: When the second-phase sample of size n is drawn independently of the
first-phase sample of size n1

Case I: To obtain bias (B) and MSE (M) of the proposed estimator t, we write

e0 D �
y � Y

�
=Y ; e1 D .x �X/=X;

e0
1 D �

x1 �X� =X and

E .e0/ D E .e1/ D E
�
e0
1

� D 0

E
�
e20
� D f C 2

y ; E
�
e21
� D f C 2

x ; E
�
e02
1

�
D f1C

2
x

E .e0e1/ D f C 2
xCyx; E

�
e0e

0
1

� D f1C
2
xCyx;

E
�
e1e

0
1

� D f1C
2
x

9
>>>=
>>>;

(2)

where

f D 1

n
� 1

N
; f1 D 1

n1
� 1

N
; Cy D Sy

Y
; Cx D Sx

X
;

Cyx D �yx
Cy

Cx
; �yx D Syx

SySx

S2y D 1
N�1

NX
iD1

�
yi � Y

�2
; S2x D 1

N�1
NX
iD1

�
xi �X�2 and

Syx D 1
N�1

NX
iD1

�
yi � Y

� �
xi � X

�
:

Expressing t in terms of e’s and retaining terms up to second powers of e’s, we have

�
t � Y � Š Y

	
e0 C 1

2

˚
˛
�
e0
1 � e1 C e0e

0
1 � e0e1

�C� g0 .1 � ˛/

�
e0
1 � e1 C e0e

0
1 � e0e1 C e1e

0
1 � e02

1

�
� 1

4

n
˛
�
e1e

0
1 C e02

1 � e21
�

� g02 .1� ˛/
�
e1e

0
1 � e02

1 � e21

� �
C1

8

�
˛
�
e02
1 C e21

�

C .1 � ˛/ g02
�
e02
1 C e21

� oi
: (3)
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Therefore, the bias of the estimator t can be obtained by using the results of (2) in
(3) as

B.t/I D Y

	
1

8
f � n˛ C g02 .1 � ˛/

o
� 1

4

n
f̨ �� C .1 � ˛/ f g02o

�1
2

n
˛ C .1 � ˛/ g’

o
f2Cyx



C2
x

where f2 D 1
n

� 1
n1

, f � D f C f1; f
�� D f1 � f2.

From (3), we can write

�
t � Y

� Š Y

	
e0 C 1

2

˚
˛
�
e0
1 � e1

�C g0 .1 � ˛/
�
e0
1 � e1

��

(4)

Squaring both the sides of (4), taking expectations of its terms and using the results
of (2), we get the MSE of t to the first-degree approximation as

M.t/I D Y
2
h
f C 2

y C 1

4

˚
˛ C g0 .1 � ˛/

�2
f2C

2
x�

˚
˛ C g0 .1 � ˛/�f2�yxCyCx

i
: (5)

Optimization of (5) with respect to ˛ gives its optimum value as

˛ D 2�yxCy

.1 � g0/ Cx
� g0

1 � g0 D ˛opt:I : (6)

Substituting the value of ˛opt. I from (6) in (5), we get the asymptotic optimum MSE
of t as

opt:M.t/I D Y
2
C 2
y

�
f � f2�

2
yx

�
: (7)

Efficiency Comparisons

Efficiency comparisons of asymptotic optimum MSE of proposed class of estima-
tors t

1. With sample mean per unit estimator y
The MSE of sample mean per unit estimator is given by

M .y/ D Y
2
f C 2

y (8)
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From (7) and (8), it is found that the proposed class of estimators is more efficient
than y, since

M .y/ � opt:M.t/I D Y
2
f2C

2
y �

2
yx > 0:

2. With usual ratio estimator in double sampling
To compare with the usual ratio estimator ydR in double sampling, we write the
MSE of ydR to the first degree of approximation as

M
�
ydR

�
I

D Y
2
�
f C 2

y C f2C
2
x � 2f2�yxCyCx

�
(9)

We note from (7) and (9) that the proposed estimator has smaller MSE than that
of the usual ratio estimator ydR in double sampling, since

M
�
ydR

�
I

� opt:M.t/I D Y
2
f2
�
Cx � �yxCy

�2
> 0:

3. With exponential ratio estimator in double sampling
The MSE of exponential ratio estimator in double sampling to the first degree of
approximation is given as

M
�
ydRe

�
I

D Y
2
�
f C 2

y C 1

4
f2C

2
x � f2�yxCyCx

�
(10)

From (7) and (10), it is found that the proposed estimator is superior to estimator

ydRe, since M
�
ydRe

�
I

� opt:M.t/I D Y
2
f2
�
1
2
Cx � �yxCy

�2
> 0:

4. With dual to ratio estimator in double sampling
The MSE of dual to ratio estimator in double sampling to the first degree of
approximation is given as

M
�
y�d

R

�
I

D Y
2
�
f C 2

y C g02f2C 2
x � 2g0f2�yxCyCx

�
(11)

From (7) and (11), it is obtained that the proposed estimator is better than y�d
R ,

since

M
�
y�d

R

�
I

� opt:M.t/I D Y
2
f2
�
�yxCy � g0Cx

�2
> 0:

5. With exponential dual to ratio estimator in double sampling
The MSE of exponential dual to ratio estimator in double sampling is given by

M
�
y�d

Re

�
I

D Y
2
�
f C 2

y C 1

4
g02f2C 2

x � g0f2�yxCyCx
�
: (12)
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From (7) and (12), it is found that the proposed estimator is more efficient than
y�d

Re , since

M
�
y�d

Re

�
I

� opt:M.t/I D Y
2
f2

�
1

2
g0Cx C �yxCy

�2
> 0:

From the above results, it is found that the proposed class of estimators has shown
better efficiency over others in case of its optimality.

Case II

To obtain bias and MSE of the proposed estimator t, we have

E .e0/ D E .e1/ D E
�
e0
1

� D 0

E
�
e20
� D f C 2

y ; E
�
e21
� D f C 2

x ; E
�
e02
1

�
D f1C

2
x ;

E .e0e1/ D f C 2
xCyx; E

�
e0e

0
1

� D E
�
e1e

0
1

� D 0

9>=
>;
: (13)

Taking expectations in (3) and using the results of (13), we get the approximate bias
of t to the first-degree approximation as

B.t/II D
	
1

8

n
˛ C g02 .1 � ˛/

o
f � � 1

2
f˛ C g0 .1 � ˛/g

f Cyx �1
2
g0 .1 � ˛/ f1 � 1

4

n
g02 .1 � ˛/ f �C2

x � f̨2

o

C2
x :

Squaring both the sides of (4), taking expectations of its terms and using the results
of (13), we get the MSE of t to the first-degree approximation as

M.t/II D Y
2
h
f C 2

y C 1

4

˚
˛ C g0 .1 � ˛/

�2
f �C2

x�
˚
˛ C g0 .1 � ˛/�f�yxCyCx

i
: (14)

Optimizing (14) with respect to ˛, we get its optimum value as

˛ D 2f�yxCy

f � .1 � g0/ Cx
� g0

1 � g0 D ˛opt:II .say/ : (15)

Substituting the value of ˛opt. II from (15) in (14), we get the asymptotic optimum
MSE of t as

opt:M.t/II D Y
2
f C 2

y

 
1 � f�2yx

f �

!
: (16)
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Efficiency Comparisons

Efficiency comparisons of asymptotic optimum MSE of the proposed class of
estimators t

1. With sample mean per unit estimator y
From (8) and (16), it is found that the proposed estimator is more efficient than
y, since

M .y/ � opt:M.t/II D Y
2

�
f Cy�yx

�2
f � > 0:

2. With usual ratio estimator in double sampling
The MSE of ratio estimator in double sampling is given by

M
�
ydR

�
II

D Y
2
�
f C 2

y C f �C2
x � 2f�yxCyCx

�
(17)

From (16) and (17), it is obtained that the proposed estimator is better than y.d/R ,
since

M
�
ydR

�
II

� opt:M.t/II D Y
2

f �
�
f �Cx � f�yxCy

�2
> 0:

3. With exponential ratio estimator in double sampling
The MSE of exponential ratio estimator in double sampling is given by

M
�
ydRe

�
II

D Y
2
�
f C 2

y C 1

4
f �C2

x � f�yxCyCx

�
: (18)

We note from (16) and (18) that the proposed estimator has smaller MSE than
that of ydRe, since

M
�
ydRe

�
II

� opt:M.t/II D Y
2

f �

�
1

2
f �Cx � f�yxCy

�2
> 0:

4. With dual to ratio estimator in double sampling
The MSE of the dual to ratio estimator in double sampling is given by

M
�
y�d

R

�
II

D Y
2
�
f C 2

y C g02f �C2
x � 2g0f�yxCyCx

�
: (19)
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From (16) and (19), we have

M
�
y�d

R

�
II

� opt:M.t/II D Y
2

f �
�
g0f �Cx � f�yxCy

�2
> 0:

5. With exponential dual to ratio estimator in double sampling
The MSE of the exponential dual to ratio estimator in double sampling is given by

M
�
y�d

Re

�
II

D Y
2
�
f C 2

y C 1

4
g02f �C2

x � g0f�yxCyCx
�
: (20)

From (16) and (20), we found that the estimator t is more efficient than y�d
Re , since

M
�
y�d

Re

�
II

� opt:M.t/II D Y
2

f �

�
1

2
g0f �Cx � f�yxCy

�2
> 0:

From the above results, it is found that the proposed class of estimators has shown
better efficiency over others in case of its optimality.

Empirical Study

To examine the merits of the proposed estimator, we have considered four natural
populations data sets. The descriptions of the populations are given below:

Population I: Source: ([7], p. 228)
X: Fixed capital, Y: Output, N D 80, n D 10, n1 D 30, Y D 5182:64, �yx D

0:9413, CY D 0:3542, CX D 0:7507

Population II: Source: ([7], p. 228)
X: Number of workers, Y: Output, N D 80, n D 10, n1 D 30, Y D 5182:64,

�yx D 0:9150, CY D 0:3542, CX D 0:9484

Population III: Source: [8]
X: Number of agricultural labourers for 1961, Y: Number of agricultural

labourers for 1971, N D 278, n D 30, n1 D 70, Y D 39:0680, �yx D 0:7213,
CY D 1:4451, CX D 1:6198

Population IV: Source: ([6], p. 324)
X: Population of village, Y: Number of cultivators in the village, N D 487,

n D 20, n1 D 95, Y D 449:846, �yx D 0:881815, Cy D 0:8871, CX D 0:7696

To observe the relative performance of different estimators of Y , we have com-
puted the percentage relative efficiencies of the proposed estimator t, conventional
ratio, dual to ratio, exponential ratio and exponential dual to ratio estimators in
double sampling and sample mean per unit estimator y with respect to usual
unbiased estimator y. The findings are presented in Tables 1 and 2.
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Table 1 Percentage relative efficiencies of different estimators w.r.t. y for
Case I

Estimators y ydR y�d
R ydRe y�d

Re t

Population I 100.00 72:36 297.97 297.97 220.31 307.77
Population II 100.00 36:64 200.42 200.42 245.05 276.16
Population III 100.00 130:04 147.96 146.35 137.98 149.98
Population IV 100.00 277:79 141.21 190.45 118.62 277.92

Table 2 Percentage relative efficiencies of different estimators w.r.t. y for
Case II

Estimators y ydR y�d
R ydRe y�d

Re t

Population I 100.00 38:89 252.94 252.89 285.64 351.68
Population II 100.00 20:09 130.02 130.02 303.23 308.85
Population III 100.00 91:66 133.69 161.68 157.77 162.00
Population IV 100.00 281:21 152.68 219.11 123.19 294.83

Conclusions

From Tables 1 and 2, it is evident that the proposed estimator t is more efficient
than all other estimators considered in this paper. Thus, the uses of the proposed
estimators are preferable over other estimators.
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Analysis of Performance of Indices for Indian
Mutual Funds

Rahul Ritesh

Abstract The objective of the study is to analyze performance of the equity
diversified mutual fund on the basis of risk-adjusted return over the last 3 years.
Future predictions have been made based on this obtained data, which is then
matched with the actual values of average return and the return by the buy-and-hold
strategy of the investor over the next 1, 2, and 3 years using regression techniques. To
get better results, we use bootstrapping and then check the results again. The indices
used are Sharpe ratio, Treynor ratio, coefficient of variation, and information ratio,
with RBI treasury bill rate as the risk-free rate. The results obtained indicate that
most of the indices do not work well in Indian markets, and so there is a need to
change the formulae to suit our needs.

Keywords Indian mutual funds • Sharpe ratio • Treynor ratio • Risk-adjusted
return • Performance of mutual fund indices • Information ratio

Introduction

Mutual fund is one of the greatest innovations seen in modern financial markets
serving the interest of the investors, both with huge and small investment. The
introduction of theory of portfolio management by Harry Markowitz in 1952 has
revolutionized the concept of managing portfolio of securities including stocks and
bonds which has continuously seen an improvement of the fund market and has
yielded higher returns than its benchmark. The concept of eliminating unsystematic
risk by diversifying portfolio by way of inclusion of negatively correlated securities
has gained ground and resulted in beating the market portfolio.

In India, the first mutual fund was introduced in the year 1963 when the Unit
Trust of India was formed as a joint initiative of Government of India and Reserve
Bank of India. Subsequently the entry of private sector in the industry and the
introduction of more comprehensive regulation by Securities and Exchange Board
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of India in 1996 paved the way for the proper development of the industry. The
Indian mutual fund has given a spectacular return in the recent years which had
fascinated the interest of many investors. Following the entry of foreign players, the
market was flooded with a variety of schemes, and also the increasing investor’s
awareness about this financial instrument has definitely given a great threat to the
growth of this industry.

With so many funds in the market, it has become very essential to identify the
truly worthy ones for measuring the performance of these funds, and to realize their
strategy to form a higher earning portfolio, a lot of theories have been developed, and
many significant researches have been carried out in different parts of the world. But
over the time, it has been modified by including other factors such as skewness and
kurtosis, and many other ratios such as information, appraisal, Sortino, and Omega-
Sharpe have been evolved during the time based on the similar idea of risk-adjusted
return and taking the beta of the portfolio into account.

Ironically, the glorious past performance of any fund house does not give us a
guarantee for higher returns in the future. It is very evident that during the boom
phase, everyone goes up and makes huge profit, but the real testament of their
managerial capability can be observed during the bear market. Future prediction of
the fund performance is very difficult, but some researchers believe that Treynor
ratio gives a better reflection of the future performance of any fund but not a
guarantee whatsoever. So analysts all over the world calculate all kinds of popular
ratios, and some of them such as Morningstar, Lipper, and Value Research have even
developed their own ratios, and it is over the investor to choose the one which suits
them the best.

Literature Reviews

• Carhart [1], Grinblatt and Titman [2], and Stutzer [3], among others, provided
evidence that confirmed the predictability of future performance by past perfor-
mance, i.e., returns persists.

• Elton et al. [4] reported that the past carries the information about the future
performance of the funds, and they highlighted that both the 1- and 3-year alphas
convey the future information.

• Treynor and Majuy [5], on the contrary, observed that the fund managers who can
beat the benchmark for the long run surprisingly still have significant probability
of underperforming (extending to a long period of time).

• A sample of 50 Indian mutual funds was analyzed over 26 months by Bhat-
tacharjee and Roy [6]. They found that in short term, the mutual funds were able
to generate above normal return.

• Deb et al. [7] observed that, on an average, fund managers have not been able to
beat their style benchmark.
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Data and Methodologies

The data used in this study cover the period from April 1994 to April 2012 which
also cover the different bull and bear phase of the Indian capital market. The monthly
closing net asset value (NAV) data of 242 equity diversified mutual funds have been
collected from the website of AMFI (Association of Mutual Funds in India) and also
from the smctradeonline.com. For the final analysis, only 169 mutual funds have
been taken into account for which the data was available for at least 72 months, i.e.,
the funds which was launched on or before March 2008. The risk-adjusted return
for each fund has been calculated against its respective benchmark and the monthly
closing price data of each index is collected from the websites of BSE (Bombay
Stock Exchange) and NSE (National Stock Exchange). The risk-free rate of return
has been taken as the return on the treasury bills. The monthly data is available on
the website of RBI (Reserve Bank of India) under the Database of Indian Economy.

We now define a few variables that have been used in our calculations:

Net Asset Value

NAV is a mutual fund’s price per share. It is also used for defining exchange-traded
fund’s share price. In both cases, the per share amount of the fund is calculated
by dividing the total value of all the securities in its portfolio, less any liabilities,
divided by the number of fund shares outstanding. In the context of mutual funds,
NAV per share is computed once a day based on the closing market prices of the
securities in the fund’s portfolio. All mutual funds’ buy and sell orders are processed
at the NAV of the trade date. However, investors must wait until the following
day to get the trade price. Mutual funds pay out virtually all of their income and
capital gains. As a result, changes in NAV are not the best gauge of mutual fund
performance, which is best measured by annual total return.

Calculation of Returns

The monthly return of each fund has been calculated from the monthly closing NAV
by using the following formula:

Rt D NAVtC1 �NAVt
NAVt

where Rt D return of asset over month t
NAVtC1 D closing NAV of the month t C 1
NAVt D closing NAV of the month t
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Similarly, the monthly return of all the indices has been calculated using the
following formula:

RBt D PtC1 � Pt

Pt

RBt D return of benchmark over the month t
PtC1 D closing price of month t C 1
Pt D closing price of month t

Also the annualized return of the treasury bill has been converted into the
monthly return for the further calculation of the risk-adjusted return.

Indices for Calculating Mutual Fund Performance

Using the monthly returns of each mutual fund, the following ratios are calculated
for the purpose of evaluating risk-adjusted performance:

1. Sharpe ratio
The most commonly used measure of risk-adjusted performance is the Sharpe
ratio [8] which measures the fund’s excess return per unit of its risk. It can be
expressed as following:

E
�
Rp � Rf

�

�
D E

�
Rp �Rf

�
q
var

�
Rp �Rf

�

where Rp D return of the portfolio
Rf D risk-free rate of return
� D standard deviation of the excess portfolio return

This ratio is based on the trade-off between risk and return. A high Sharpe
ratio means that the fund delivers a huge return for its level of volatility.
It also allows a direct comparison of the risk-adjusted performance of any
two mutual funds, regardless of their volatilities and their correlation with the
benchmark. The principal advantage of this ratio is that it is directly computable
from any observed series of the returns without need for additional information
surrounding the source of return.

2. Treynor ratio
We know that security market line represents the expected total return of every
security or portfolio i as a linear function of the return of the market portfolio m:

Ei D Rf C ˇi
�
Em � Rf

�
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where Ei D E ŒRi  is the unconditional continuous expected return of the
portfolio i, Rf denotes the continuous expected return on the risk-free security,
and ˇi D cov .Ri ; Rm/ is the beta of the portfolio i.

This equilibrium relation corresponds to the market model rit D ˛i Cˇirm C
�it , where ri D Ri �Rf denotes the excess return on the portfolio i.

The Treynor ratio is the ratio of Jensen’s alpha over the stock beta and can be
expressed as following:

TR D ˛

ˇ

3. Information ratio
The information ratio [9] is a measure of the risk-adjusted return of a financial
security (or asset or portfolio). It is also known as appraisal ratio and is defined
as expected active return divided by tracking error, where active return is
the difference between the return of the security and the return of a selected
benchmark index, and tracking error is the standard deviation of the active return.
It can be expressed as following:

IR D ˛

� .�/

4. Coefficient of variation
In probability theory and statistics, the coefficient of variation (CV) is a
normalized measure of dispersion of a probability distribution. It is also known
as unitized risk or the variation coefficient. The absolute value of the CV is
sometimes known as relative standard deviation (RSD), which is expressed as
a percentage. It is defined as the difference of the return of the portfolio per
unit risk of the portfolio and the return of the respective benchmark per unit the
market risk.

Rp

�p
� Rb

�b

where Rp D return of the portfolio
Rb D return of the benchmark
�p D standard deviation of the return of portfolio
�b D standard deviation of the return of benchmark

Initial Observations

The performance measures such as Sharpe, IR, Treynor, and CV for each scheme
have been calculated using the data of the past 36 months, and this is rolled up to
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March 2008. The future performance measures were computed for the next 1, 2, and
3 years using the following indicators:

1. Rp �Rf
2. Rp �Rb
3. Buy � and � hold return over i ts benchmark

All the mutual funds of the same type were taken together and regressed for a
period of 36 months. The ratios, then obtained, were matched with the next 1-, 2-,
and 3-year data to see the effectiveness of the indices by using regression method.
The results obtained have been described using the following factors:

1. p-value: The p-value or calculated probability is the estimated probability of
rejecting the null hypothesis of a study question when that hypothesis is true.

The null hypothesis is usually a hypothesis of “no difference,” e.g., no
difference between blood pressures in group A and group B.

We refer to statistically significant as p < 0:05, i.e., less than five in a hundred
chance of being wrong. A regression which has a p-value more than 0.05 is
considered to be nonsignificant for our evaluation.

2. R2: The coefficient of determination, R2, is used in the context of statistical
models whose main purpose is the prediction of future outcomes on the basis
of other related information. R2 is most often seen as a number between 0 and
1.0, used to describe how well a regression line fits a set of data. An R2 near 1.0
indicates that a regression line fits the data well, while an R2 closer to 0 indicates
a regression line does not fit the data very well. It is the proportion of variability
in a dataset that is accounted for by the statistical model.

3. F-statistic: An F-test is any statistical test in which the test statistic has a
continuous probability distribution under the null hypothesis. It is most often
used when comparing statistical models that have been fitted to a dataset, in
order to identify the model that best fits the population from which the data were
sampled. The data obtained from the F-test is taken as F-statistic. In our case,
we have taken the F-statistic to be the p-value.

Classification of Mutual Funds

We have classified the observed mutual funds into the following three categories:

1. Indian Joint Venture AMCs: These include mutual funds like Birla Sun Life Asset
Management Co. Ltd., DSP Merrill Lynch Fund Managers Limited, and HDFC
Asset Management Company Ltd.

2. Private Indian AMCs: These are mutual funds floated by private Indian com-
panies. These include MFs like Cholamandalam Asset Management Co. Ltd.,
Kotak Mahindra Asset Management Co. Ltd., Reliance Capital Asset Manage-
ment Ltd., Sahara Asset Management Co. Pvt. Ltd., and Tata Asset Management
Private Ltd.
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Table 1 Performance of Sharpe ratio

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y �ve �ve �ve
Rp � Rf Fut_2Y �ve �ve �ve
Rp � Rf Fut_3Y �ve �ve �ve
Rp � Rm Fut_1Y Cve Cve Cve
Rp � Rm Fut_2Y �ve �ve �ve
Rp � Rm Fut_3Y �ve �ve �ve
BAHR Fut_1Y �ve �ve �ve
BAHR Fut_2Y �ve �ve �ve
BAHR Fut_3Y �ve �ve �ve

Table 2 Performance of information ratio

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y �ve �ve �ve
Rp � Rf Fut_2Y �ve �ve �ve
Rp � Rf Fut_3Y �ve �ve �ve
Rp � Rm Fut_1Y Cve Cve Cve
Rp � Rm Fut_2Y �ve �ve F_NS
Rp � Rm Fut_3Y �ve �ve �ve
BAHR Fut_1Y �ve �ve �ve
BAHR Fut_2Y �ve �ve �ve
BAHR Fut_3Y �ve �ve �ve

3. Foreign AMCs: These are mutual funds floated by companies which have a
major stake held by the foreign investors. A few of them are ABN AMRO
Asset Management (I) Ltd., HSBC Asset Management (India) Private Ltd.,
ING Investment Management (India) Pvt. Ltd., and Morgan Stanley Investment
Management Pvt. Ltd.

The calculations have been done for the above three categories separately. In case
the F-statistic for a certain class of mutual funds is greater than 5 %, we take it as
nonsignificant, which is represented in the following Tables 1, 2, 3, and 4 as F_NS.
Also, Cve and –ve signifies that the correlation is positive and negative, respectively,
with p-value being less than 0.05.

Summary of Observations

Since there are a lot of nonsignificant results, we now try to reanalyze the data after
using bootstrapping.
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Table 3 Performance of Treynor ratio

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y F_NS F_NS F_NS
Rp � Rf Fut_2Y F_NS F_NS F_NS
Rp � Rf Fut_3Y F_NS F_NS F_NS
Rp � Rm Fut_1Y F_NS F_NS F_NS
Rp � Rm Fut_2Y F_NS F_NS F_NS
Rp � Rm Fut_3Y F_NS F_NS F_NS
BAHR Fut_1Y F_NS F_NS F_NS
BAHR Fut_2Y F_NS F_NS F_NS
BAHR Fut_3Y F_NS F_NS F_NS

Table 4 Performance of coefficient of variation

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y Cve F_NS Cve
Rp � Rf Fut_2Y Cve F_NS Cve
Rp � Rf Fut_3Y Cve Cve Cve
Rp � Rm Fut_1Y Cve F_NS Cve
Rp � Rm Fut_2Y Cve F_NS Cve
Rp � Rm Fut_3Y Cve F_NS Cve
BAHR Fut_1Y Cve F_NS Cve
BAHR Fut_2Y Cve F_NS F_NS
BAHR Fut_3Y Cve F_NS Cve

Bootstrapping of Samples

Bootstrapping is the practice of estimating properties of an estimator (such as its
variance) by measuring those properties when sampling from an approximating
distribution. One standard choice for an approximating distribution is the empirical
distribution of the observed data. In the case where a set of observations can be
assumed to be from an independent and identically distributed population, this can
be implemented by constructing a number of resamples of the observed dataset (and
of equal size to the observed dataset), each of which is obtained by random sampling
with replacement from the original dataset.

It may also be used for constructing hypothesis tests. It is often used as an alter-
native to inference based on parametric assumptions when those assumptions are
in doubt or where parametric inference is impossible or requires very complicated
formulae for the calculation of standard errors.
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Confidence Intervals

There are different types of bootstrap confidence intervals available in the literature.
We have implemented only two types:

1. Bootstrap-t confidence interval: We can construct a .1 � ˛/% confidence inter-

val as
h
X � t a

2

sp
n
; X C t a

2

sp
n

i
when Xis are i.i.d. sample from N

�
�; �2

�
. But

the problem will occur if we are not sampling from normal distribution, but rather
some other distribution. In that case, the following bootstrap confidence interval
can be constructed: Let Xboot; b and sboot, b be the sample mean and standard
deviation of the bth resample, b D 1; : : : ; B . Define

tboot;b D X � Xboot;b
sboot;bp

n

:

Notice that tboot,b is defined in the same way as t except for two changes: first,
X and s in t are replaced by Xboot;b and sboot,b, and second, � in t is replaced
by X in tboot,b. The last point is a bit subtle, and you should stop to think about
it. A resample is taken using the original sample as the population. Thus, for the
resample, the population mean is XŠ.

Because the resamples are independent of each other, the collection tboot,1,
tboot,2, : : : can be treated as a random sample from the distribution of the t-
statistic. After B values of tboot,b have been calculated, one from each resample,
we find the 100 .1 � ˛/ and 100

�
1 � ˛

2

�
percentiles of this collection of tboot,b

values. Call these percentiles tL and tU . More specifically, we find tU and tL as
we described earlier. We sort all the B values from smallest to largest. Then we
calculate the B ˛

2
and round to the nearest integer. Suppose the result is KL. Then

the KLth sorted value of tboot,b is tL. Similarly, let KU be B
�
1� ˛

2

�
rounded to the

nearest integer and then tU is the KU th sorted value of tboot,b. Finally we can make

the bootstrap confidence interval for � as
h
X C tL

sp
n
; X C tU

sp
n

i
. We get two

advantages through bootstrap:

• We do not need to know the population distribution.
• We do not need to calculate the distribution of t-statistic using probability

theory.

2. Bootstrap percentile confidence interval: The percentile bootstrap proceeds in a
similar way to the basic bootstrap, using percentiles of the bootstrap distribution,
but with a different formula:

�
��
.˛/I ��

.1�˛/
�

where ��
.1�˛/ denotes the .1� ˛/ percentile of the bootstrapped coefficient �*.
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Advantages and Disadvantages of Bootstrapping

• Advantages: A great advantage of bootstrap is its simplicity. It is a straightfor-
ward way to derive estimates of standard errors and confidence intervals for
complex estimators of complex parameters of the distribution, such as percentile
points, proportions, odds ratio, and correlation coefficients. Moreover, it is an
appropriate way to control and check the stability of the results.

• Disadvantages: Although bootstrapping is (under some conditions) asymptoti-
cally consistent, it does not provide general finite-sample guarantees. Further-
more, it has a tendency to be overly optimistic. The apparent simplicity may
conceal the fact that important assumptions are being made when undertaking the
bootstrap analysis (e.g., independence of samples) where these would be more
formally stated in other approaches.

Other Important Variables

1. Skewness: It is a measure of the asymmetry of the probability distribution of a
real-valued random variable. The skewness value can be positive or negative or
even undefined. Qualitatively, a negative skew indicates that the tail on the left
side of the probability density function is longer than the right side, and the bulk
of the values (including the median) lie to the right of the mean. A positive skew
indicates that the tail on the right side is longer than the left side, and the bulk
of the values lie to the left of the mean. A zero value indicates that the values
are relatively evenly distributed on both sides of the mean, typically (but not
necessarily) implying a symmetric distribution.

2. Kurtosis: It is a measure of the “peakedness” of the probability distribution of
a real-valued random variable. In a similar way to the concept of skewness,
kurtosis is a descriptor of the shape of a probability distribution, and, just as for
skewness, there are different ways of quantifying it for a theoretical distribution
and corresponding ways of estimating it from a sample from a population.

3. Fat-tailed distribution: A fat-tailed distribution is a probability distribution that
has the property, along with the heavy-tailed distributions, that exhibits extremely
large skewness or kurtosis. This comparison is often made relative to the
ubiquitous normal distribution, which itself is an example of an exceptionally
thin tail distribution, or to the exponential distribution.

4. Quantiles: Quantiles are points taken at regular intervals from the cumulative
distribution function (CDF) of a random variable. Dividing ordered data into
q essentially equal-sized data subsets is the motivation for q-quantiles; the
quantiles are the data values marking the boundaries between consecutive
subsets. Put another way, the kth q-quantile for a random variable is the value
x such that the probability that the random variable will be less than x is at most
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k
.

q and the probability that the random variable will be more than x is at most
q�k

q D 1� k
q . There are q � 1 of the q-quantiles, one for each integer k satisfying

0 < k < q.

Results

We sample the data using bootstrap and then take the 95 % confidence interval of the
result. Once this is done, the results are then calculated using the methods explained
before. The results are calculated separately for all the mutual funds, both separately
and category wise.

We provide the following Tables 5, 6, 7, and 8 to summarize the results:
On comparing the results obtained with the one without bootstrapping, we see

that the results have shown a slight improvement on bootstrapping. This is because
the extreme aberrations have been removed by taking only the 95 % confidence
interval. However, the change in the dataset is very minimal to reflect any significant
change in the results. In a few cases dealing with the Indian Private Venture AMCs,

Table 5 Performance of Sharpe ratio with bootstrapped data

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y �ve �ve �ve
Rp � Rf Fut_2Y �ve �ve �ve
Rp � Rf Fut_3Y �ve �ve �ve
Rp � Rm Fut_1Y Cve Cve Cve
Rp � Rm Fut_2Y �ve �ve �ve
Rp � Rm Fut_3Y �ve �ve �ve
BAHR Fut_1Y �ve �ve �ve
BAHR Fut_2Y �ve �ve �ve
BAHR Fut_3Y �ve �ve �ve

Table 6 Performance of information ratio with bootstrapped data

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y �ve �ve �ve
Rp � Rf Fut_2Y �ve �ve �ve
Rp � Rf Fut_3Y �ve �ve �ve
Rp � Rm Fut_1Y Cve Cve Cve
Rp � Rm Fut_2Y �ve �ve F_NS
Rp � Rm Fut_3Y �ve �ve �ve
BAHR Fut_1Y �ve �ve �ve
BAHR Fut_2Y �ve �ve �ve
BAHR Fut_3Y �ve �ve �ve
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Table 7 Performance of Treynor ratio with bootstrapped data

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y F_NS F_NS Cve
Rp � Rf Fut_2Y F_NS F_NS Cve
Rp � Rf Fut_3Y F_NS F_NS Cve
Rp � Rm Fut_1Y F_NS F_NS Cve
Rp � Rm Fut_2Y F_NS F_NS Cve
Rp � Rm Fut_3Y F_NS F_NS Cve
BAHR Fut_1Y F_NS F_NS F_NS
BAHR Fut_2Y F_NS F_NS F_NS
BAHR Fut_3Y F_NS F_NS Cve

Table 8 Performance of coefficient of variation with bootstrapped
data

Private Indian Indian JV Foreign AMC

Rp � Rf Fut_1Y Cve F_NS Cve
Rp � Rf Fut_2Y Cve F_NS Cve
Rp � Rf Fut_3Y Cve Cve F_NS
Rp � Rm Fut_1Y Cve F_NS F_NS
Rp � Rm Fut_2Y Cve F_NS F_NS
Rp � Rm Fut_3Y Cve F_NS Cve
BAHR Fut_1Y Cve F_NS Cve
BAHR Fut_2Y Cve F_NS F_NS
BAHR Fut_3Y Cve F_NS Cve

we see a fat-tailed distribution, signifying that the returns are not very close to each
other and have a significant deviation from the mean.

Also, it can be seen that the Treynor ratio, which was giving nonsignificant results
for all the MFs, is now giving some significant results for the Foreign AMCs. The
results obtained in our case are in sharp contrast with the popular belief that Treynor
ratio is one of the best estimators available.

As per Rao, who evaluated the performance of Indian mutual funds in bear
market through return performance index, risk-return analysis, Treynor ratio, Sharpe
ratio, Sharpe measure, Jensen measure, and Fama measure, the medium-term debt
funds performed extremely well during that period while InfoTech equity funds
suffered the most. Some fund managers were able to diversify the risk and maximize
the return, and even few managed to give returns greater than the risk-free return
during bear market, but the debt funds were the ultimate winners.

Deb, Banerjee, and Chakrabarti, in 2007, found very little evidence of market
timing skill of fund managers though their stock selection ability was decent enough
to produce good returns from the market.
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Conclusion

This study of the persistence of mutual funds in India was aimed at providing an
insight to the ways in which the return of a mutual fund can be properly evaluated.
A study of this kind is important because of lack of extensive studies for the Indian
market. Most of the devised indices have been developed mostly for foreign markets,
and hence it is of more importance to see if the Indian markets follow a similar trend.

In order to accomplish our aim, we take up the most prominent indices, viz.,
Treynor ratio, Sharpe ratio, coefficient of variation, and information ratio. These are
applied to the data obtained for the mutual funds in India and then fitted accordingly.
The positive/negative correlation is then measured along with the F-statistic and R2

data in order to measure the accuracy of the results obtained. While the results are
satisfactory for some of the indices, the same obtained for Treynor ratio is very
deviating, for it does not at all fit in the Indian context.

Moreover, as expected, the bootstrapped data provides more accurate results,
thereby keeping the dataset much closer to the actual one. However, with the results
varying a great deal for almost all the indices, there needs to be made an adjustment
to all the formulae used for them to be applied to the Indian markets.
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Counting Regular Expressions in Degenerated
Sequences Through Lazy Markov Chain
Embedding

G. Nuel and V. Delos

Abstract Nowadays, Next- Generation Sequencing (NGS) produces huge number
of reads which are combined using multiple alignment techniques to produce
sequences. During this process, many sequencing errors are corrected, but the
resulting sequences nevertheless contain a marginal level of uncertainty in the form
of 
0:1% or less of degenerated positions (like the letter “N” corresponding to any
nucleotide).

A previous work Nuel (Pattern Recognition in Bioinformatics. Springer, New
York, 2009) showed that these degenerated letters might lead to erroneous counts
when performing pattern matching on these sequences. An algorithm based on
Deterministic Finite Automata (DFA) and Markov Chain Embedding (MCE) was
suggested to deal with this problem.

In this paper, we introduce a new version of this algorithm which uses Nonde-
terministic Finite Automata (NFA) rather than DFA to perform what we call “lazy
MCE.”. This new approach proves itself much faster than the previous one and we
illustrate its usefulness on two NGS datasets and a selection of regular expressions.

A software implementing this algorithm is available:countmotif, http://www.
math-info.univ-paris5.fr/~delosvin/index.php?choix=4.
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Introduction

Over the last decade, sequencing technologies have made constant progress both in
term of throughput and reduced costs. Nowadays, Next -Generation Sequencing
(NGS) techniques produce huge amount of data, usually in the form of a large
number of short reads with a high error rate (e.g.,x: 
1%, see [2]). Using
redundancy of the reads and highly computational algorithms, one can produce from
these datasets longer sequenced fragments with much lower error rate [8]. However,
even after such a correction, it is not unusual that a low proportion of positions
remain only partially determined (i.e., degenerated).

The IUPAC alphabet (see Table 1) is especially designed to represent these
degenerated position in DNA (or RNA) sequences. We can see in Fig. 1 an
example of a sequence which contains numerous of such degenerated positions.
When processing sequences though analysis, it is convenient to simply ignore these
degenerated position. But such an approach, might have unexpected consequence
depending on the analysis performed. For example, if we consider the problem of
matching the regular expression GŒAGT in sSequence W36091, we can see that

Table 1 IUPAC alphabet [4] Symbol Meaning

A Adenine

C Cytosine

G Guanine

T Thymine

R Purine (A or G)

Y Pyrimidine (C or T)

M C or A

K T or G

W T or A

S C or G

B Not A

D Not C

H Not G

V Not G, not U

N Any base

>W36091

GAATTCTACTGCATCTTGCCAAGGTATTATGCCTCCNATTCCAATA

ATCGGAATRTCTAGNTNTNAAGCCAGATYAGRTACAGGACTAAGTG

CTASTGGNATAGNCCCTGGGTCANAGNATCBCCCAAGATNATNCCT

GANGA

Fig. 1 EMBL sequence W36091. Degenerated positions are highlighted with a grey background,;
possible matching positions of G[AG]T are underlined
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we have a total of 4 matching positions on non degenerated letters, and possible 8
additional matching positions on one or more degenerated letters. As a consequence,
the count of GŒAGT ranges from 4 to 12 in W36091.

In Nuel [7], we previously suggested to deal with this problem using Determin-
istic Finite Automata (DFA) and Markov Chain Embedding (MCE). The method
proved itself to be reliable but quite tedious to put in practice, especially when
working with highly complex regular expressions which corresponding DFA have
a large amount of states (ex.g.,: 10;000 or more). This problem is well known in
the context of pattern matching where Nondeterministic Finite Automata (NFA) are
always preferred to DFA for dealing with regular expression [3].

In this paper, we want to take advantage of an NFA to introduce a new lazy MCE
approach able to deal with pattern matching over degenerated sequences in a much
more efficient way than the MCE of [7].

The paper is organized as follows: in section “Pattern Matching, NFA, and Lazy
Determinization,” we briefly recall some element of the pattern matching theory and
describe in details NFA and lazy NFA pattern matching algorithms; in section “Lazy
Markov Chain Embedding,” we first recall the principle of MCE using DFA before
to introducinge our new algorithm; in section “Illustration on NGS Data,” we
illustrate the usefulness of our algorithm on two NGS dataset, before to concludinge
in section “Conclusions.”.

Pattern Matching, NFA, and Lazy Determinization

In this section, we briefly recall some well- known elements of the pattern matching
theory. For more detail, please consult a reference textbook like [3].

Pattern Matching

Let us consider a regular expression R over the finite alphabet †. The purpose
of pattern matching is to find (or count) all matching positions of R in a text
X1Wn 2 †n. More formally, it means that we want to determine the set I.R;X1Wn/ D
f1 6 i 6 n;X1Wi 2 †�Rg where � denotes the Kleene’s closure operator. The
number N.R;X1Wn/ of matching occurrences is hence defined as the cardinal of
I.R;X1Wn/ or simply as

N.R;X1Wn/ D
nX
iD1

1X1Wi2†�R (1)

where 1 denotes the indicator function.
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NFA

In order to perform pattern matching of regular expressionR, the classical approach
consists first in building a Nondeterministic Finite Automaton (NFA) corresponding
to R, i.e., which recognizes the regular language †�R. Let .†;Q;S;F ; ı/ being
such an NFA where Q is the finite state space, S � Q the (non empty) set of starting
states, F � Q the (non empty) set of final states, and ı W Q � † ! P.Q/ (set of
parts of Q) being the transition function. A finite sequence X1Wn 2 †n is recognized
by the NFA if and only if thereit exists a sequence q0; q1; : : : ; qn 2 Q such as the
following: i) q0 2 S; ii) qn 2 F ; and iii) for all 1 6 i 6 n, qi 2 ı.qi�1; Xi /.

We know from the classical pattern matching theory that for any regular
expression R, it exists an NFA which recognizes exactly †�R. The Glushkov
algorithm provides a way to build such an NFA from any regular expression. Please
note that finding the smallest possible NFA having this property is an NP-hard
problem in general, but that efficient reduction heuristics are available [1]. For
example, we can see on Fig. 2 an NFA corresponding to our toy-example regular
expression GŒAGT over the DNA alphabet† D fA;C;G;Tg.

Once an NFA corresponding to R is available, all matching positions can be
reported using Algorithm 1.

Algorithm 1 NFA matching algorithm of regular expression R
Input: .†;Q;S;F ; ı/ a NFA that recognizes †�R, and a sequence X D X1Wn
matchCount D 0

setOfStates D S
for i D 1 : : : n do

update setOfStates D ı.setOfStates; Xi /
if setOfStates \ F ¤ ; then

report matching position i
matchCount D matchCount C 1

end if
end for

Output: all matching positions and number matchCount of occurrences.

Fig. 2 NFA corresponding to the regular expression GŒAGT over the DNA alphabet † D
fA;C;G;Tg. Q D f0; 1; 2; 3g, S D f0g, F D f3g, ı.0;A/ D f0; 1g, ı.0;C/ D ı.0;G/ D
ı.0;T/f0g, ı.1;A/ D ı.1;G/ D 2, ı.2;T/ D 3
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Algorithm 2 Lazy determinization NFA matching algorithm of regular expres-
sion R
Input: .†;Q;S;F ; ı/ a NFA that recognizes †�R, a sequence X D X1Wn, and a lookup table L
matchCount D 0

setOfStates D S
for i D 1 : : : n do

if .setOfStates; Xi / 2 L then
setOfStates D L.setOfStates; Xi /

else
compute setOfStates D ı.setOfStates; x/ and store it in L

end if
if size.L/ > maxSize then

flush L
end if
if setOfStates \ F ¤ ; then

report matching position i
matchCount D matchCount C 1

end if
end for

Output: all matching positions and number matchCount of occurrences.

Lazy Determinization

Using our NFA matching algorithm, we have a complexity of O.jQj � n/ for
matching a regular expression which NFA has jQj in a sequence of size n. This can
be slow when considering large NFA (i.e., complex regular expression). The term
jQj in the complexity is due to the necessary computation at each position in X of
ı.U ; a/ for a set U � Q and a 2 †.

A very natural idea hence consists in keeping previously computed ı.U ; a/ in a
lookup table and usinge it to speed up computation. Since the size of this lookup
table could be 2jQj � j†j in the worst case, the table is usually limited to a fixed size
and flushed each time the limit size is reached. This results in Algorithm 2 which
allows, for a modest additional memory cost, to achieve a complexity close to O.n/
for solving the pattern matching problem.

If we consider the problem of matching the regular expression R D GŒAGT
on the sequence X D AGGATGGGC, we start with setOfStates D f0g and
we get:

• setOfStates D ı.f0g; X1 D A/ D f0g D L.f0g;A/;
• setOfStates D ı.f0g; X2 D G/ D f0; 1g D L.f0g;G/;
• setOfStates D ı.f0; 1g; X3 D G/ D f0; 1; 2g D L.f0; 1g;G/;
• setOfStates D ı.f0; 1; 2g; X4 D A/ D f0; 3g D L.f0; 1; 2g;A/
• setOfStates D ı.f0; 3g; X5 D T/ D f0g D L.f0; 3g;T/
• setOfStates D L.f0g; X6 D G/ D f0; 1g (in lookup table);
• setOfStates D L.f0; 1g; X7 D G/ D f0; 1; 2g (in lookup table);
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Table 2 NFA and (minimal) DFA size for several DNA regular expressions (using IUPAC
alphabet) and their corresponding counts in NGS datasets

Regular expression NFA size DFA size DRR000019 DRR000020

GRT 4 5 88;645 3;876;732

GCTA 5 5 5;289 242;512

TTNGT 6 8 8;394 339;485

GCTANf5;10gTTNGT 30 251 114 4;936

GCTANf10;15gTTNGT 35 1;256 94 4;328

GCTANf15;20gTTNGT 40 6;289 65 2;749

GCTANf20;25gTTNGT 45 31;505 62 2;965

GCTANf25;30gTTNGT 50 157;836 72 2;893

GRTNf5;10gGCTANf5;10gTTNGT 53 1;608 16 615

GRTNf10;15gGCTANf10;15gTTNGT 63 17;848 15 714

GRTNf15;20gGCTANf15;20gTTNGT 73 198;002 3 303

• setOfStates D ı.f0; 1; 2g; X8 D G/ D f0; 1; 2g D L.f0; 1; 2g;G/;
• setOfStates D ı.f0; 1; 2g; X9 D T/ D f0g D L.f0; 1; 2g;T/.
At the end of the algorithm, we have a total of matchCount D 1matching position
(position i D 4), the lookup table contains a total of 7 computed transitions, and
saved 2 transition computations (for i D 6 and i D 7) by using the lookup table.
Of course, the longer the considered sequence, the better gain from using a lookup
table.

In Table 2, we can see the number of matching positions (ignoring all degenerated
letters in the sequences) for various regular expression in two NGS datasets
(see section “Illustration on NGS Data” for more details on these datasets). All
these computations took a total of 0:5 s for DRR000019 (2:8 Mb) and 15 s for
DRR000019 (124:9 Mb) using an Intel Xeon CPU E5-2609@2.40GHz running
Linux 3.2.0.

Lazy Markov Chain Embedding

Markov Chain Embedding

Let us now assume that our text of interest is a random sequence X1Wn where the
Xi 2 † are independent random variables with distribution�i .�/ defined by P.Xi D
a/ D pi .a/ for all a 2 †. The number of occurrences N D N.R;X1Wn/ is hence
a random variable over f0; : : : ; ng. Obtaining the exact distribution of N is a well-
known challenging problem that can be solved efficiently by MCE [5, 6].

The basic idea is that the random sequence .Ui /06i6n defined by U0 D S and
Ui D ı.Ui�1; Xi / for all 1 6 i 6 n is a Markov sequence over the finite states of
all possible configurations of NFA states encountered during the pattern matching
process. In practice, we first build from the NFA corresponding to the problem a
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Fig. 3 (Minimal) DFA corresponding to the regular expression GŒAGT over the DNA alphabet
† D fA;C;G;Tg. Q D f0; 1; 2; 3; 4g, s D 0, F D f4g, ı.0;A/ D ı.0;C/ D ı.0;T/ D 0,
ı.0;G/ D 1, ı.1;A/ D 2, etc

Deterministic Finite Automaton (DFA) which encodes all possible configurations
of NFA states and their transitions (this NFA can be seen as a complete lookup table
as defined above). This DFA is then used to compute a transition probability table
where we keep track of the number of matching states (i.e., configuration U of NFA
state such as U \ F ¤ ;).

For example, let us consider the case of the regular expression R D GŒAGT in
an i.i.d. random sequence of size n D 10 with �1.A/ D �1.C/ D �1.G/ D �1.T/ D
0:25. We first obtain from the NFA of Fig. 2 the DFA of Fig. 3, from which we obtain
that .Ui /06i6n is defined over the 5 states spaces ff0g; f0; 1g; f0; 1; 2g; f0; 2g; f0; 3gg
with the following transition matrix:

T .z/ D

0
BBBBB@

0:75 0:25 0:00 0:00 0:00

0:50 0:00 0:25 0:25 0:00

0:50 0:25 0:00 0:00 0:25z
0:25 0:00 0:25 0:25 0:25z
0:75 0:25 0:00 0:00 0:00

1
CCCCCA

where z is a dummy variable used to keep track of the number of matching
occurrences. The probability generating function (pgf) of N can therefore be
obtained by:

g.z/ D
nX

kD0
P.N D k/zk D uT .z/nv

where u D .1 0 0 0 0/ and v D .1 1 1 1 1/T . For example, with n D 10 we get:

g.z/ D 0:7645264 C 0:2210693z

C 0:0142822z2 C 0:0001221z3

which indicates that we have 0 to 3 occurrences of our regular expression in our size
n D 10 sequence, and that, (for example), P.N D 3/ D 0:0001221.
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Our Contribution

If this MCE technique is very efficient for low- complexity regular expressions
(i.e., DFA of reasonable size), it could be very slow when considering high-
complexity expressions (e.g.,x: DFA of size 10;000 or more). We can see in Table 2
the minimal DFA size of various DNA regular expressions. Structured motifs
(regular expression with one or several spacers) in particular lead to an exponential
increase of complexity with their gap length. Note that if most DFA computations
areis quite fast on a standard workstation (a couple of seconds in the worst case),
the most complex expressions for which DFA size is greater thatn 100;000 might
require a significant longer computational time (e.g.,x: 20min or more).

Moreover, in the context of degenerated sequences, we expect only a small
portion of the sequence (typically,: 10 or 1 or 0:1%) of the sequence to be
random (choice between at least two possible letters), the remaining position being
completely deterministic. For example, in sequence W36091 (see Fig. 1), we have
a total of 16 degenerated positions among a total of n D 147 positions.

For complex expressions, like with the lazy determinization introduced above, it
is unlikely that all DFA states will be explored in the pattern matching process. Our
idea is hence to adapt the lazy determinization approach to the context of MCE by
providing the new lazy MCE approach described in Algorithm 3.

For simplification purpose, we assume there is a common background distribu-
tion � for all the letters in the sequence which hence naturally define the distribution
of any degenerated letter in the sequence. However, the suggested method can easily
adapt to heterogeneous background distributions.

For example, let us consider the problem of finding the matching position ofR D
GŒAGT in X D TGGNATA where there is only one degenerated position in i D 4.
It means that Xi D fXig for all i except X4 D fA;C;G;Tg. It is easy to see that
we have M D f.f0; 1; 2g; 1:0/g after position i D 3 when we meet the degenerated
position. For simplification purpose, let us assume that �x D 0:25 for all x 2 †,
for all x 2 X4 D fA;C;G;Tg we hence have prob D 0:25. After processing X4
we hence have: M D f.f0; 2g; 0:25/; .f0g; 0:25/; .f0; 1; 2g; 0:25/; .f0; 3g; 0:25z/g.
After X5 D fAg we get: M D f.f0g; 0:50C 0:25z/; .f0; 2g; 0:25/g. After X6 D fTg,
M D f.f0g;0:50 C 0:25z/; .f0; 3g; 0:25z/g. And finally after X7 D fTg, we get
M D f.f0g; 0:50C 0:50z/g. We hence conclude that we have 50% of chance to
see no matching position, and 50% to see one matching position. One should note
that despite the fact that two positions might match with the expression of interest
(i D 4 and i D 6), it cannot match at these two positions at the same time. This is
clearly pointed out by the fact that the degree of the resulting pgf is 1 and not 2.

For validation purpose, let us use this algorithm for R D GŒAGT and
X D NNNNNNNNNN. We get: g.z/ D 0:764526 C 0:221069z C 0:0142822z2 C
0:00012207z3 which is (up to numerical rounding) exactly the pgf computed using
MCE in section “Markov Chain Embedding”.

When dealing with long sequence, it is obviously faster to rely on Algorithm 3
only when necessary which means when dealing with degenerated positions and/or
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Algorithm 3 Lazy Markov Chain Embedding algorithm for regular expression R
Input: .†;Q;S;F ; ı/ an NFA that recognizes †�R, a degenerated sequence X D X1Wn where

Xi � † and Xi ¤ ; for all i, a multimap M where keys are sets of states (i.e., DFA states) and
values polynomials, and � a probability distribution over †
// initialization
M D f.S; 1:0/g and poly 2 RŒz
// main loop
for i D 1 : : : n do

set M0 a new (empty) map
for all x 2 Xi do
prob D �x=

P
y2Xi

�y
for all .U ; P / in M do

if .U ; x/ 2 L then V D L.U ; x/ else compute V D ı.U ; x/ and store it in L
if V \ F ¤ ; then poly D P � prob � z else poly D P � prob
if .V ; Q/ exists in M0 then

add .V ; QC poly/ in M0

else
add .V ;poly/ in M0

end if
end for

end for
update M with M0

end for
// final computation
poly=0
for all .U ; P / in M do
poly=poly+P

end for
Output: poly contains the pgf of the number of occurrences of R in X

when the map M contains more that one entry. For example, in the illustration
of the previous paragraph, positions i D 1; 2; 3 could have been processed using
simple NFA steps, and after degenerated position i D 4, we have to wait for
position i D 7 to have only one entry in M. The efficient algorithm will then
alternate lazy NFA steps with lazy MCE steps keeping track of: (a) a minimum
number of occurrence corresponding to the occurrence obtained through lazay NFA
steps and; (b) a polynomial pgf corresponding toof the distribution of additional
occurrences. When entering from NFA to MCE mode, one just needs to initialize
the map M D f.U ; 1:0/g where U is the current NFA state. Once the map contains
only one element M D f.U ; P /g, we can return to NFA mode starting with state U
and update the pgf using pgf D pgf � P .

Using this approach on the sequence of Fig. 1, we obtain a minimum of 4
occurrences which can be combined with adjusted pgf polynomial to obtain the
following overall pgf:

100 � g.z/ D 7:91016z5 C 26:3672z6 C 34:2773z7

C22:2656z8 C 7:71484z9 C 1:36719z10 C 0:0976562z11:
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One should note that if four deterministic positions clearly appear in sequence
W36091, it is less clear that the subsequence GRT will always match our regular
expression R D GŒAGT. Also note that if we manually identified a total of 12
possible matching positions, the maximum number of matching positions is only
11. This is due to the incompatibility of matches in subsequence GGNAT.

Illustration on NGS Data

In order to illustrate our algorithm on NGS data, we considered the entries
DRR000019 and DRR000020 from the NCBI Sequence Read Archive (SRA,
http://www.ncbi.nlm.nih.gov). The corresponding binary files DRR000019:sra
(6:7 Mo) and DRR000020:sra (294 Mo) and were processed through the
sra � toolkit tools (version 2.1.7) in order to export the reads into a classical
FASTA file format containing a total of 11; 052 sequences of a total size of
2; 849; 759 nucleotides for DRR000019, and 486; 919 sequences for a size of
124; 902; 331 nucleotides for DRR000020. DRR000019:fasta contains a
total of 2; 067 degenerated positions (only N) which correspond to 0:073% of
degenerated letters. DRR000020:fasta contains a total of 85; 772 degenerated
positions (only N) which correspond to 0:069% of degenerated letters.

We can see in Table 3 that despite the fact that only a small (apparently
negligible) proportion of letters are degenerated, the consequence on regex counts
could be significant. Ignoring degenerated positions in the sequence willth then
often lead to underestimate the number of occurrences in the dataset which could
be a problem. This appears clearly when comparing the counts of Table 2 (NFA
counts ignoring degenerated positions) and the values of Table 3. Please note that

Table 3 Count results with maximum a posteriori (MAP) and 90% confidence intervals

Regular expression DRR000019 DRR000020

GRT 88;771 Œ88;754I 88;789 3;884;031 Œ3;883;904I
3;884;157

GCTA 5;295 Œ5;291I 5;300 242;829 Œ242;798I
242;859

TTNGT 8;390 Œ8;385I 8;396 339;403 Œ339;373I
339;434

GCTANf5;10gTTNGT 114 Œ114I 114 4;936 Œ4;932I 4;940
GCTANf10;15gTTNGT 93 Œ92I 94 4;325 Œ4; 321I 4;329
GCTANf15;20gTTNGT 67 Œ66I 68 2;755 Œ2;751I 2;759
GCTANf20;25gTTNGT 62 Œ62I 62 2;964 Œ2;960I 2;968
GCTANf25;30gTTNGT 71 Œ71I 71 2;901 Œ2;898I 2;906
GRTNf5;10gGCTANf5;10gTTNGT 16 Œ16I 16 620 Œ618I 622
GRTNf10;15gGCTANf10;15gTTNGT 15 Œ15I 16 715 Œ714I 717
GRTNf15;20gGCTANf15;20gTTNGT 3 Œ3I 4 305 Œ304I 306

http://www.ncbi.nlm.nih.gov


Counting Regular Expressions in Degenerated Sequences Through Lazy. . . 245

even in the case of confidence intervals centered on the MAP, the corresponding pgf
could be much more complex. For example, with regex GCTANf5;10gTTNGT on
DRR000019, we get the following pgf:

g.z/ D z114
�
0:909322z0 C 0:088477z1

C 0:00217688z2 C : : :C 9:49115� 10�82z27
�
:

In terms of running time, it takes less than 3 s to process all regular expressions
of Table 3 on DRR000019 using an Intel Xeon CPU E5-2609@2.40GHz running
Linux 3.2.0. The same task on DRR000020 takes 17min. Note that this non
linear increase (DRR000020 is only roughly 40 times longer than DRR000019)
is mainly due to the arrangement of degenerated position in the two dataset. Indeed,
while both datasets have roughly the same rate of degenerated position (
0:07%),
DRR000019 contains much more run of “N” than DRR000020. For example,
“NNNNN” appears 59 times in DRR000019 and 4;486 times (roughly 80 times
more) in DRR000020.

Conclusions

In this paper, we proposed a new algorithm to perform pattern matching of regular
expression in sequences containing degenerated letters. Using NFA (linear size
with the size regular expression) rather than DFA (exponentional size with the size
regular expression), this algorithm is a dramatic improvement of the previous one
[7]. Inspiring from the so- called “lazy determinization” used in pattern matching,
we suggest the new concept of “lazy MCE” which only explores locally the
combinatorics of possible occurrences. As a consequence, our new algorithm proves
itself able to process NGS datasets with regular expression ranging for simple to
highly complex in a reasonable time.

Our algorithm complexity is essentially linear with the dataset size but highly
dependent on the content in degenerated letters of the considered dataset. When
degenerated letters are rare enough (which is often the case in NGS datasets), the
additional computational cost for processing lazy MCE steps remains reasonable in
comparison with the cost of the classical deterministic lazy NFA steps. But the lazy
MCE part can significantly increase the computational costs when dealing with too
many degenerated positions, especially when considering highly complex regular
expression.

However, for common DNA/RNA regular expression and NGS dataset, our
algorithm will usually produce more reliable results than the simple NFA matching
one with a running time of comparable order of magnitude.

Our algorithm is implemented in the countmotif program and freely available
as part of the fsaLib package:

http://www.math-info.univ-paris5.fr/~delosvin/index.php?choix=4

http://www.math-info.univ-paris5.fr/~delosvin/index.php?choix=4
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Generalized Variance Estimations
of Normal-Poisson Models

Célestin C. Kokonendji and Khoirin Nisa

Abstract This chapter presents three estimations of generalized variance (i.e.,
determinant of covariance matrix) of normal-Poisson models: maximum likelihood
(ML) estimator, uniformly minimum variance unbiased (UMVU) estimator, and
Bayesian estimator. First, the definition and some properties of normal-Poisson
models are established. Then ML, UMVU, and Bayesian estimators for generalized
variance are derived. Finally, a simulation study is carried out to assess the
performance of the estimators based on their mean square error (MSE).

Keywords Covariance matrix • Determinant • Normal stable Tweedie • Maxi-
mum likelihood • UMVU • Bayesian estimator

Introduction

In multivariate analysis, generalized variance (i.e., determinant of covari-
ance matrix) has important roles in the descriptive analysis and inferences. It is
the measure of dispersion within multivariate data which explains the variability
and the spread of observations. Its estimation usually based on the determinant
of the sample covariance matrix. Many studies related to the generalized variance
estimation have been done by some researchers; see, e.g., [1–3] under normality
and non-normality hypotheses.

A normal-Poisson model is composed by distributions of random vector X D (X1,
X2, : : : , Xk)T with k> 1, where Xj is a univariate Poisson variable, and (X1, : : : ,
Xj�1, XjC1, : : : , Xk) given Xj are k-1 real independent Gaussian variables with
variance Xj. It is a particular part of normal stable Tweedie (NST) models [4] with
p D 1 where p is the power variance parameter of distributions within the Tweedie
family. This model was introduced in [4] for the particular case of normal-Poisson
with j D 1. Also, normal-Poisson is the only NST model which has a discrete
component, and it is correlated to the continuous normal parts.
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In literature, there is also a model known as Poisson-Gaussian [5–7] which is
completely different from normal-Poisson. For any value of j, a normal-Poissonj

model has only one Poisson component and k-1 normal (Gaussian) components,
while a Poisson-Gaussianj model has j Poisson components and k-j Gaussian
components. Poisson-Gaussian is also a particular case of simple quadratic natural
exponential family (NEF) [5] with variance function VF(m) D Diagk(m1, : : : , mj,
1, : : : , 1), where m D (m1, : : : , mk) is the mean vector and its generalized variance
function is detVF(m) D m1, : : : , mj. The estimations of generalized variance of
Poisson-Gaussian can be seen in [8, 9].

Motivated by generalized variance estimations of Poisson-Gaussian, we present
our study on multivariate normal-Poisson models and the estimations of their
generalized variance using ML, UMVU, and Bayesian estimators.

Normal-Poisson Models

In this section, we establish the definition of normal-Poissonj models as generaliza-
tion of normal-Poisson1 model which was introduced in [4], and then we give some
properties.

Definition 2.1 For a k-dimensional normal-Poisson random vector X D (X1, X2,
: : : , Xk)T with k> 1, it must hold that

1. Xj follows a univariate Poisson distribution.

2.
�
X1; : : : ; Xj�1; XjC1; : : : ; Xk

� DW Xc
j

ˇ̌
ˇXj are independent normal variables

with mean 0 and variance Xj, i.e., Xc
j

ˇ̌
ˇXj 
 i:i:d: N

�
0;Xj

�
.

In order to satisfy the second condition, we need Xj> 0, but in practice it is
possible to have xj D 0 in the Poisson sample. In this case, the corresponding normal
components are degenerated as •0 which makes their values become 0s.

The NEF Ft D F(�t) of a k-dimensional normal-Poisson random vector X is
generated by

�t .dx/ D txj
�
xj Š
��1

�
2�xj

�.k�1/=2 exp

0
@�t � 1

2xj

X
`¤j

x2`

1
A Ixj2Nnf0gıxj

�
dxj

�Y
`¤j

dx`;

for a fixed power of convolution t >0, where IA is the indicator function of the set A
and ıxj is the Dirac measure at xj.. Since t> 0, then �t:D�*t is an infinitely divisible
measure.

The cumulant function which is the log of the Laplace transform of �t, i.e.,

K�t .™/ D log

Z

Rk
exp

�
™T x

�
�t .dx/, is given by
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K�t .™/ D texp

0
@�j C 1

2

X
`¤j

�2`

1
A : (1)

The function K�t .™/ in (1) is finite for all ™ in the canonical domain:

‚ .�t / D
8
<
:™ 2 Rk I ™T Q™cj WD �j C

X
`¤j

�2` =2 < 0

9
=
;

with

™ D .�1; � � � ; �k/T and Q™cj WD �
�1; : : : ; �j�1; �j D 1; �jC1; : : : ; �k

�T
: (2)

The probability distribution of normal-Poissonj is

P .™I t/ .dx/ D exp
˚
™T x � K�t .™/

�
�t .dx/

which is a member of NEF F .�t / D fP .™I t/ I ™ 2 ‚ .�t /g.
From (1), we can calculate the first derivative of the cumulant function that

produces a k-vector as the mean vector of F�t and also its second derivative which
is a k � k matrix that represents the covariance matrix. Using notations in (2), we
obtain

K0
�t
.™/ D K�t .™/ � Q™cj and K00

�t
.™/ D K�t .™/

j Q™cj Q™cTj C I
0j
k

k

with I
0j
k D Diagk

�
1; : : : ; 1; 0j ; 1; : : : ; 1

�
.

The cumulant function presented in (1) and its derivatives are functions of
the canonical parameter ™. For practical calculation, we need to use the mean
parameterization:

P .mIFt / WD P .™ .m/ I�t/

with ™(m) is the solution in ™ of equation m D K0
�t
.™/ :

The variance function of a normal-Poissonj model which is the variance-
covariance matrix in term of mean parameterization is obtained through the second
derivative of the cumulant function, i.e., VFt .m/ D K00

�t
Œ™ .m/ : Then we have

VFt .m/ D 1

mj

mmT C Diagk
�
mj ; : : : ; mj ; 0j ;mj ; : : : ; mj

�
(3)

with mj> 0 and m` 2 R; ` ¤ j .
For j D 1, the covariance matrix of X can be expressed as below
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VFt .m/ D

2
6666666666664

m1

ˇ̌
ˇ m2 : : : mj : : : mk

� ��
ˇ̌
ˇ � � � � � � � � � � � � � � � � � � � � �

m2

ˇ̌
ˇ m�1

1 m2
2 Cm1 : : : m�1

1 m2mj : : : m�1
1 m2mk

:
:
:

ˇ̌
ˇ

:
:
:

: : :
:
:
:

:
:
:

mj

ˇ̌
ˇ m�1

1 mjm2 : : : m�1
1 m2

j Cm1 : : : m�1
1 mjmk

:
:
:

ˇ̌
ˇ

:
:
:

:
:
:

: : :
:
:
:

mk

ˇ̌
ˇ m�1

1 mkm2 : : : m�1
1 mkmj : : : m�1

1 m2
k Cm1

3
7777777777775

:

Indeed, for the covariance matrix above, one can use the following particular Schur
representation of the determinant

det

�
� aT

a A

�
D �det

�
A � ��1aaT

�
(4)

with the non-null scalar � D m1, the vector a D .m2; � � � ; mk/
T , and the .k � 1/ �

.k � 1/ matrix A D ��1aaT C m1Ik�1; where Ij D Diagj .1; � � � ; 1/ is the j � j
unit matrix.

Consequently, the determinant of the covariance matrix VFt .m/ for j D 1 is

detVFt .m/ D mk
1

Then, it is trivial to show that for j2f1, : : : ,kg, the generalized variance of
normal-Poissonj model is given by

detVFt .m/ D mk
j (5)

withmj > 0;m` 2 R; ` ¤ j: (5) expresses that the generalized variance of normal-
Poisson models depends mainly on the mean of the Poisson component (and the
dimension space k >1) .

Among NST models, normal-gamma which is also known as gamma-Gaussian
is the only model that has been characterized completely; see [5] or [10] for
characterization by variance function and [11] for characterization by generalized
variance function. For normal-Poisson models, here we give our result regarding to
characterization by variance function and generalized variance. We state the results
in the following theorems without proof.

Theorem 2.1 Let k 2f2, 3, : : : g and t> 0. If an NEF Ft satisfies (3), then, up to
affinity, Ft is of normal-Poisson model.

Theorem 2.2 Let Ft D F(�t) be an infinitely divisible NEF on Rk such that

1. The canonical domain ‚(�) D Rk

2. detK00
� .™/ D texp

�
k � ™T Q™cj

�
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for ™ and Q™cj given in (2). Then, up to affinity and power convolution, Ft is of
normal-Poisson model.

All the technical details of proofs will be given in our article which is in
preparation. In fact, the proof of Theorem 2.1 obtained by algebraic calculations
and by using some properties of NEF is described in Proposition 2.1 below. An
idea to proof Theorem 2.2 can be obtained using the infinite divisibility property
of normal-Poisson for which this proof is the solution to the particular Monge–

Ampère equation [12]: detK00
� .™/ D texp

�
k � ™T Q™cj

�
. Gikhman and Skorokhod

[13] showed that if � is an infinitely divisible measure, then there exist a symmetric
nonnegative definite d � d matrix † with rank k-1 and a positive measure � on Rk

such that

K00
� .™/ D † C

Z

Rk
xxT exp

�
™T x

�
� .dx/ :

The Lévy–Khintchine formula of infinite divisibility distribution is also applied.

Proposition 2.1 Let � and Q� be two ¢-finite positive measures on Rk such that
F D F(�), QF D F . Q�/, and m 2 MF:

1. If there exists (d,c)2RkxR such that Q� .dx/ D exp
n
dT x

E
C c

o
� .dx/ ; then

F D QF W ‚ . Q�/ D ‚ .�/� d andK Q� .™/ D K� .™ C d/C c; for m D m 2 MF;

V QF .m/ D VF .m/ ; and detV QF .m/ D detVF .m/ :
2. If Q� D ¥�� is the image measure of� by the affine transformation¥ .x/ D AxC

b; where A is a k � k nondegenerate matrix and b2Rk, then ‚ . Q�/ D AT‚ .�/

and K Q� .™/ D K�

�
AT ™

� C bT ™I for m D Am C b 2 ¥ .MF/ ; V QF .m/ D
AVF

�
¥�1 .m/

�
AT ; and det V QF .m/ D .det A/2 det VF .m/ :

3. If Q� D ��t is the t-th convolution power of � for t> 0, then ‚ . Q�/ D ‚ .�/

and K Q� .™/ D tK� .™/ I for m D tm 2 tMF ; V QF .m/ D tVF

�
¥t�1 .m/ ; and

detV QF .m/ D tkdetVF(m).

Proposition 2.1 shows that the generalized variance function det VF(m) of F
is invariant for any element of its generating measure (Part 1) and for the affine
transformation ¥ .x/ D Ax C b such that det A D ˙1, particularly for a translation
x ! x C b (Part 2).

A reformulation of Theorem 2.2, by changing the canonical parameterization
into mean parameterization, is stated in the following theorem.

Theorem 2.3 Let Ft D F(�t) be an infinitely divisible NEF on Rk such that

1. mj > 0 and m` 2 R with ` ¤ j

2. detVF .m/ D mk
j :

Then Ft is of normal-Poisson type.
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Theorem 2.3 is equivalent to Theorem 2.2. The former is used for the estimation
of generalized variance, and the latter is used for characterization by generalized
variance.

Generalized Variance Estimations

Here we present three methods for generalized variance estimations of normal-
Poisson models P .mIF t/ 2 Ft D F .�t /, and then we report the result of our
simulation study.

Consider X1; � � � ;Xn be random vectors i.i.d. from P(m; Ft) of normal-Poisson
models, and we denote X D .X1 C � � � C Xn/ =n D �

X1; � � � ; Xk

�T
as the sample

mean with positive j-th component Xj : The followings are ML, UMVU, and
Bayesian generalized variance estimators.

Maximum Likelihood Estimator

Proposition 3.1 The ML estimator of detVFt .m/ D mk
j is given by

Tn;t D detVFt

�
X
�

D �
Xj

�k
: (6)

Proof The ML estimator above is easily obtained by replacing mj in (5) with its ML
estimator Xj . ut

Uniformly Minimum Variance Unbiased Estimator

Proposition 3.2 The UMVU estimator of detVFt .m/ D mk
j is given by

Un;t D n�kC1Xj

�
nXj � 1

�
: : :
�
nXj � k C 1

�
; if nXj � k: (7)

Proof This UMVU estimator is obtained using intrinsic moment formula of
univariate Poisson distribution as follows:

E ŒX .X � 1/ : : : .X � k C 1/ D mk
j :

Letting Y D nXj gives the result that (7) is the UMVU estimator of (5), because,
by the completeness of NEFs, the unbiased estimation is unique. So, we deduced
the desired result. �
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A deep discussion about ML and UMVU methods on generalized variance
estimations can be seen in [9] for NEF and [4] for NST models.

Bayesian Estimator

Proposition 3.3 Under assumption of prior gamma distribution of mj with param-
eter ’> 0 and “> 0, the Bayesian estimator of detVFt .m/ D mk

j is given by

Bn;t;˛;ˇ D
 
˛ C nXj

ˇ C n

!k
: (8)

Proof Let X1j ; � � � ; Xnj given mj are Poisson(mj) with probability mass function

P
�
Xij D xij

ˇ̌
ˇmj

�
D m

xij
j

xij Š
e�mj D p

�
xij

ˇ̌
ˇmj

�
:

Assuming that mj follows gamma(˛,ˇ), then the prior probability distribution
function of mj is given by

f
�
mj I˛; ˇ� D ˇ˛

� .˛/
m˛�1
j e�ˇmj for mj > 0 and ˛; ˇ > 0

where � (˛) is the gamma function: � .˛/ D
Z 1

0

x˛�1e�xdx: Using the Bayes

theorem, the posterior distribution of mj given an observation sequence can be
expressed as

f
�
mj

ˇ̌
ˇxij I˛; ˇ

�
D

p
�
xij

ˇ̌
ˇmj

�
f
�
mj I˛; ˇ�

Z

mj>0

p
�
xij

ˇ̌
ˇmj

�
f
�
mj I˛; ˇ� dmj

D .ˇ C 1/˛Cxij

�
�
˛ C xij

� m˛Cxij�1
j e�.ˇC1/mj

which is a gamma density with parameters ˛0 D xij C ˛ and ˇ0 D 1 C ˇ. Then
with random sample X1j, : : : , Xnj, the posterior will be gamma

�
˛ C nXj ; ˇ C n

�
:

The Bayesian estimator of mj is given by the mean of the posterior distribution, i.e.,

bmb D ˛CnXj
ˇCn , and then this concludes the proof. �

The choice of ’ and “ depends on the information of mj. Notice that for any
positive value c 2 .0;1/ ; if ˛ D cXj and ˇ D c, then the Bayesian estimator
is the same as ML estimator. In practice, the parameter of prior distribution of
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mj must be known or can be assumed confidently before the generalized variance
estimation. One can see, e.g., [14–16] for more details about Bayesian inference on
mj (univariate Poisson parameter).

Simulation Study

In order to look at the performances of ML, UMVU, and Bayesian estimators of
the generalized variance, we have done a Monte Carlo simulation using R software
[17]. We have generated k D 2, 4, 6, 8 dimensional data from multivariate normal-
Poisson distribution F(�t) with mj D 1. Fixing j D 1, we set several sample sizes n
varied from 5 until 300, and we generated 1,000 samples for each sample size. For
calculating the Bayesian estimator, in this simulation we assume that the parameters
of prior distribution depend on sample mean of Poisson component, Xj , and
the dimension k. Then we set three different prior distributions: gamma

�
Xj ; k

�
;

gamma
�
Xj ; k=2

�
; and gamma

�
Xj ; k=3

�
:

We report the results of the generalized variance estimations using the three
methods in Table 1. From these values, we calculated the mean square error (MSE)
of each method over 1,000 data sets using this following formula

MSE

� ^
GV

�
D 1

1; 000

1;000X
iD1

� ^
GVi �mk

j

�2

where
^
GV is the estimate of mk

j using each method.
From the values in Table 1, we can observe different performances of ML

estimator (Tn,t), UMVU estimator (Un,t), and Bayesian estimator (Bn,t,’,“) of the
generalized variance. The values of Tn,t and Bn,t,’,“ converge, while the values of Un,t

do not, but Un,t which is the unbiased estimator always approximate the parameter
(mk

1 D 1) and closer to the parameter than Tn,t and Bn,t,’,“ for small sample sizes n �
25. For all methods, the standard error of the estimates decreases when the sample
size increases. The Bayesian estimator with gamma

�
Xj ; k=2

�
prior distribution,

i.e., Bn;t;Xj ;k=2, is exactly the same as Tn,t for k D 2. This is because in this case, the
Bayesian and ML estimators of m1 are the same (i.e., c D 1).

The goodness of Bayesian estimator depends on the parameter of prior dis-
tribution, ’ and “. From our simulation, the result shows that smaller parameter
“ gives greater standard error to the estimations in small sample sizes, and the
accuracy of Bn,t,’,“ with respect to “ varies with dimensions k. However, they are
all asymptotically unbiased.

There are more important performance characterizations for an estimator than
just being unbiased. The MSE is perhaps the most important of them. It captures the
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Table 1 The expected values (with standard error) of Tn,t, Un,t, and Bn,t,˛,ˇ with m1 D 1 and
k 2 f2; 4; 6; 8g (target values mk

1 D 1)

k D 2n Tn,t Un,t Bn;t;Xj ;k
Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 1.2790 (1.3826) 0.9533 (1.2050) 0.8186 (0.8849) 1.2790 (1.3826) 1.5221 (1.6454)
k C 5 1.1333 (0.8532) 0.9915 (0.8000) 0.8955 (0.6742) 1.1333 (0.8532) 1.2340 (0.9290)
k C 10 1.1121 (0.6295) 1.0276 (0.6056) 0.9589 (0.5428) 1.1121 (0.6295) 1.1714 (0.6631)
25 1.0357 (0.4256) 0.9959 (0.4175) 0.9604 (0.3946) 1.0357 (0.4256) 1.0628 (0.4367)
60 1.0090 (0.2526) 0.9924 (0.2505) 0.9767 (0.2445) 1.0090 (0.2526) 1.0201 (0.2553)
100 1.0086 (0.1988) 0.9986 (0.1979) 0.9890 (0.1950) 1.0086 (0.1988) 1.0153 (0.2002)
300 0.9995 (0.1141) 0.9962 (0.1140) 0.9929 (0.1134) 0.9995 (0.1141) 1.0017 (0.1144)
k D 4n Tn,t Un,t Bn;t;Xj ;k

Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 2.3823 (4.6248) 0.9460 (2.5689) 0.4706 (0.9135) 1.2859 (2.4964) 1.9190 (3.7254)
k C 5 1.6824 (2.4576) 0.9531 (1.6995) 0.5890 (0.8605) 1.1491 (1.6786) 1.4756 (2.1555)
k C 10 1.4664 (1.6345) 1.0027 (1.2456) 0.7072 (0.7882) 1.1328 (1.2626) 1.3430 (1.4969)
25 1.2711 (1.0895) 1.0169 (0.9327) 0.8212 (0.7039) 1.0930 (0.9368) 1.2079 (1.0353)
60 1.0978 (0.5682) 0.9961 (0.5288) 0.9060 (0.4689) 1.0287 (0.5324) 1.0741 (0.5559)
100 1.0589 (0.4209) 0.9983 (0.4028) 0.9419 (0.3744) 1.0180 (0.4046) 1.0451 (0.4154)
300 1.0273 (0.2305) 1.0071 (0.2271) 0.9874 (0.2215) 1.0138 (0.2275) 1.0228 (0.2295)
k D 6n Tn,t Un,t Bn;t;Xj ;k

Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 4.7738 (13.9827) 0.9995 (4.7073) 0.2593 (0.7594) 1.2514 (3.6655) 2.3548 (6.8972)
k C 5 2.9818 (6.2595) 0.9958 (2.7565) 0.3689 (0.7743) 1.1825 (2.4823) 1.8446 (3.8723)
k C 10 2.2232 (4.0454) 1.0124 (2.2131) 0.4733 (0.8612) 1.1406 (2.0756) 1.5778 (2.8709)
25 1.6399 (2.2478) 0.9555 (1.4833) 0.5708 (0.7824) 1.0513 (1.4410) 1.3076 (1.7923)
60 1.2479 (0.9978) 0.9827 (0.8226) 0.7778 (0.6220) 1.0283 (0.8222) 1.1319 (0.9051)
100 1.1830 (0.7646) 1.0235 (0.6800) 0.8853 (0.5722) 1.0517 (0.6798) 1.1151 (0.7207)
300 1.0530 (0.3758) 1.0022 (0.3608) 0.9539 (0.3404) 1.0119 (0.3612) 1.0322 (0.3684)
k D 8n Tn,t Un,t Bn;t;Xj ;k

Bn;t;Xj ;k=2 Bn;t;Xj ;k=3

k C 1 8.5935 (31.9230) 0.8677 (5.4574) 0.1232 (0.4576) 1.0535 (3.9134) 2.5038 (9.3010)
k C 5 4.7573 (12.5015) 0.8468 (3.0478) 0.1856 (0.4878) 1.0065 (2.6448) 1.9345 (5.0836)
k C 10 3.6816 (9.0892) 1.0394 (3.2258) 0.2994 (0.7392) 1.1394 (2.8130) 1.8789 (4.6387)
25 2.9055 (6.3150) 1.1341 (2.9623) 0.4314 (0.9377) 1.2129 (2.6362) 1.7675 (3.8416)
60 1.6201 (1.8804) 1.0511 (1.3062) 0.6794 (0.7885) 1.1035 (1.2807) 1.3059 (1.5156)
100 1.2890 (1.0907) 0.9850 (0.8667) 0.7541 (0.6381) 1.0199 (0.8630) 1.1308 (0.9569)
300 1.1056 (0.5378) 1.0086 (0.4968) 0.9199 (0.4474) 1.0213 (0.4967) 1.0578 (0.5145)

bias and the variance of the estimator. For this reason, we compare the quality of
the estimators using MSE in Table 2 which are presented graphically in Figs. 1, 2,
3, and 4. From these figures, we conclude that all estimators become more similar
when the sample size increases. For small sample sizes, Bn;t;Xj ;k always has the
smallest MSE, while Tn,t always has the greatest MSE (except for k D 2). For n
�25, Un,t is preferable than Tn,t. In this situation, the difference between Un,t and
Tn,t increases when the dimension increases and also the difference between Tn,t and
Bn,t,’,“.
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Table 2 The mean square error of Tn,t, Un,t, and Bn,t,˛,ˇ of Table 1

k D 2n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 1.9894 1.4542 0.8159 1.9894 2.9800
k C 5 0.7458 0.6401 0.4654 0.7458 0.9179
k C 10 0.4088 0.3675 0.2963 0.4088 0.4690
25 0.1824 0.1743 0.1573 0.1824 0.1947
60 0.0639 0.0628 0.0603 0.0639 0.0656
100 0.0396 0.0391 0.0381 0.0396 0.0403
300 0.0130 0.0130 0.0129 0.0130 0.0131
k D 4n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 23.2999 6.6019 1.1149 6.3136 14.7231
k C 5 6.5055 2.8904 0.9093 2.8398 4.8724
k C 10 2.8891 1.5514 0.7071 1.6118 2.3585
25 1.2604 0.8702 0.5274 0.8862 1.1151
60 0.3324 0.2797 0.2287 0.2843 0.3146
100 0.1806 0.1622 0.1435 0.1640 0.1746
300 0.0539 0.0516 0.0492 0.0519 0.0532
k D 6n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 209.7568 22.1589 1.1254 13.4989 49.4073
k C 5 43.1085 7.5980 0.9979 6.1952 15.7078
k C 10 17.8618 4.8981 1.0191 4.3278 8.5761
25 5.4622 2.2020 0.7964 2.0790 3.3071
60 1.0571 0.6769 0.4362 0.6769 0.8366
100 0.6181 0.4629 0.3406 0.4647 0.5327
300 0.1440 0.1302 0.1180 0.1306 0.1368
k D 8n MSE(Tn,t) MSE(Un,t) MSE.Bn;t;Xj ;k/ MSE.Bn;t;Xj ;k=2/ MSE.Bn;t;Xj ;k=3/

k C 1 1,076.7380 29.8009 0.9782 15.3177 88.7698
k C 5 170.4059 9.3124 0.9012 6.9951 26.7168
k C 10 89.8046 10.4076 1.0373 7.9326 22.2895
25 43.5105 8.7931 1.2025 6.9949 15.3466
60 3.9204 1.7088 0.7246 1.6509 2.3907
100 1.2732 0.7515 0.4676 0.7452 0.9327
300 0.3003 0.2469 0.2066 0.2472 0.2681

In this simulation, Bn;t;Xj ;k is the best estimator because of its smallest MSE,
but in general we cannot say that Bayesian estimator is much better than ML and
UMVU estimators since it depends on the prior distribution parameters. In fact,
one would prefer Un,t as it is the unbiased estimator with the minimum variance.
However, if in practice we know the information about prior distribution of mj, we
can get a better estimate (in the sense of having a lower MSE) than Un,t by using
Bn,t,’,“.
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Fig. 1 MSE plot of Tn,t, Un,t, Bn;t;xj ;k ;Bn;t;xj ;k=2; and Bn;t;xj ;k=3 for k D 2

Conclusion

In this chapter, we have established the definition and properties of normal-
Poissonj models as a generalization of normal-Poisson1 and showed that the
generalized variance of normal-Poisson models depends mainly on the mean of the
Poisson component. The estimations of generalized variance using ML, UMVU,
and Bayesian estimators show that UMVU produces a better estimation than ML
estimator, while compared to Bayesian estimator, UMVU is worse for some choice
of prior distribution parameters, but it can be much better for other cases. However,
all methods are consistent estimators, and they become more similar when the
sample size increases.
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Fig. 4 MSE plot of Tn,t, Un,t, Bn;t;xj ;k ;Bn;t;xj ;k=2; and Bn;t;xj ;k=3 for k D 8

References

1. Hassairi, A.: Generalized variance and exponential families. Ann. Stat. 27(1), 374–385 (1999)
2. Kokonendji, C.C., Pommeret, D.: Estimateurs de la variance généralisée pour des familles

exponentielles non gaussiennes. C. R. Acad. Sci. Ser. Math. 332(4), 351–356 (2001)
3. Shorrock, R.W., Zidek, J.V.: An improved estimator of the generalized variance. Ann. Stat.

4(3), 629–638 (1976)
4. Boubacar Maïnassara, Y., Kokonendji, C.C.: On normal stable Tweedie models and power

generalized variance function of only one component. TEST 23(3), 585–606 (2014)
5. Casalis, M.: The 2d C 4 simple quadratic natural exponential families on Rd. Ann. Stat. 24(4),

1828–1854 (1996)
6. G. Letac, Le problem de la classification des familles exponentielles naturelles de Rd ayant une

fonction variance quadratique, in Probability Measures on Groups IX, H. Heyer, Ed. Springer,
Berlin, 1989, pp. 192–216.

7. Kokonendji, C.C., Masmoudi, A.: A characterization of Poisson-Gaussian families by general-
ized variance. Bernoulli 12(2), 371–379 (2006)

8. Kokonendji, C.C., Seshadri, V.: On the determinant of the second derivative of a Laplace
transform. Ann. Stat. 24(4), 1813–1827 (1996)

9. Kokonendji, C.C., Pommeret, D.: Comparing UMVU and ML estimators of the generalized
variance for natural exponential families. Statistics 41(6), 547–558 (2007)

10. Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions. Models and
Application, vol. 1, 2nd edn. Wiley, New York (2000)



260 C.C. Kokonendji and K. Nisa

11. Kokonendji, C.C., Masmoudi, A.: On the Monge–Ampère equation for characterizing gamma-
Gaussian model. Stat. Probab. Lett. 83(7), 1692–1698 (2013)

12. Gutiérrez, C.E.: The Monge-Ampère Equation. Birkhäuser, Boston (2001). Boston: Imprint:
Birkhäuser

13. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic Processes 2. Springer, New York
(2004)

14. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis, 2nd edn. Springer, New York
(1985)

15. Sultan, R., Ahmad, S.P.: Posterior estimates of Poisson distribution using R software. J. Mod.
Appl. Stat. Methods 11(2), 530–535 (2012)

16. Hogg, R.V.: Introduction to Mathematical Statistics, 7th edn. Pearson, Boston (2013)
17. R Development Core Team: R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna (2009)



Vehicle Routing Problem with Uncertain Costs
via a Multiple Ant Colony System

Nihat Engin Toklu, Luca Maria Gambardella, and Roberto Montemanni

Abstract We consider the capacitated vehicle routing problem (VRP) with uncertain
travel costs, where the uncertainty represents the realistic factors like unfriendly
weather conditions, traffic jams, etc. In this chapter, we present a multiple ant colony
system approach in which ant colony optimization processes work concurrently to
produce multiple solutions. Experimental results on different types of VRP instances
(with clustered customers, randomly placed customers, and a mixed of the previous
two), each instance having 200 customers, are finally discussed.

Keywords Vehicle routing problem • Robust optimization • Metaheuristic
algorithms

Introduction

In the field of transportation, vehicle routing problem (VRP) is a well-known
problem [2, 3, 10, 14, 17, 24]. A common variation of VRP is called the capacitated
vehicle routing problem (CVRP), which is the variation we study here. In CVRP, we
have a depot where a product is stored, a number of vehicles with a limited capacity,
and a number of customers with various amounts of demands for stored products.
The purpose is, by using the available vehicles, to distribute the products to the
customers while minimizing the total cost of traveling. The important constraints
of this problem are as follows: (a) The demand of each customer must be entirely
satisfied by one visit of one vehicle; (b) a vehicle cannot carry more products than
the dictated capacity, so the total demand on a vehicle’s route must be less than or
equal to the vehicle capacity; and (c) the route of a vehicle must start and end at the
depot, without any intermediate visits to the depot.

To make CVRP clear, let us analyze the example in Fig. 1a. In this example,
we have two vehicles available and three customers to satisfy. The cost of traveling

N.E. Toklu (�) • L.M. Gambardella • R. Montemanni
Dalle Molle Institute for Artificial Intelligence (IDSIA—USI/SUPSI), Galleria 2,
Manno 6928, Switzerland
e-mail: engin@idsia.ch; luca@idsia.ch; roberto@idsia.ch

© Springer International Publishing Switzerland 2016
K. Chen (ed.), Forging Connections between Computational Mathematics
and Computational Geometry, Springer Proceedings in Mathematics & Statistics 124,
DOI 10.5176/2251-1911_CMCGS14.08_22

261

mailto:engin@idsia.ch
mailto:luca@idsia.ch
mailto:roberto@idsia.ch


262 N.E. Toklu et al.
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Fig. 1 (a) A CVRP example from [22]. Two vehicles are available, each with capacity 3. (b) A
solution with total travel cost 29. (c) A solution with total travel cost 45

between the locations of the customers and the depot are given adjacent to the dotted
arcs. Two solutions for this instance are given in Fig. 1b and 1c. Note that, because
the capacity of a vehicle is three, a single vehicle cannot satisfy all the customers
in one tour. Therefore, these solutions have to use two vehicle tours. Given that
the objective is to minimize the total cost of traveling, it can be observed that the
solution in Fig. 1b is more practical.

In a traditional optimization problem, the problem data would be known exactly.
However, in the recent years, alternative perspectives have begun to draw attention,
to make the optimization models more realistic. In these alternative perspectives,
the common argument is that, in reality, the problem data cannot be known exactly
because of factors that are difficult to predict. In the case of VRP, these factors would
be unfriendly weather conditions, traffic jams, road constructions, etc., affecting
the data of traveling cost/time between locations. Ignoring the uncertainty could
lead to undesired situations. For example, a solution that looks optimal according
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Location 3
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Fig. 2 A CVRPU counterpart of the instance shown in Fig. 1

to the mathematical model where the uncertainty is not considered could turn out
to be far from optimal in reality. To avoid such undesirable situations, a perspective
where the uncertainty is considered in the optimization model can be used. One such
perspective is stochastic optimization [8], in which the goal is to do optimization
when there is uncertainty, and the information about the uncertainty (probability
distributions, etc.) is available. Another perspective is robust optimization [5–7, 16],
where the probability distribution information about the uncertainty is not known
and the uncertain data are usually expressed by intervals, instead of single numbers.

Now, let us look at a possible CVRPU counterpart of the instance in Fig. 1a,
shown in Fig. 2, where the travel costs are intervals. An interesting effect of
uncertainty can be observed here: when we consider the best-case values from the
cost intervals, the solution shown in Fig. 1b is the more practical solution. But when
we consider the worst-case values from the cost intervals, that solution becomes the
less practical one.

In this chapter, we consider CVRP with uncertain travel costs (CVRPU). We
assume that the probability distribution information is not available; therefore, we
apply the perspective of robust optimization and put the travel costs as intervals into
the optimization model.

An important concept in robust optimization is the degree of conservativeness,
where conservativeness means the amount of pessimism in the assumptions during
the optimization. For example, in the case of CVRP, a decision maker who is not
conservative would assume that the travel on each path will go smoothly without
any additional cost and do the optimization according to the lowest travel cost values
possible from the travel cost intervals. On the other hand, a decision maker who is
fully conservative would assume that the travel on each path will be problematic
and do the optimization according to the highest travel cost values possible from
the travel cost intervals. A partially conservative decision maker would assume that
some paths will provide smooth travels and some paths will be problematic. Robust
optimization methodologies which allow the decision maker to configure the degree
of conservativeness are discussed in [4, 6].
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Previous studies on VRP with robust optimization considerations are available
in the literature. In [21], a mathematical programming approach is taken to solve a
VRP where there is uncertainty in the customer demands. In [18], a robust mathe-
matical model for VRP with deadlines is proposed, and, in [1], robust mathematical
models for VRP with time window constraints are proposed. The methods listed
above are exact methods, as they are designed to find the optimal values, given
enough time. In the situations where the decision maker wants a near-optimal
solution, within a limited amount of time, without demanding too much memory,
metaheuristic approaches can be used. Within the category of metaheuristics, a
previous study is [20], where a VRP with uncertain demands is solved using a
particle swarm approach. Our approach that we propose here belongs to the category
of metaheuristics. Differently from the study presented in [20], we consider that the
uncertainty is in the travel costs, not in the demands.

The metaheuristic algorithm that we use in this study is an ant colony optimiza-
tion (ACO; see [11, 12]) algorithm. ACO can be defined as a class of metaheuristic
algorithms. An ACO algorithm simulates the behavior of the ants in the nature
on a solution space. The inspiration of ACO is as follows. In the nature, the ants
get out of their nests to reach a food source. In the beginning, various ants reach
to the food source by using various paths and they mark the path they choose by
leaving their pheromones. The ants that choose shorter paths can go back and forth
more frequently to the food source, increasing their pheromones on their paths.
The other ants that are influenced by the pheromones also get attracted to these
shorter paths, leaving their own pheromones, thus increasing the total pheromones
on shorter paths even more. Therefore, as the better solutions (shorter paths) get
more pheromones, in the end, most of the ants gather around the best solution known
so far. In this chapter, we use our robust multiple ant colony system approach, which
was previously proposed in [23]. In this approach, multiple ant colonies work in
parallel, each focused on a different conservativeness degree. Each colony working
for the robust multiple ant colony system approach is a process of our robust ant
colony system proposed in [22]. These colonies try to avoid the situation in which
they get stuck working on dominated solutions, by communicating with each other
and sharing their best solutions. In the end, the final best solutions of these ant
colonies are collected in a solution pool. This solution pool contains solutions of
different conservativeness degrees and allows the decision maker to analyze these
alternative solutions and pick the best one according to the situation.

The goal of this experimental chapter is to confirm the practicality of RMACS
by testing it on VRP instances with 200 customers, in which different policies of
placing the customers are used (clustered, random, and mixed).

The structure of this chapter is as follows. In Sect. “Problem Definition,” a more
formal problem definition is given. In Sect. “Methodology,” the approach that we
use is explained. In Sect. “Experimental Results,” we present our experimental
results. Finally, in Sect. “Conclusions,” the conclusions are drawn.
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Problem Definition

Let us start defining CVRP and CVRPU in terms of a graph G D (L, E), where L is
the set of locations and E is the set of edges (i.e., paths between locations). The set
of locations is expressed as L D f0, 1, 2, : : : ,jLj�1g where 0 represents the location
of the depot, 1 represents the location of the first customer, 2 represents the location
of the second customer, and so on. The set of edges is expressed as E D f(i, j) j i,
j 2 L, i ¤ jg, each edge representing the path between two locations. Each edge (i,
j) 2 E has an associated traveling cost represented by cij. Also, note that the traveling
costs are symmetric, which means cij D cji. Each customer i 2 (L\f0g) has a demand
(i.e., expectation of delivery from the depot), and the amount of this demand is
expressed by di. At the depot, there is no demand (i.e., d0 D 0). The set of vehicles
is expressed by V, and the number of vehicles is expressed by jVj. The capacity of
each vehicle is Q.

Let us express a solution for CVRP and CVRPU by sol. The related definitions
are as follows:

• sol[v] is the route (i.e., list of visits) of the vehicle v 2 V, according to sol.
• jsol[v]j is the number of visits by the vehicle v 2 V, according to sol.
• sol[v,k] is the kth visited location by the vehicle v 2 V, according to sol.

By using these notations, let us now define the constraints of the problem. The
first and the last visited locations of a vehicle v must be the depot (i.e., a vehicle v
must start and end its journey at the depot):

sol Œv; 1 D sol Œv; jsol Œvj D 0 8v 2 V (1)

The non-depot locations included in the route of a vehicle must consist of valid
customers:

sol Œv; k 2 .Ln f0g/ 8v 2 V I k 2 f2; 3; : : : ; jsol Œvj � 1g (2)

A vehicle v 2 V must not visit the same customer twice:

sol Œv; k ¤ sol Œv; k0
8v 2 V I k; k0 2 f2; 3; : : : ; jsol Œvj � 1g I k ¤ k0 (3)

Two different vehicles v, v0 2 V must not have the same customers on their routes:

sol Œv; k ¤ sol Œv0; k0
8v; v0 2 V I v ¤ v0I
k 2 f2; 3; : : : ; jsol Œvj � 1g I k0 2 f2; 3; : : : ; jsol Œv0j � 1g

(4)

The total demand of the customers of a vehicle route must not exceed the capacity
of a vehicle:

X
k2f2;3;:::;jsolŒvj�1g

dsolŒv;k � Q 8v 2 V (5)
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The cost of a solution sol is defined as follows:

COST.sol/ D
X
v2V

jsolŒvjX
kD2

csolŒv;k�1;solŒv;k

We are finally ready to make a complete definition of the deterministic CVRP:

CVRP

�
minimize COST.sol/
subject to .1/; .2/; .3/; .4/; and .5/

In CVRPU, however, the costs cij are not single numbers, but they are intervals
because of the uncertainty. Therefore, we need to define a different cost function,
which evaluates the cost of a solution. Also, because our goal is to produce solutions
with different conservativeness levels, the cost function should be configurable in
terms of conservativeness. Bertsimas and Sim ([6, 7]) propose such an approach,
where the conservativeness degree is configurable by using a parameter � � 0.
Although in the studies [6, 7] it is shown that � can be set as a non-integer, let
us focus on the implication of a � value when it is considered as an integer. In the
case of our CVRP problem, the meaning of � is that, during the calculation of the
solution cost, the travel costs of � number of edges are assumed to be equal to
their highest values picked from their intervals, and the travel costs of the rest of
the edges are assumed to be equal to their lowest values picked from their intervals.
When using this approach, a nonconservative decision maker would set � D 0, so
that all the edges would have their lowest costs, and a fully conservative decision
maker would set � as the number of edges in the solution, so that all the edges
would have their highest costs.

Now, let us formulate the evaluation approach of Bertsimas and Sim:

PERTURBEDCOST .sol; �/ D

max

8
<
:
X
v2V

solŒvX
kD2

	
cN solŒv;k�1;solŒv;k

C �solŒv;k�1;solŒv;k �
�
csolŒv;k�1;solŒv;k

�cN solŒv;k�1;solŒv;k

�
�

s:t:
X
.i;j /2A

�ij � �

0 � �ij � 1 8 .i; j / 2 E

where � ij represents the assumption on the perturbation amount on the cost
coefficient cij. According to this perturbation amount, the cost cij of the edge (i, j) is
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calculated as cN ij
C
�
�ij �

�
cij � cN ij

��
: By using the function PerturbedCost, we

can now define CVRPU as

CVRPU

�
minimize PERTURBEDCOST .sol; �/
subject to .1/; .2/; .3/; .4/; and .5/

Methodology

The methodology we use here is a heuristic approach called robust multiple ant
colony system (RMACS) [23], in which multiple ant colonies work concurrently,
each being focused on a different conservativeness degree.

In this section, we first explain the basic ant colony system. Then, we explain
RMACS that executes multiple ant colony systems.

The Ant Colony System

On a VRP, the working of an ant colony optimization is as follows:

(a) First, artificial ants start “walking” on the graph G D (L, E) to construct
solutions.

(b) After the walking is finished, the ants mark their choices by leaving pheromones
on the edges they used in their solutions, the amount of pheromone depending
on the quality of the solution (measured by the function Cost and by the function
PerturbedCost, in the case of CVRP and CVRPU, respectively).

(c) The next generation of artificial ants start walking to construct new solutions.
While constructing their solutions, probabilistically, they become tempted to
use the edges marked by the previous-generation ants.

(d) Like explained in (b), these new ants mark their choices.
(e) If the ending criterion is not met, we return to step (c) to repeat the process. After

enough number of iterations, the artificial ants converge into a near-optimal
solution, which has the highest concentration of pheromone.

The ant colony system is an ant colony optimization algorithm, which is elitist:
only an ant that has found the best solution known so far leaves pheromones. The
goal of this elitist behavior is to attract other ants into the best solution, so that they
apply local searches around it.

We now give implementation details of the ant colony system, as previously
discussed in [13]:

(a) An initial solution, sol_init, is generated by using the nearest neighbor heuristic
(see [15]).
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(b) The variable sol_best, which is to store the best-known solution, is initialized as
sol_init.

(c) A new generation of ants is activated. In each generation, a certain number of
ants exist. This number depends on a parameter, which is set as 10 in our study.

(d) Each ant of the active generation walks to construct a solution. Each constructed
solution is evaluated by the function Cost in the case of CVRP and the function
PerturbedCost in the case of CVRPU. If an ant was able to come up with a
solution better than sol_best, that better solution is declared as the new sol_best
and that ant leaves pheromones to attract the ants of the future generations
toward its solution.

(e) If the finishing criterion is not met, we return back to step (c).

The way of generating a solution is as follows:

(a) We start considering the first vehicle. The depot (i.e., the location 0) is added
into the solution as the first place to visit.

(b) Let us call a location which is not visited yet, and which does not violate the
capacity of the current vehicle with its demand, a feasible location. As long as
there are feasible locations left, they are picked and added onto the solution. If
there are no more feasible locations, the depot is added onto the solution, which
means that the vehicle’s tour is completed and it is to return to the depot. After
returning to the depot, if there are still locations that are not added onto the
solution, a new vehicle is considered and step (b) is repeated.

During the process of constructing a solution, each ant is influenced by the
pheromones left on the edges. The amount of pheromone on an edge (i, j) 2 E is
denoted by � ij. Larger values for � ij cause the ants to be more attracted toward the
edge (i, j). Let us now make the following definitions:

W: the set of ants, where jWj D�.
Nw: the set of feasible locations for ant w 2 W.
�ij: heuristic closeness value between locations i and j, calculated by the inverse

of the Euclidean distance between i and j, where (i, j) 2 E.
ˇ: the importance parameter for the factor of closeness, which affects the

decisions of an ant.
˛: a parameter within [0; 1], deciding the probabilities for an ant to do exploration

(i.e., looking for a completely different decision, without getting affected by the
pheromones) and exploitation (i.e., decision to completely follow the influence of
the pheromones and to use the pieces of a solution with a high concentration of
pheromone). Given these definitions, we can explain the behavior of an ant, which
added the location i onto the solution recently and wants to visit another location j,
as follows:

With probability ˛, the ant decides to do exploitation and visits a location j which
maximizes � ij (�ij)ˇ . On the other hand, with probability 1�˛, the ant decides to do
exploration, picking a location j probabilistically. In this case, the probability for ant
w to pick a location j is as follows:
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P w
ij D

8
<̂
:̂

�ij �.�ij /ˇX
j 02Nw

�ij 0 � ��ij 0

�ˇ if j 2 Nw

0 otherwise

At the beginning, all the edges have an initial amount of pheromone, calculated as

�0 D 1= .jLj � PERTURBEDCOST .sol_ init; �//

During the optimization process, two types of pheromone updates are done: local
and global. The local update is the decreasing of pheromones on the edge (i, j) when
an ant traverses from i to j. This decreasing is done to prevent the ants of the same
generation from repeating the same solution. This decreasing is done as follows:

�ij D .1 � �/ � �ij C � � �0
where � 2 [0; 1] is a parameter configuring the amount of decrease in the
pheromones. The global update is done when all the ants finish their walk. The
purpose of the global update is to influence the ants of the next generation. This
global update is formulated as

�ij D .1 � �/ � �ij C �=PERTURBEDCOST .sol_ best; �/

At the end of the walk of each ant, the classical local search called 3-opt (see [9,
15, 19] for the details about this heuristic) is applied on its generated solution, to
increase its quality.

The RMACS Approach

Let us define S� D f�1, �2, : : : g as the set of conservativeness levels which are
interesting for the decision maker. The RMACS is an approach which executes
jS� j number of ant colony systems concurrently. Each ant colony system focuses
on a different conservativeness value within the set S� . The purpose of these
multiple colonies is to generate a solution pool, containing solutions of different
conservativeness levels, so that the decision maker will analyze all these alternative
solutions, see the effect of the uncertainty on the problem instance at hand, and pick
the most practical solution.

In RMACS, an important feature is the sharing of solutions, with the help of a
shared memory. Up to
 number of generations, each ant colony of RMACS works
by itself without any communication. Beginning with
-th generation, an ant colony
does the following behaviors:

• Whenever an ant improves the best-known solution of its colony, that solution is
uploaded into the shared memory.
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• At each • number of generations, an ant colony scans the shared memory to see if
there are better solutions, than the ant colony’s own best solution, when evaluated
according to that colony’s conservativeness degree. If such a better solution exists
in the shared memory, the colony imports that better solution by forcing one of
its ants to repeat its moves.

The usefulness of this solution sharing approach is that, by scanning the shared
memory, the ant colonies stop working on dominated solutions, import better
solutions from each other, and improve those solutions according to their own
conservativeness degrees. In the end, a reliable solution pool without dominated
solutions is generated.

Experimental Results

In this section, we present our results obtained from Homberger instances, down-
loadable from [25]. The Homberger instances that we used are:

• c1_2_1, in which the customers are clustered
• r1_2_1, in which the customers are randomly placed
• rc1_2_1, in which some customers are clustered and some customers are

randomly placed

These considered instances originally have time window constraints as well.
Since, in this study, we do not consider time window constraints, those constraints
are ignored. Also, these instances were originally designed for the deterministic
CVRP. We modified these instances in this study, so that the problem data are
intervals to represent the uncertainty, not exactly known numbers. The modification
of the problem data is done as follows. Let us define c0

ij as the cost of the edge (i,
j) in the deterministic instance. The cost interval of the edge (i, j) in the CVRPU

counterpart of this instance becomes

	
cN ij

I cij



D
h
c0
ij I RND

�
c0
ij ; c

0
ij � UF

�i
;

where RND(a, b) means a random number between a and b, and UF is the
uncertainty factor parameter, set as 1.5 in our experiments.

The experiments were done on a computer with Intel Core 2 Duo P9600
2.66 GHz processor with 4 GB of RAM. The RMACS was implemented in C
programming language, with the parameter settings as ˛D 0.99, ˇD 1, and �D 0.1,
with execution time limit of 1,200 s. The parameters related to the solution sharing
were set as 
D 9,000 and •D 500. The considered conservativeness degrees are
S� D f0, 10, 25, 50, 75, 100, 150, Mg, where M � (jLj C jVj�1) is a number big
enough to make all the cost assumptions equal to their highest values.

The results obtained are presented in Tables 1, 2, and 3. Each table is a solution
pool found for an instance, in which each row represents a solution found with
a different conservativeness degree. In these tables, � means the conservativeness
degree of the ant colony during the optimization process, and ‡ means the scenario
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Table 1 Results obtained for the instance c1_2_1

‡ D 0 ‡ D 10 ‡ D 25 ‡ D 50 ‡ D 75 ‡ D 100 ‡ D 150 ‡ D M

� D 0 2,605.96 2,866.45 3,034.68 3,153.61 3,197.64 3,226.57 3,259.61 3,275.24
� D 10 2,681.62 2,820.88 2,928.86 3,019.85 3,069.50 3,101.97 3,140.08 3,155.45
� D 25 2,699.18 2,824.15 2,914.27 3,003.31 3,052.59 3,084.66 3,123.87 3,139.54
� D 50 2,732.36 2,848.15 2,930.63 2,999.28 3,039.24 3,066.04 3,098.75 3,114.38
� D 75 2,734.13 2,849.92 2,932.41 2,999.83 3,038.34 3,064.58 3,096.96 3,112.59
� D 100 2,734.13 2,849.92 2,932.41 2,999.83 3,038.34 3,064.58 3,096.96 3,112.59
� D 150 2,758.34 2,871.99 2,943.99 3,005.08 3,041.88 3,067.79 3,099.15 3,114.47
� D M 2,734.13 2,849.92 2,932.41 2,999.83 3,038.34 3,064.58 3,096.96 3,112.59

Table 2 Results obtained for the instance r1_2_1

‡ D 0 ‡ D 10 ‡ D 25 ‡ D 50 ‡ D 75 ‡ D 100 ‡ D 150 ‡ D M

� D 0 3,051.78 3,227.33 3,374.83 3,526.16 3,630.15 3,699.60 3,787.16 3,826.32
� D 10 3,100.14 3,198.38 3,308.91 3,439.13 3,527.06 3,592.27 3,676.18 3,711.87
� D 25 3,099.16 3,199.03 3,308.50 3,438.54 3,525.68 3,589.44 3,670.35 3,705.07
� D 50 3,099.16 3,199.03 3,308.50 3,438.54 3,525.68 3,589.44 3,670.35 3,705.07
� D 75 3,103.04 3,201.29 3,310.76 3,438.67 3,525.03 3,588.31 3,670.2 3,705.46
� D 100 3,106.31 3,205.29 3,314.76 3,441.95 3,526.48 3,586.82 3,666.77 3,700.49
� D 150 3,099.14 3,207.50 3,316.19 3,441.05 3,525.30 3,585.26 3,665.06 3,698.77
� D M 3,099.49 3,208.58 3,317.27 3,442.13 3,525.64 3,585.20 3,664.99 3,698.71

Table 3 Results obtained for the instance rc1_2_1

‡ D 0 ‡ D 10 ‡ D 25 ‡ D 50 ‡ D 75 ‡ D 100 ‡ D 150 ‡ D M

� D 0 2,959.80 3,174.16 3,359.28 3,523.84 3,617.19 3,672.79 3,734.40 3,759.04
� D 10 2,995.42 3,144.16 3,283.99 3,422.38 3,504.58 3,554.70 3,610.70 3,632.00
� D 25 3,000.15 3,145.25 3,277.53 3,410.51 3,492.55 3,542.90 3,598.97 3,620.67
� D 50 3,010.08 3,155.25 3,272.44 3,391.08 3,466.75 3,514.89 3,568.81 3,589.72
� D 75 3,012.80 3,163.98 3,289.29 3,409.08 3,481.80 3,528.47 3,582.41 3,602.34
� D 100 3,008.45 3,159.64 3,289.65 3,411.82 3,482.49 3,527.72 3,580.69 3,600.35
� D 150 3,009.94 3,154.56 3,286.90 3,409.16 3,484.08 3,530.92 3,585.13 3,606.17
� D M 3,007.04 3,156.12 3,274.97 3,389.75 3,462.04 3,506.51 3,558.52 3,578.99

assumption during the final evaluation of the result after the optimization (i.e., what
would be the cost of a solution sol if ‡ number of edges would be perturbed toward
their highest values, calculated by PerturbedCost(sol,‡)).

In each solution pool table, it can be seen that there are many different solutions,
each providing the various costs at various scenario assumptions, providing the
decision maker a set of alternatives. The fact that similar results are found on
different types of instances shows the practicality of RMACS: different types of
customer placing policies can be handled.

To analyze the effects of the uncertainty on this problem, let us make a detailed
analysis on one of these instances, r1_2_1, with the help of Fig. 3. In the figure, it
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Fig. 3 The solution pool generated for the instance rc1_2_1

can be observed that the least conservative solution (�D 0) has the potential to be
the cheapest solution at the best-case scenario, but also the most expensive solution
at the worst-case scenario. Therefore, it is not a robust solution. A slight increase
in the conservativeness degree to the values � D 10 and � D 25 seems to decrease
the cost at the worst-case scenario significantly, providing much more robustness. In
the region � � 25, the solutions are very similar to each other, behaving almost the
same, meaning that configuring the degree of conservativeness provides a variety in
possible behaviors (or provides the trade-off between the worst-case and the best-
case cost) up to �D 25, in the case of this instance.

Conclusions

The robust multiple ant colony system, RMACS, was tested on instances with 200
customers, the instance types being the ones with the clustered customers, the ones
with the randomly placed customers, and the mixed ones. It was seen that the
RMACS approach was able to generate solution pools with alternative solutions
of different conservativeness degrees, experimentally showing the practicality of
RMACS in providing the decision maker an opportunity to analyze the effects of
the uncertainty on the problem at hand.

Acknowledgment N. E. Toklu was supported by Hasler Stiftung through project 13002 “Meta-
heuristic approaches for robust optimization.”
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Abstract Granger causality (GC) is one of the most popular measures to reveal
causality influence of time series based on the estimated linear regression model
and has been widely applied in economics and neuroscience due to its reliability,
clarity, and robustness.

Granger causality has recently received increasing attention to study causal
interactions of neurophysiological data; in this chapter we have developed a model
of causality between the respiratory, hemodynamic, and cardiac signals, more
specifically, a study based on the Granger causality between three ECG leads,
blood pressure, central venous pressure, pulmonary arterial pressure, respiratory
impedance, and airway CO2. We selected 187 patients of 250 for our study, taken
from Montreal General Hospital/MF (Massachusetts General Hospital/Marquette
Foundation) databases. These signals are ideal for understanding causality and
coupling (unidirectional or bidirectional).

In this approach we aim to analyze and understand the interactions between
the signals mentioned above, and identify the significance of this interaction. The
originality of this chapter is the number of variables selected for the study. Unlike
the majority of studies that are conducted only with two variables, our study is
multidimensional. The main advantage of a multidimensional and multivariable
model is to solve a myriad of problems which is not the case in the two-dimensional
studies.
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Introduction

Numerous studies in recent years have been devoted to the evaluation of causality;
several applications of the latter are omnipresent in areas ranging from the economy
[1, 2], climatology [3–5], directed information theory in networks [6], psychiatry
[7], brain imaging field [8] and especially the analysis of biological systems, with
a very special emphasis on the neural field [9–20], and the study of cardiac signals
[21–29].

Although this one is not the universal definition of causality [30], it is commonly
accepted that the notion of causality of two events describes why one event is caused
by the other. According to this very general definition, in this chapter, we will look
at the cardiovascular field. The importance of causality in this case appears in the
spontaneous cardiovascular variability and complexity of cardiovascular regulation.

The detection and modeling of this causality depends strictly on all signals
exploited to describe the observed interactions [31]. Characterization of the inter-
dependence between the sensed signals is one of the most critical problems in
cardiovascular pathophysiology [32]. From this idea, we can independently evaluate
by what is called the strength of the relationship between two signals to a minimum.

The causality analysis has the ability to provide an original framework to identify
the responsible mechanism for the spontaneous variations without the intervention
of an artificial stimulus such as pharmacological intervention, an experiment on the
patient or more severely surgery to obtain a specific causal relationship.

Causality is usually tested in time [33], frequency [34], and information domains
[30]. In this chapter, methods assessing causality in time domain were chosen
because they do not need to assume that the cardiovascular control mechanisms
occur along specific temporal scales and the distribution of the statistic assessing
causality under the null hypothesis of absence of a causal relationship between the
two series is well known, thus allowing to easily keep under control the percentage
of false causality detections.

In our case, we will look at the Granger causality because it perfectly studies
multivariable models (several variables at once). The mathematical formulation of
causality in measurable terms of predictability was given by Wiener [35]. Granger
[1] introduced a specific notion of causality into time series analysis by evaluation
of predictability autoregressive models.

The cardiovascular system is regulated by numerous control mechanisms acting
to guarantee that the necessities of each physiological area are satisfied and that
cardiovascular variables do not assume values incompatible with life. In the latter
application, a large body of work has been developed to assess causality in both
cardiovascular [24, 25] and cardiorespiratory [27] interactions.

Unfortunately, the world of physiological signals describing the behavior of a
given system is not affected; it means that there’s a restriction in the use of necessary
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physiological signals, which implies a certain limitation in reliability of causality.
To achieve this, we can give a small example of a study of causality between heart
period (HP) and systolic arterial pressure (SAP), it would be preferable to include
breathing (R) in the test [36]. According to several studies, neglecting (R), this
can lead us to erroneous results in the causal interpretation mentioned above, this
observation suggests that (R) should be included in this causality, the validation of
this hypothesis has been approved by work [40] and they were able to uncover the
importance of (R) in the causation (HP) and (SAP).

This demonstration gave us the reflex to study a large number of physiological
signals from the outset, to eliminate any gaps, ignorance, and negligence of other
signals, multivariate system identification approaches permit the dynamic charac-
terization of the causal interactions among cardiovascular regulatory mechanisms
responsible for coupling the variability between signals (e.g., heart rate, arterial
pressure, and respiratory signal) [38]. Multivariate characterization is not solely
helpful both to derive information about the gain and phase of the relationship
linking any signal pair but also to estimate causality (i.e., who drives whom) in
multivariate recordings.

Due to cardiopulmonary anatomy, there are strong mechanical interactions
between the mechanical activity of the heart and respiratory movements which
implies a change in atrial and pulmonary receptors [39]. The approach was applied
to three ECG leads, ART (arterial pressure), PAP (pulmonary arterial pressure),
CVP (central venous pressure), respiratory impedance, and airways CO2, taken from
the MGH/MF (Massachusetts General Hospital/Foundation Marquette) database.
These signals are ideal for understanding causality and coupling (unidirectional or
bidirectional).

The goal of the chapter is to propose to study the direction of causality between
the signals mentioned previously; our contribution in this chapter is based on the
following points:

• 3D Analysis of cardiovascular signals.
• Study bivariate/multivariate between the cardiovascular, respiratory, and hemo-

dynamic signals.
• Have the necessary information and details for our next work to develop

telemedicine applications on smartphones and especially on the part intended
to signal analysis.

The remainder of this chapter is organized as follows: In “Definitions of
Some Variables Studied,” we give some definition of the variables. In “Data and
Methodology,” we will establish the data used and the methodology to follow.
Then, in “The Method and Findings,” we present the model used and the result
obtained. And finally in “Discussions,” we lead an analysis, scientific discussion,
and a projection of perspectives.
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Definitions of Some Variables Studied

ECG leads: Lead systems allow you to look at the heart from different angles. Each
different angle is called a lead. The different leads can be compared to radiographs
taken from different angles.

ART: Blood pressure is the pressure of blood in the arteries, also referred to as blood
pressure because this pressure is the force exerted by the blood against the walls of
arteries, tends the wall of the artery.

CVP: Central venous pressure (CVP) also known as right atrial pressure (RAP)
describes the pressure of blood in the thoracic vena cava near the right atrium of
the heart; it reflects the amount of blood returning to heart and the heart’s ability to
pump blood into the arterial system.

PAP: Pulmonary arterial pressure measures the pressure in the pulmonary arteries,
the latter carries blood from the right side of the heart to the lungs.

Data and Methodology

Data Analysis

The Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
database is a comprehensive collection of electronic records of hemodynamic and
electrocardiographic signals of stable and unstable patients in intensive care units,
operating rooms, and cath labs heart. It is the result of collaboration between
physicians, biomedical engineers, and nurses of the Massachusetts General Hospital
[40], which includes three ECG leads, arterial pressure, pulmonary arterial pressure,
central venous pressure, respiratory impedance, and airway CO2. This multidimen-
sional cardiac data collected from various parts of body can effectively imitate the
signals from various body sensor nodes.

The original dataset contains total 250 sets of cardiac signals, each containing
12–86 min in most cases are about an hour of recording. We selected 187 patients
were selected on 250 for our simulation and contain all the signals mentioned above
unlike the rest that does not have the typical data to our studies, these signals
include cardiac events such as extrasystole, premature supraventricular tachycardia,
bradycardia, extrasystole and ventricular stimulation, which are manually annotated
by clinical professionals.

Methodology

In the analysis of the causality relationship, the choice of the appropriate tech-
nique is an important theoretical and empirical question. Granger causality is
the most appropriate technique to study the relationship between hemodynamic,
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cardiorespiratory, and electrocardiographic signals. The empirical strategy used in
this chapter can be divided into three main stages. First, unit root tests in series are
undertaken to determine the stationarity of the series. Second, the AIC (Ackaik) and
SIC (Schwarz) criteria are used to determine the optimal lag used in the method
of causation. Third and finally, we will test for multivariate causality proposed by
Granger.

The Method and Findings

The Model Specification

The first causality was proposed and introduced by Wiener and Granger (Nobel
2003) and became a fundamental theory for the analysis of dynamic relationships
between time series. Sims presented a slightly different specification of test by
considering that future values help explain the present values.

In the remainder of this chapter, we will look at the multivariate Grange causality.
Before beginning the multivariate Granger causality, it is necessary to move to the
bivariate causality to see the difference and the limitation of the latter.

Bivariate Granger Causality Test

In this part, we will try to present the definitions of linear causality and discuss the
following tests to identify the causal relationship between these two variables.

Granger causality test is designed to detect causal direction between two time
series by examining a correlation between the current value of one variable and
the past values of another variable. Based on Granger’s definition of causality
Y is strictly Granger causing X if the conditional distribution of Xt, given the
past observation Xt�1; Xt�2; : : : and Yt�1; Yt�2; : : : differs from the conditional
distribution of Xt, given the past observation Xt�1; Xt�2; : : : only.

Intuitively, Y is a Granger cause of X if adding past observations of Y to the
information set increases the knowledge on the distribution of current values of X.
More precisely, the linear Granger causality is conducted based on the following
two-equation model:

xt D a1 C
kX

iD1
’ixt�i C

kX
iD1
“iyt�i C e1t (1)

and

yt D a2 C
kX

iD1
�ixt�i C

kX
iD1
�iyt�i C e2t (2)

Where all fxtg and f ytg are stationary variables, e1t and e2t are the disturbances
satisfying the regularity assumptions of the classical linear regression model and k
is the optimal lag.
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We say that the variable f ytg is not to Granger causality fxtg if and only if “i D 0

in (1), for any i D 1; : : : ; k. To better explain this, the past values of f ytg do not
provide any additional information on the performance of fxtg. In the same manner,
and vice versa, fxtg does not Granger causality f ytg if and only if �i D 0 in (2), for
any i D 1; : : : ; k:

We can test the causal relationships between two variables fxtg and f ytg by
checking the null hypothesis separately:
H1
0 W “1 D � � � D “k D 0 and H2

0 W �1 D � � � D �k D 0

1. If both Hypotheses H 1
0 and H 2

0 are accepted, there is no linear causal relationship
between fx tg and f y tg.

2. If hypothesis H 1
0 is accepted but hypothesis H 2

0 is rejected, then there exists
linear causality running unidirectionally from fx tg to f y tg.

3. If hypothesis H 1
0 is rejected but hypothesis H 2

0 is accepted, then there exists
linear causality running unidirectionally from fy tg to f x tg.

4. If both Hypotheses H 1
0 and H 2

0 are rejected, then there is feedback linear causal
relationship between fx tg and f y tg.

The purpose of the multidimensional study is that it allows us to quantitatively
analyze and respond to a myriad of problems and suggestions which is not the case
in bivariate studies (multivariate Granger causality: an estimation framework based
on factorization of the spectral density matrix).

Multivariate Granger Causality

Consider a p dimensional multivariate stochastic process, X .t/ D Œxt; yt; : : : ; zt
T,

where the rank of the original matrix X(t) is [p, 1], we can estimate the model as
MVAR (multivariate autoregressive) result:

8
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(3)

where Aij(K) is the coefficient at K Th lag and i(t) is a corresponding error terms.
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F-Test

Several statistics could be used to test the above hypotheses; one of the most
commonly used statistics is the standard F-test. It is a statistical hypothesis test for
testing the equality of two variances by taking the ratio of the two variances, it can
be represented by:

F � test D ¢2x
¢2y

(4)

Our Equations

First equation:
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Second equation:
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Third equation:
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We discussed earlier, we will try to make a causality test in three dimensions,
after extensive research of the model, and it was found that could write our
mathematical equations
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Empirical Result

Before beginning our results, we must clarify some details and signs:

• Corresponds to the causal direction between three ECG leads to (ART, CVP, PAP,
RESP, and CO2).

• Corresponds to the causal direction between (ART, CVP, PAP, RESP, and CO2)
to three ECG leads.

• *: Indicates statistical significance at 1 %.
• A value above the sign, is the value of F-statistic, which is considered a measure

of the correlation between the variables studied.
• A value above the sign, which is in brackets, corresponds to the value of the

probability of causation.
• (x. E x): (x exponential x).
• MGH Number: corresponds to a given patient.

The displayed results are partial; we only look at a sample of 30 patients
randomly chosen, all this in aim of showing the methodology followed for causality.
In our chapter, the following tables summarize the results obtained and the rate of
causality in each direction represented by the F-statistic seen previously and the
corresponding probability.

MGH002
Lags 46 ART CVP PAP RESP CO2

ECG1 13.4646* 5.1146* 11.8814* 1.7138* 1.6459*

(8.E-100) (5.E-27) (1.E-85) (0.0019) (0.0038)

ECG2 12.3759* 4.8100* 12.040* 1.3941 1.3370

(5.E-90) (1.E-24) (6.E-87) (0.0399) (0.0631)

ECG3 5.80308* 3.13526* 7.27528* 0.83496 0.83210

(1.E-32) (5.E-12) (5.E-45) (0.7789) 0.7835
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MGH005
Lags 46 ART CVP PAP RESP CO2

ECG1 3.3758* 5.1716* 8.2914* 6.3103* 5.0512*

(1.E-13) (2.E-27) (8.E-54) (7.E-37) (2.E-26)

ECG2 3.5804* 3.5811* 3.8269* 5.2412* 3.6362*

(3.E-15) (3.E-15) (5.E-17) (5.E-28) (1.E-15)

ECG3 4.8860* 4.2643* 8.1746* 3.1918* 3.1083*

(3.E-25) (2.E-20) (9.E-53) (2.E-12) (8.E-12)

MGH010
Lags 46 ART CVP PAP RESP CO2

ECG1 1.2906 1.4608 1.3528 1.1898 1.3872

(0.0897) (0.0225) (0.0557) (0.1772) (0.0422)
ECG2 1.2241 1.4560 2.0112* 1.6922* 1.8152*

(0.1421) (0.0235) (6.E-05) (0.0024) (0.0006)

ECG3 1.2631 1.3919 1.5093 1.6529* 1.8584*

(0.1088) (0.0406) (0.0145) (0.0035) (0.0004)

MGH016
Lags 46 ART CVP PAP RESP CO2

ECG1 5.81434* 9.07583* 8.58176* 8.94331* 6.14600*

(9.E-33) (1.E-60) (2.E-56) (2.E-59) (2.E-35)

ECG2 5.51416* 4.90756* 6.58831* 4.93960* 4.42447*

(3.E-30) (2.E-25) (3.E-39) (1.E-25) (1.E-21)

ECG3 3.86895* 4.25168* 4.58885* 4.40791* 3.79522*

(3.E-17) (3.E-20) (7.E-23) (2.E-21) (9.E-17)
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MGH019
Lags 46 ART CVP PAP RESP CO2

ECG1 13.1779* 63.8833* 37.2080* 15.3122* 4.91764*

(5 E-99) (0.0000) (0.0000) (2.E-116) (2.E-25)

ECG2 30.9990* 17.460* 32.044* 21.700* 19.270*

(2.E-259) (5.E-136) (7.E-269) (1.E-174) (2.E-152)

ECG3 36.4516* 37.4346* 31.4419* 18.0569* 17.6442*

(0.0000) (0.0000) (2.E-263) (2.E-141) (1.E-137)

MGH025
Lags 46 ART CVP PAP RESP CO2

ECG1 18.9841* 21.9002* 20.9682* 14.2303* 14.2677*

(6.E-150) (2.E-176) (5.E-168) (1.E-106) (5.E-107)

ECG2 16.8669* 18.2168* 17.6601* 14.084* 12.5292*

(1.E-130) (6.E-143) (7.E-138) (8.E-105) (2.E-91)

ECG3 21.9698* 37.8166* 37.6249* 34.7434* 30.9402*

(4.E-177) (0.0000) (0.0000) (2.E-293) (7.E-259)

MGH030
Lags 45 ART CVP PAP RESP CO2

ECG1 6.80357* 6.69719* 16.6775* 10.6880* 11.7569*

(3.E-40) (3.E-39) (3.E-126) (2.E-73) (1.E-82)

ECG2 9.29697* 9.53410* 8.45248* 8.85198* 19.4575*

(5.E-60) (5.E-62) (6 E-53) (3 E-56) (9.E-148)

ECG3 4.39468* 3.27079* 17.1573* 12.3559* 12.5787*

(6.E-21) (1.E-12) (2.E-130) (6.E-88) (7.E-90)
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MGH038
Lags 46 ART CVP PAP RESP CO2

ECG1 34.1336* 42.0905* 45.3102* 29.5296* 31.7334*

(8.E-288) (0.0000) (0.0000) (5.E-246) (5.E-266)

ECG2 18.9646* 21.7894* 24.6819* 12.1942* 13.3511*

(1.E-149) (2.E-175) (7.E-202) (2.E-88) (9.E-99)

ECG3 23.5344* 29.4159* 30.9951* 19.4842* 23.2000*

(2.E-191) (5.E-245) (2.E-259) (2.E-154) (2.E-188)

MGH040
Lags 46 ART CVP PAP RESP CO2

ECG1 8.36020* 37.9324* 8.91593* 274.813* 297.264*

(2.E-54) (0.0000) (3.E-59) (0.0000) (0.0000)

ECG2 0.89056 1.19442 1.16756 1.71417* 1.44555

(0.6825) (0.1723) (0.2032) (0.0019) (0.0258)

ECG3 1.23840 0.61661 1.88425* 1.16677 1.14884

(0.1292) (0.9809) (0.0003) (0.2042) (0.2270)

MGH051
Lags 46 ART CVP PAP RESP CO2

ECG1 2.24987* 2.95403* 3.94570* 1.22965 1.77085*

(3.E-06) (9.E-11) (7.E-18) (0.1371) (0.0010)

ECG2 1.69168* 0.47920 1.72074* 1.00992 1.30522

(0.0024) (0.9989) (0.0017) (0.4536) (0.0803)

ECG3 2.16370* 0.41638 2.28666* 0.78672 1.57048*

(8.E-06) (0.9998) (2.E-06) (0.8496) (0.0076)
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MGH053
Lags 46 ART CVP PAP RESP CO2

ECG1 10.3098* 5.50973* 6.75286* 10.1978* 10.8550*

(2.E-71) (3.E-30) (1.E-40) (1.E-70) (2.E-76)

ECG2 4.73162* 4.03205* 5.24456* 1.77028* 4.92457*

(6.E-24) (1.E-18) (4.E-28) (0.0010) (2.E-25)

ECG3 21.9699* 7.94890* 15.4340* 24.9747* 24.6144*

(4.E-77) (8.E-51) (1.E-117) (1.E-204) (3.E-201)

MGH057
Lags 46 ART CVP PAP RESP CO2

ECG1 4.67572* 1.21919 3.39351* 7.15210* 3.57831*

(2.E-23) (0.1469) (8.E-14) (5.E-44) (4.E-15)

ECG2 4.67572* 2.18725* 3.6724* 3.73050* 1.46234

(2.E-23) (6.E-06) (7.E-16) (3.E-16) (0.0222)

ECG3 4.99836* 1.43633 5.08211* 6.47808* 4.33791*

(4.E-26) (0.0279) (9.E-27) (3.E-38) (7.E-21)

MGH063
Lags 46 ART CVP PAP RESP CO2

ECG1 18.4866* 11.2375* 6.15746* 2.87877* 1.32860

(2.E-145) (8.E-80) (1.E-35) (3.E-10) (0.0673)

ECG2 1.05992 1.06988 1.74440* 1.58709* 2.75945*

(0.3630) (0.3460) (0.0013) (0.0069) (2.E-09)

ECG3 0.97387 1.30668 1.20308 1.00263 0.44818

(0.5226) (0.0795) (0.1631) (0.4674) (0.9996)
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MGH083
Lags 46 ART CVP PAP RESP CO2

ECG1 12.7866* 22.5566* 20.9038* 17.7196* 14.8111*

(1.E-93) (2.E-182) (2.E-67) (2.E-138) (6.E-112)

ECG2 7.61496* 9.96653* 9.84395* 13.3686* 9.15010*

(6.E-48) (2.E-168) (2.E-67) (6.E-99) (3.E-61)

ECG3 7.68454* 11.0423* 9.93059* 12.8800* 8.41489*

(1.E-48) (5.E-78) (3.E-68) (2.E-94) (7.E-55)

MGH089
Lags 46 ART CVP PAP RESP CO2

ECG1 73.1543* 95.5537* 31.9302* 31.0302* 23.8196*

(0.000) (0.000) (8.E-268) (1.E-259) (5.E-194)

ECG2 11.3719* 10.9364* 2.96698* 5.51151* 2.26551*

(5.E-81) (4.E-77) (7.E-11) (3.E-30) (2.E-06)

ECG3 24.1756* 33.800* 25.4177* 25.3225* 18.7283*

(3.E-197) (9.E-285) (1.E-208) (1.E-207) (1.E-147)

MGH092
Lags 46 ART CVP PAP RESP CO2

ECG1 2.08356* 4.54662* 6.58337* 4.53687* 5.11720*

(2.E-05) (2.E-22) (4.E-39) (2.E-22) (5.E-27)

ECG2 1.80886* 6.06665* 7.47223* 5.26159* 3.28409*

(0.0007) (8.E-35) (1.E-46) (3.E-28) (5.E-13)

ECG3 1.81199* 10.0576* 21.9470* 11.5843* 2.75473*

(0.0006) (3.E-69) (6.E-177) (7.E-83) (2.E-09)
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MGH100
Lags 46 ART CVP PAP RESP CO2

ECG1 4.91054* 16.0426* 3.79936* 20.7232* 3.24029*

(2.E-25) (4.E-123) (8.E-17) (9.E-166) (1.E-12)

ECG2 0.79440 7.89769* 1.16490 8.52316* 1.21279

(0.8393) (2.E-50) (0.2065) (8.E-56) (0.1532)

ECG3 8.75542* 15.9131* 8.65074* 17.7816* 9.32829*

(7.E-58) (6.E-122) (6.E-57) (6.E-139) (7.E-63)

MGH112
Lags 46 ART CVP PAP RESP CO2

ECG1 4.15145* 3.49901* 11.9535* 12.3790* 3.28641*

(2.E-19) (1.E-14) (3.E-86) (5.E-50) (4.E-13)

ECG2 5.43397* 3.44163* 10.0673* 8.05470* 18.3041*

(1.E-29) (3.E-14) (2.E-69) (9.E-52) (1.E-143)

ECG3 34.8159* 23.0383* 29.4004* 23.7304* 55.1399*

(6.E-294) (7.E-187) (9.E-245) (3.E-193) (0.0000)

MGH120
Lags 41 ART CVP PAP RESP CO2

ECG1 3.10504* 18.4799* 2.90835* 1.37478 2.97306*

(1.E-10) (4.E-130) (2.E-09) (0.0558) (6.E-10)

ECG2 1.91610* 8.35619* 1.03304 1.13946 1.95470*

(0.0004) (9.E-49) (0.4125) (0.2494) (0.0003)

ECG3 5.81538* 20.848* 5.41456* 2.19320* 4.85186*

(2.E-29) (2.E-149) (2.E-26) (2.E-05) (2.E-22)
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MGH125
Lags 46 ART CVP PAP RESP CO2

ECG1 37.2982* 59.1995* 56.2916* 41.9906* 46.1347*

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

ECG2 23.9073* 32.6219* 34.3082* 27.3919* 26.0281*

(8.E-195) (4.E-274) (2.E-289) (1.E-226) (4.E-214)

ECG3 30.9119* 43.8797* 44.4954* 31.8713* 36.9114*

(1.E-258) (0.0000) (0.0000) (3.E-267) (0.0000)

MGH133
Lags 46 ART CVP PAP RESP CO2

ECG1 36.6303* 7.08807* 20.1787* 7.89099* 33.9250*

(0.0000) (2.E-43) (8.E-161) (2.E-50) (7.E-286)

ECG2 26.6880* 4.67989* 18.5284* 5.10445* 26.7680*

(4.E-220) (1.E-23) (9.E-146) (6.E-27) (7.E-221)

ECG3 11.8091* 5.58807* 11.1692* 6.56718* 10.2525*

(7.E-85) (1.E-30) (3.E-79) (5.E-39) (5.E-71)

MGH138
Lags 45 ART CVP PAP RESP CO2

ECG1 3.12395* 23.4754* 11.4000* 22.2300* 3.46775*

(1.E-11) (7.E-187) (1.E-79) (9.E176) (4.E-14)

ECG2 14.7510* 7.75526* 24.6622* 7.27460* 17.9733*

(4.E-109) (4.E-48) (2.E-197) (4.E-44) (9.E-138)

ECG3 2.65184* 30.2701* 8.61800* 22.8755* 2.22336*

(1.E-08) (2.E-247) (2.E-55) (2.E-181) (5.E-06)
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MGH140
Lags 46 ART CVP PAP RESP CO2

ECG1 10.6366* 16.0300* 2.64371* 5.33928* 1.78006*

(7.E-73) (2.E-120) (1.E-08) (3.E-28) (0.0010)

ECG2 2.74211* 4.28183* 0.59752 1.26172 17.6785*

(3.E-09) (5.E-120) (0.9852) (0.1202) (4.E-135)

ECG3 1.10066 1.47381 0.55523 1.40337 53.3474*

(0.2976) (0.0211) (0.9932) (0.0384) (0.0000)

MGH145
Lags 46 ART CVP PAP RESP CO2

ECG1 23.3972* 37.4371* 6.08542* 48.1748* 33.5794*

(4.E-190) (0.0000) (5.E-35) (0.0000) (9.E-283)

ECG2 8.96339* 29.8548* 1.67581* 17.5093* 10.5899*

(1.E-59) (5.E-249) (0.0028) (2.E-136) (5.E-74)

ECG3 4.27008* 32.6098* 1.29463 28.2415* 11.3783*

(2.E-20) (5.E-274) (0.0869) (3.E-234) (5.E-81)

MGH149
Lags 42 ART CVP PAP RESP CO2

ECG1 11.4165* 60.0942* 50.2848* 25.8305* 0.85858

(1.E-74) (0.000) (0.000) (1.E-194) (0.7282)

ECG2 4.17901* 17.564* 12.394* 19.6183* 2.0663*

(4.E-18) (2.E-125) (1.E-82) (1.E-142) (6.E-05)

ECG3 5.30225* 17.5014* 14.5339* 18.8263* 2.81741*

(3.E-26) (5.E-125) (2.E-100) (5.E-136) (4.E-09)
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MGH157
Lags 46 ART CVP PAP RESP CO2

ECG1 6.39863* 44.7048* 42.9332* 70.5331* 35.5973*

(1.E-37) (0.0000) (0.0000) (0.0000) (5.E-301)

ECG2 20.2817* 41.8912* 80.1427* 97.6992* 33.1709*

(1.E-161) (0.0000) (0.0000) (0.0000) (4.E-279)

ECG3 12.7252* 23.8653* 38.6965* 42.1619* 19.8184*

(4.E-93) (2.E-194) (0.0000) (0.0000) (2.E-157)

MGH164
Lags 45 ART CVP PAP RESP CO2

ECG1 10.6244* 38.4463* 39.8908* 3.08118* 0.46746

(9.E-73) (0.000) (0.000) (2.E-11) (0.9199)

ECG2 14.8957* 30.153* 25.192* 24.0169* 4.5827*

(2.E-110) (2.E-246) (3 E-202) (9.E-192) (2.E-22)

ECG3 41.7183* 37.8544* 30.4166* 62.3338* 32.2493*

(0.0000) (0.0000) (8.E-249) (0.0000) (4.E-265)

MGH172
Lags 46 ART CVP PAP RESP CO2

ECG1 29.6336* 103.428* 98.9313* 14.0733* 15.5381*

(5.E-247) (0.0000) (0.0000) (3.E-105) (1.E-118)

ECG2 5.59478* 17.9636* 16.0905* 9.22566* 5.18213*

(6.E-31) (1.E-140) (1.E-123) (6.E-62) (1.E-27)

ECG3 7.74507* 5.19981* 2.82488* 9.66148* 12.2956*

(4.E-49) (1.E-27) (7.E-10) (8.E-66) (3.E-89)
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MGH177
Lags 46 ART CVP PAP RESP CO2

ECG1 1.63370* 1.95421* 1.63423* 1.62246* 5.68801*

(0.0043) (0.0001) (0.0043) (0.0048) (1.E-31)

ECG2 14.7421* 4.41430* 11.2246* 9.16150* 7.20844*

(2.E-111) (2.E-21) (7.E-80) (2.E-61) (2.E-44)

ECG3 0.96802 1.44906 4.72939* 1.05768 1.80505*

(0.5340) (0.0250) (6.E-24) (0.3668) (0.0007)

MGH182
Lags 46 ART CVP PAP RESP CO2

ECG1 7.39968* 9.08936* 9.27866* 9.78691* 6.90695*

(4 E-46) (9 E-61) (2.E-62) (6 E-67) (7 E-42)

ECG2 7.62345* 7.9467* 10.627* 9.12096* 8.97988*

(5 E-48) (8 E-51) (2 E-74) (5 E-61) (8 E-60)

ECG3 5.74363* 7.42181* 8.01550* 11.576* 9.77919*

(4.E-32) (3.E-46) (2.E-51) (8.E-83) (8.E-67)

MGH186
Lags 46 ART CVP PAP RESP CO2

ECG1 27.0971* 40.3905* 41.2741* 34.0191* 26.6640*

(7.E-224) (0.0000) (0.0000) (9.E-287) (6.E-220)

ECG2 4.67641* 5.41086* 6.47160* 5.78547* 4.84396*

(2.E-23) (2.E-29) (3.E-38) (2.E-32) (7.E-25)

ECG3 21.0929* 28.8383* 29.2925* 26.9987* 22.4236*

(4.E-169) (9.E-240) (7.E-244) (5.E-223) (3.E-181)
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MGH191
Lags 46 ART CVP PAP RESP CO2

ECG1 12.5219* 1.99626* 31.7273* 24.0795* 4.71440*

(3.E-91) (7.E-05) (5.E-226) (2.E-196) (8.E-24)

ECG2 4.41125* 1.80146* 10.9193* 7.43139* 1.38848

(2.E-21) (0.0007) (6.E-77) (2.E-46) (0.0418)

ECG3 8.60126* 1.30267 30.7626* 22.7601* 1.02445

(2.E-56) (0.0819) (3.E-257) (2.E-184) (0.4265)

MGH195
Lags 45 ART CVP PAP RESP CO2

ECG1 18.5186* 15.4394* 13.7019* 21.6494* 16.2000*

(1.E-145) (1.E-117) (6.E-102) (3.E-174) (1.E-124)

ECG2 41.2513* 10.1139* 30.5860* 9.51562* 35.1716*

(0.0000) (8.E-70) (1.E-255) (2.E-64) (3.E-297)

ECG3 8.53683* 10.1623* 8.12275* 24.5725* 9.66749*

(6.E-56) (3.E-70) (2.E-52) (7.E-202) (7.E-66)

MGH198
Lags 46 ART CVP PAP RESP CO2

ECG1 11.4239* 60.0530* 46.7532* 28.9611* 7.84743*

(2.E-81) (0.0000) (0.0000) (7.E-241) (6.E-50)

ECG2 7.34840* 34.0190* 28.3777* 21.4622* 4.70172*

(1.E-45) (9.E-287) (1.E-235) (2.E-172) (1.E-23)

ECG3 8.90013* 43.8040* 38.3062* 23.9416* 3.79965*

(4.E-59) (0.0000) (0.0000) (4.E-195) (8.E-17)
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MGH202
Lags 45 ART CVP PAP RESP CO2

ECG1 17.3587* 26.6135* 6.24928* 9.14276* 0.76490

(3.E-132) (7.E-215) (1.E-35) (6.E-60) (0.8737)

ECG2 10.5459* 15.500* 7.10172* 9.24585* 13.1002*

(4.E-72) (1.E-115) (1.E-42) (7.E-61) (9.E-95)

ECG3 85.9955* 67.0712* 71.9574* 3.19624* 13.3631*

(0.0000) (0.0000) (0.0000) (3.E-12) (8.E-97)

MGH227
Lags 46 ART CVP PAP RESP CO2

ECG1 17.3587* 26.6135* 6.24928* 9.14276* 0.76490

(3.E-132) (7.E-215) (1.E-35) (6.E-60) (0.8737)

ECG2 7.11487* 27.5168* 26.1840* 25.4145* 6.04228*

(1.E-43) (1.E-227) (1.E-215) (1.E-208) (1.E-34)

ECG3 2.68736* 32.9532* 36.3138* 33.3783* 2.52247*

(5.E-09) (4.E-277) (2.E-307) (6.E-281) (6.E-08)

MGH229
Lags 46 ART CVP PAP RESP CO2

ECG1 8.36020* 37.9324* 8.91593* 274.813* 297.264*

(2.E-54) (0.000) (3.E-59) (0.000) (0.0000)

ECG2 0.89056 1.1944 1.16756 1.71417* 1.44555

(0.6825) (0.1723) (0.2032) (0.0019) (0.0258)

ECG3 1.23840 0.61661 1.88425* 1.16677 1.14884

(0.1292) (0.9809) (0.0003) (0.2042) (0.2270)
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Discussions

In order to establish Granger causality on the multivariate analysis dealing with
cardiac, respiratory, and hemodynamic signals, in contrast to existing work on the
heart by taking generally only two signals (two variables) to maximum, our work
focuses on 187 patients, but we displayed the results for 13, because the required
sizes of the item force us to do that.

Our study was fulfilling on a case-by-case basis, we will accomplish that for two
patients randomly just to see correspondence (Granger causality/Current status of
patients).

MGH002: We evaluate after the measures that all blood pressures have a bilateral
relationship with the cardiac signals and the rate of CO2 and breathing as they only
have a bilateral relationship only with ECG1 and this may be explained by a vicious
circle generated by the heart ectopic that causes disorders of blood tensions which
in it turn acted on the heart highlighting the disorder.

MGH019: Atrial fibrillation is a serious phenomenon, which is characterized
by rapid acute contractions and disordering of the auricle of the heart, which can
cause cardiac arrest. Due to this, there is a dangerous increase in blood pressure, the
resulting physical stress causes hyperventilation, this pressure increase complicates
the task of the heart that has been already weakened and disturbs the phenomenon of
oxygen uptake and expulsion of CO2 from pulmonary alveoli, which aggravates the
situation of the heart that has a workload coupled with a deficiency of these drivers.

We will present a table that accounts the results in proportion to better understand
the influence of signals studied. The table below contains all the results (186
patients).

ALL patients ART (%) CVP (%) PAP (%) RESP (%) CO2 (%)

ECG1 85.71 73.46 91.83 83.67 75.51

97.91 81.63 93.87 93.87 93.87

ECG2 87.75 75.51 87.75 85.71 81.63

93.87 79.59 89.79 97.95 95.91

ECG3 79.59 69.38 85.71 83.67 71.42

87.75 77.55 91.83 89.79 91.83
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Conclusion

Our methods are based and validated by the Granger causality. The mathematical
search result obtained by this method could confirm the cardiorespiratory hemo-
dynamic anatomy. The knowledge and the quantitative understanding of these
interactions are critical in monitoring people at risk situations (awakening from
anesthesia, age-related pathologies that followed pregnant women, etc.). So for
our future telemedicine applications it is a real progress towards the complete
analysis of signals received. Based on these results, and with the inclusion of all
the interdependencies with these specific degrees protocols; that enable an excellent
intervention.
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