

tesis

SH 400.5 .C7 T7 1997

1000387538 Studies on some aspects of reproduction of mud crab, scylla serrata (forskal) / Tran Ngoc Hai.

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT)

-2216

 21030 KUALA T	ERENGGANU
	Lifiai sebelah

SH 400.5

1997

HAK MILIK PERPUSTAKAAN KUSTEM

STUDIES ON SOME ASPECTS OF REPRODUCTION OF MUD CRAB, SCYLLA SERRATA (FORSKAL)

TRAN NGOC HAI

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

1997

1000387538

STUDIES ON SOME ASPECTS OF REPRODUCTION OF MUD CRAB, SCYLLA SERRATA (FORSKAL)

By TRAN NGOC HAI

Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Science in the Faculty of Applied Science and Technology Universiti Putra Malaysia

December 1997

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my Chairman of Supervisory Committee, Dr. Anuar B. Hassan, for his invaluable guidance and supervising during my study at the Universiti Putra Malaysia. Without his encouragement, this work would never be completed. I am gratefully appreciated to the Committee Members. Prof. Dr. Law Ah Theem and Assoc. Prof. Dr. Noor Azhar Shazili, for their helpful suggestions, constructive comments and meaningful contribution to this work. My heartfelt gratitude is also especially expressed to the late Prof. Dr. Ang Kok Jee, whose generosity and invaluable guidance to me is deeply acknowledged.

l am gratefully indebted to SEARCA - SEAMEO for offering me a scholarship which has enabled me to pursue my Master program.

I would like to express my special gratitude to Cantho University for granting permission and encouraging me to pursue my study. The guidance and support of the Leaders, the Lecturers and my Colleagues are invaluable in my progress.

My acknowledgment is also due to the Universiti Putra Malaysia for offering me a Master program and a lovely academic environment. The guidance and support in every possible way of the Rector Board, the Dean of the Faculty of Applied Science and Technology and the Dean of the Graduate School are gratefully appreciated.

l also appreciate En. Abdul Aziz Bahsir, En. Roslan Mohd Shariff, and Puan Faridah Shamsuddin, Graduate School - UMP; Dr. Chan Hooi Har, Dr. Chan Eng Heng, Dr. Faizah Shaharom, Tuan Hj. Umar B. Saleh, Mr. Liew Hock Chark and other lectures for their kind support during my study.

I am greatly indebted to En. Yaacop Rasip, En. Mohd Ghani Hamid, Puan Kartini Mohamad and En. Mohd Zain for their enthusiastic and effective assistance during my work. Moral support from all my post-graduate friends are also acknowledged.

Words are not enough to express my heartfelt feelings to my late grandparents who looked after me in every possible way; to my late father who left me ever since I was an infant; to my beloved mother who offers me an untiring nurture and guidance and always expects my highest achievement; to my brothers and sisters who give my a lovely family atmosphere and strongly support me to pursue my study in any way; and to my fiancee who is also my colleague, for her moral support and very effective assistance in my work.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	ii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATES	xii
LIST OF ABBREVIATIONS	xiv
ABSTRACT	xv
ABSTRAK	x viii
CHAPTER	
I INTRODUCTION	1
II LITERATURE REVIEW	7
Classification of Mud Crab	7
Biological Characteristics of Mud Crab	8
Developing Stages	8
Maturation of Mud Crab	9
Mating, Spawning and Incubating Habit	10
Environmental Tolerance of Mud Crab	12
Resident Habit	14
Feeding Habit	15
Mud Crab in Artificial Reproduction	16
Broodstock Culture	16
Culture System	16
Broodstock Fattening	17

	Ovigerous Female Management	18
	Larval Rearing	19
	Rearing Tanks	19
	Rearing Density	20
	Feeding Regimes	20
	Environmental Management	21
	Light	23
	Water Exchange	24
	Aeration	25
	Substrate	27
	Constraints in Larval Rearing	28
	Culture of Juvenile Crab	29
	MATERIAL C AND METHODS	20
Ш		30
	Culture of Mud Crab Broodstocks	30
	Incubation of Crab Eggs	33
	Incubation of Eggs which Stuck to the Spawners	33
	Artificial Incubation of Crab Eggs in Different Salinity	34
	Artificial Incubation of Eggs with Different Density	35
	Experiments on Larval Rearing of Mud Crab	37
	Larval Rearing of Mud Crab under Different Photoperiod	37
	Larval Rearing of Mud Crab under Different Light Intensities	41
	Larval Rearing of Mud Crab with Different Feeding Regimes	42
	Experiments on Culture of Juvenile Crabs	4 7
	Culture of Juvenile Crabs in Different Water Salinities	47
	Culture of Juvenile Crabs with Different Diets	48
	Data Processing	51
	Place and Time for the Experiments	51

Survival Rate of Crabs	107
Culture of Juvenile Crabs with Different Diets	109
Molting of Crabs	109
Growth of Juvenile Crabs	112
Growth in Carapace Width	112
Growth in Carapace Length	114
Growth in Body Weight	115
Regression between CW and CL	117
Regression between CW and BW	118
Survival Rate of Crabs	118
V DISCUSSIONS	126
Spawning of Mud Crab Broodstocks	126
Incubation of Crab Eggs	131
Larval Rearing of Mud Crab	135
Larval Rearing of Mud Crab under Different Photoperiod	135
Larval Rearing of Mud Crab under Different Light Intensity	140
Larval Rearing of Mud Crab with Different Feeding Regimes	143
Culture of Juvenile Crabs	148
Culture of Juvenile Crabs in Different Salinity	148
Culture of Juvenile Crabs with Different Diets	154
VI SUMMARY AND CONCLUSIONS	163
Summary	163
Conclusions	168
Recommendation for Further Studies	169
BIBLIOGRAPHY	
VITAE	

LIST OF TABLES

Table		Page
l	Spawning Time and Habit of Mud Crabs in Captivity	53
2	Sizes of Mud Crab Spawners, Fecundity and Egg Sizes	56
3	Incubation of Crab Eggs that Stuck to the Spawners	61
4	Duration of Stages of Juvenile Crabs Cultured in Different Salinity (Expressed in day after starting culture)	97
5	Duration of Stages of Juvenile Crabs Cultured with Different Diets (Expressed in day after starting culture)	110

LIST OF FIGURES

Figure		Page
1	Feeding Regime for Mud Crab Larvae in Rearing	39
2	Feeding Regime in Treatment III	44
3	Feeding Regime in Treatment V	44
4	Feeding Regime in Treatment VI	44
5	Percentages of Egg Batches Spawned by Crabs Different in Size	55
6	Regression between Body Weight and Fecundity of Mud Crab	58
7	Regression between Spawning Time and Fecundity of Mud Crab	58
8	Regression between Body Weight of Crab Spawners and Percentages of Eggs that Stuck to Crabs and Fell Down	59
9	Regression between Average Water Temperature and Incubating Duration of Crab Eggs	63
10	Regression between Average Water Temperature and Hatching Duration of Crab Eggs	63
11	Regression between Body Weight of Crab Spawners and Fertilized Rate of Eggs	6 5
12	Regression between Average Water Temperature and Hatching Rate of Crab Eggs	6 5
13	Regression between Fertilized Rate and Hatching Rate of Crab Eggs	6 6
14	Size in Diameter of Crab Eggs During Incubation	6 7
15	Hatching of Crab Eggs Incubated Artificially in Different Water salinity	6 9

16	with Different Density	70
17	Average Duration of Larval Stages of Mud Crabs Reared under Different Photoperiods	73
18	Metamorphosis of Mud Crab Larvae Reared under Different Photoperiods	75
19	Average Body Length and Growth Rate of Mud Crab Larvae under Photoperiod Experiment	77
20	Body Length of Mud Crab Larvae Reared under Different Photoperiods	78
21	Average Survival Rate of Mud Crab Larvae Reared under Different Photoperiods	79
22	Duration of Larval Stages of Mud Crab Reared under Different Light Intensity	82
23	Metamorphosis of Mud Crab Larvae Reared under Different Light Intensity	84
24	Average Body Length and Growth Rate of Mud Crab Larvae under Light Intensity Experiment	86
25	Body Length of Mud Crab Larvae Reared under Different Light Intensity	87
26	Survival Rate of Mud Crab Larvae Reared under Different Light Intensity	88
27	Duration of Mud Crab Larvae Reared with Different Feeding Regimes	90
28	Metamorphosis of Mud Crab Larvae Reared with Different Feeding Regimes	91
29	Average Body Length and Growth Rate of Mud Crab Larvae under Feeding Experiment	93
30	Body Length of Mud Crab Larvae Reared with Different Feeding Regimes	93
31	Survival Rate of Mud Crab Larvae Reared with Different Feeding Regimes	9 6
32	Duration of Stages of Juvenile Crabs Reared in Different Water Salinity	9 9
33	Average CW and Growth Rate in CW of Juvenile Crabs from Experiment of Crab Culture in Different Salinity	1 0 0

34	CW of Juvenile Crabs Cultured in Different Salinity	101
35	Average CL and Growth Rate in CL of Juvenile Crabs from Experiment of Crab Culture in Different Salinity	102
36	CL of Juvenile Crabs Cultured in Different Salinity	103
37	Average BW and Growth Rate in BW of Juvenile Crabs from Experiment of Crab Culture in Different Salinity	104
38	BW of Juvenile Crabs Cultured in Different Salinity	105
39	Regression between CW and CL of Crabs Cultured in Different Salinity	106
40	Regression between CW and BW of Crabs Cultured in Different Salinity	107
41	Average Survival Rates of Juvenile Crabs Cultured in Different Salinity	108
42	Duration of Stages of Crabs Cultured with Different Diets	111
43	Average CW and Growth Rate in CW of Juvenile Crabs from Experiment of Crab Culture with Different Diets	112
44	CW of Juvenile Crabs Cultured with Different Diets	113
45	Average CL and Growth Rate in CL of Juvenile Crabs from Experiment of Crab Culture with Different Diets	114
46	CL of Juvenile Crabs Cultured with Different Diets	115
47	Average BW and Growth Rate in BW of Juvenile Crabs from Experiment of Crab Culture with Different Diets	116
48	BW of Juvenile Crabs Cultured with Different Diets	116
49	Regression between CW and CL of Crabs Cultured with Different Diets	117
<i>5</i> 0	Regression between CW and BW of Crabs Cultured with Different Diets	118
51	Survival Rate of Juvenile Crabs Cultured with Different Diets	119

LIST OF PLATES

Plate		Page
I	Fiber-glass Tanks for Culture of Mud Crab Broodstocks	32
2	Mud Crab Female with Eyestalks Bilaterally Ablated	32
3	Female Crab Spawning with Majority of Eggs Settling on the Tank Bottom	36
4	Artificial Incubation of Mud Crab Eggs in Plastic Bottles with Semisphere Bottom	36
5	Experiment on Larval rearing of Mud Crab under Different Photoperiod	45
6	Experiment on Larvae Rearing of Mud Crab under Different Light Intensity	45
7	Experiment on Larval Rearing of Mud Crab with Different Feeding Regimes	46
8	Experiment on Culture of Juvenile Crabs in Different Water Salinity	50
9	Experiment on Culture on Juvenile Crabs with Different Diets	50
10	Newly Spawned Eggs of Mud Crab (x 200)	120
11	Developing Eggs of Mud Crab (x 200)	120
12	Zoea Stage of Mud Crab Larvae (x 40)	121
13	Zoea2 Stage of Mud Crab Larvae (x 40)	121
14	Zoea3 Stage of Mud Crab Larvae (x 40)	122
15	Zoea4 Stage of Mud Crab Larvae (x 40)	122
16	Zoea5 Stage of Mud Crab Larvae (x 40)	123
17	Megalope Stage of Mud Crab Larvae (x 40)	124
18	Stages of Juvenile Crabs	125
19	Crab Broodstock Heavily Harbored with Barnacles on Gills	1 5 7
20	Crab Broodstock with Black Gill Disease	15 7

21	Crab Broodstock with Moribund Syndrome	158
22	Protozoan Hematodinium in Hemolymph of Broodstock (Giemsa Stain)	158
23	Negative-Gram Bacteria from Black Pot Disease of Crab Broodstock (Gram Stain)	159
24	Crab Broodstock Heavily Infested with Fouling Organisms	159
25	Molting Shed of Crab Broodstock	160
26	Fully Matured Female Crab	160
27	Female Crab Died after Incompletely Releasing Larvae	161
28	Crab Eggs Infested with Fouling Organisms (x 200)	161
29	Normal Larvae (Left) and Fouling Organism -Infested Larvae (Right) of Mud Crab	162
	•	

LIST OF ABBREVIATIONS

BL: Body Length

BW: Body Weight

C1: Crab1 Stage

C2: Crab2 Stage

C3: Crab3 Stage

C4: Crab4 Stage

C5: Crab5 Stage

C6: Crab6 Stage

C7: Crab7 Stage

CL: Carapace Length

CW: Carapace Width

D: Dark

L: Light

M: Megalopa Stage

Z₁: Zoea₁ Stage

Z2: Zoea2 Stage

Z3: Zoea3 Stage

Z4: Zoea4 Stage

Z5: Zoea5 Stage

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfillment of requirements for the degree of Master of Science.

STUDIES ON SOME ASPECTS OF REPRODUCTION OF MUD CRAB, SCYLLA SERRATA (FORSKAL)

 $\mathbf{B}\mathbf{y}$

Tran Ngoc Hai

December 1997

Chairman: Dr. Anuar B. Hassan

Faculty:

Faculty of Applied Science and Technology

Some aspects on reproduction of mud crab, Scylla serrata, in captive conditions were studied. By ablation of bilateral eyestalks of the female, 14 batches of eggs were spawned after 5 days of culture in fiberglass tanks. Spawning occurred at any time of day, month and year. Majority of crabs spawned without undergoing molting and mating under culture condition. Crab spawners were mainly in size of 201-300 g. Average fecundity was 1479992.12 ± 17.03 eggs / crab. However, many eggs could not adhere to the pleopods of the female but fell on the bottom of the tanks. Regression between body weight of female and fecundity was significant (p<0.05). In addition, the second spawning of the crabs under captivity was also observed.

xv

Incubation period of eggs lasted for 9.71 days (9-12 days) and hatching process took 27.71 hours (8-60 hours) in conditions of water temperature of 25-31°C, salinity of 27.5-30 ppt, DO of 6.2-6.8 ppm, and ammonia of 0.02 ppm. Duration for incubation and hatching was significantly related to water temperature (p < 0.05). In salinity range of 0-40 ppt, crab eggs could hatch in salinity of 20-40 ppt but the optimal was 30 ppt. In addition, artificial incubation of eggs with incubating density increasing from 762.4 to 48793.6 egg/liter gave hatching rate decreasing from 65.77±6.52% to 16.66±1.31%.

In rearing larvae of mud crabs, under photoperiods of 24 hr L: 0 hr D, 18 hr L: 6 hr D, 12 hr L: 12 hr D. 6 hr L: 18 hr D and 0 hr L: 24 hr D. metamorphosis, growth and survival of crab larvae were significantly effected. Metamorphosis of larvae was significantly delayed under photoperiods of 6 hr L: 18 hr D and especially 0 hr L: 24 hr D in comparison with larvae under the other photoperiod conditions (P < 0.05). There was no significant difference in body length of larvae between the treatments with exception of that in Zoea5. Larvae under photoperiods of 0 hr L: 24 hr D and 6 hr L: 18 hr D all died at Zoea2 and Megalope stage, respectively. Meanwhile, under 24 hr L: 0 hr D, 18 hr L: 6 hr D and 12 hr L: 12 hr D, survival rate of larvae was rather high until Zoea5 but extremely dropped thereafter. Photoperiods of 24 hr L: 0 hr D, 18 hr L: 6 hr D and 12 hr L: 12 hr D were recommended for mud crab larval rearing.

Under different conditions of light intensity; 0 lux (completely darkness). 300-350 lux, 1500-2000 lux, 4500-6000 lux and under transparent roof. metamorphosis were significantly delayed for larvae under completely darkness and 300-350 lux. There were no significant difference in body length of larvae under different lighting intensity. However, from Zoea5 onwards, body

length of larvae under 4500-6000 lux and under transparent roof were significantly longer than that of larvae under other treatments. Larvae under completely darkness and 300-350 lux all died at Zoea1 and Megalope stage, respectively. Survival rate of larvae under 4500-6000 lux and transparent roof were found significantly higher than one under other treatments. Lighting intensity of 4500-6000 lux and under transparent roof were thus suitable for larval rearing of mud crabs.

With different feeding regimes for the larvae, the results showed that larvae fed with green water only or fed with green water plus artificial plankton and prepared feed was not significantly different from the control (no feeding) and that all died at Zoeal after 3 days of culture. Larvae fed with green water, rotifer and Artemia nauplii or fed with green water, rotifer, artificial plankton, prepared feed and Artemia nauplii were similar to larvae fed with green water and Artemia nauplii in terms of metamorphosis and growth, but the first achieved survival rate of Zoea better than the later, and the later gave survival rate of Crab1 stage better than the first. Green water and Artemia nauplii thus could be used satisfactory for larval culture.

In rearing crab seeds from Crab1 to Crab7 with different salinity from 30 ppt to 0 ppt at intervals of 6 ppt, salinity of 18-30 ppt was found better for crabs in terms of molting, growth and survival rate than other salinity. Crabs could not tolerate freshwater (salinity of 0 ppt) over a period of 2 days.

In culture of crab seed from Crab1 to Crab6 fed with trash fish and pellets, crabs fed with pellets gave results comparable with that of crabs fed with trash fish in terms of molting, growth and survival rate.

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi syarat untuk mendapatkan Ijazah Master Sains.

KAJIAN KE ATAS BEBERAPA ASPEK PEMBIAKAN KETAM NIPAH, SCYLLA SERRATA (FORSKAL)

Oleh

Tran Ngoc Hai

Disember 1997

Pengerusi:

Dr. Anuar B. Hassan

Fakulti:

Fakulti Sains Gunaan dan Teknologi

Kajian ke atas beberapa aspek pembiakan ketam nipah (Scylla serrata) telah dijalankan di pusat penetasan. Dengan cara pemotongan kedua-dua mata induk betina, sebanyak 14 kali pembiakan telah berlaku yang menghasilkan telur selepas 5 hari diternak di tangki serabut glas ("fibreglass"). Pembiakan berlaku pada bila-bila masa samada mengikut hari, bulan atau tahun. Majoriti ketam-ketam ini membiak tanpa melalui proses persalinan kulit (cengkerang) atau tanpa berpasangan dalam suasana ternakan. Kebanyakan ketam yang membiak adalah pada saiz 201-300 gram. Purata fekunditi ialah 1479992.12 ± 17.03 telur/ketam. Walau bagaimanapun telur tidak melekat pada kaki renang jantan sebaliknya jatuh di dasar tangki. Regressi di antara berat badan ketam dan fekunditi adalah signifikan (p<0.05). Selain daripada itu, pembiakan kali kedua bagi ketam yang dikultur di dalam tangki juga diperhatikan.

xviii