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Abstract. This paper presents a one-dimensional-in-space mathematical model of 
an amperometric biosensor. The model is based on the reaction-diffusion 
equations containing a non-linear term related to Michaelis-Menten kinetics of the 
enzymatic reactions. The model is solved numerically by applying the Finite 
Difference Method (FDM). This model describes the biosensor response to active 
time of enzymatic reaction in membrane layer. Using numerical solution, the 
influence of the thickness of enzyme membrane on the biosensor current response 
was investigated. The numerical results of the biosensor operation showed the 
monotonous change of the biosensor current response versus the membrane 
thickness. 
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1. Introduction 
 
Biosensors are devices that combine the selectivity and specificity of a 
biologically active compound with a signal transducer and an electronic amplifier  
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[1–4]. The transducer converts the biochemical signal to an electronic signal. The 
biosensor signal is proportional to the concentration of measured analyte or a 
group of analytes. The biosensors are classified according to the nature of the 
physical transducer. Amperometric biosensors measure the current on an indicator 
electrode due to direct oxidation of the products of the biochemical reaction. In 
case of the amperometric biosensors the potential at the electrode is held constant 
while the current flow is measured. The amperometric biosensors are reliable, 
relatively cheap and highly sensitive for environment, clinical and industrial 
purposes. 
 
Starting from the publication of Clark and Lyons [1], the amperometric biosensors 
became one of the popular and perspective trends of biochemistry. The 
understanding of the kinetic regularities of biosensors is of crucial importance for 
their design. Mathematical models can explain such regularities. The general 
features of amperometric response were analyzed in the publications of Mell and 
Maloy [5, 6]. Some later reports were also devoted to the modeling and 
investigation of the amperometric biosensor response [7–11]. 
 
The developed model is based on non-stationary diffusion equations [12], 
containing a non-linear term related to Michaelis-Menten kinetic of the enzymatic 
reaction. The numerical method of the biosensor response was carried out using 
the Finite Difference Method (FDM) [13, 14]. The software has been programmed 
in C language. The program built was employed to investigate the influence of the 
enzyme membrane thickness, substrate concentration as well as the maximal 
enzymatic rate on biosensor response. 
 
 
2. Mathematical Model 
 
During an enzyme-catalysed reaction 

    PS E⎯→⎯ ,     (1) 
the mixture of substrate (S) binds to the enzyme (E) to form enzyme-substrate 
complex. While it is a part of this complex, the substrate (S) is converted to the 
product (P). The rate of the reaction is the rate of appearance of the product. This 
rate is known to depend upon the concentration of substrate. 
 
Let us consider an amperometric biosensor, which can be treated as enzyme 
electrode, having a layer of enzyme immobilized onto the surface of the probe. 
Assuming no interaction between analysed substrates (compounds) of the mixture, 
the symmetrical geometry of the electrode, homogeneous distribution of 
immobilized enzyme in the enzyme reaction with the diffusion described by 
Fick’s law leads to the following equations: 
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where Vmax is the maximal enzymatic rate of biosensor attainable with that amount 
of enzyme, when the enzyme is fully saturated with substrate (S), KM is Michaelis 
constant, S is the concentration of substrate (S), P is concentration of the reaction 
product (P), d is thickness of the enzyme layer, t is time, T is full time of 
biosensor operation to be analysed, DS and DP are diffusion coefficients of the 
substrate S and product P, respectively. 
  
The biosensor operation starts when some substrate appears over the surface of 
the enzyme layer. This is used in the initial conditions (t = 0): 
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where S0 is the concentration of substrate initial over the biosensor. 
 
 

    
Fig. 1 Schematic representation of enzyme-electrode surface in amperometric 

biosensor 
 
Because of electrode polarization, the concentration of the reaction product at the 
electrode surface is being permanently reduced to zero. If the substrate is well-
stirred and in powerful motion, then the diffusion layer (0 < x < d) will remain at a 
constant thickness. Consequently, the concentration of substrate as well as product 
over the enzyme surface (bulk solution/membrane interface) remains constant 
while the biosensor contact with the substrate. When the analyte disappears, a 
buffer solution swills the enzyme surface, reducing the substrate concentration at 
this surface to zero. Because of substrate (analyte) remaining in the enzyme 
membrane, the mass diffusion as well as the reaction still continues some time 
even after the disconnected of the biosensor and substrate.  
 
This is used in the boundary conditions (0 < t ≤ T) given by: 
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   ( ) ( ) 0,,0 == tdPtP .     (8) 
 
The current is measured as a response of a biosensor in a physical experiment. 
The biosensor current depends upon the flux of reaction product at the electrode 
surface, i.e., at border x = 0. Consequently, density I (t) of the biosensor current, 
as a results of the reaction of the substrate S with the product P at time t, is 
proportional to the concentration gradient of the product at the surface of the 
electrode as described by Faraday’s law: 

   ( )
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where ne is a number of electrons involved in a charge transfer at the electrode 
surface, and F is Faraday constant, F = 96485 C/mol. 
 
 
3. Solution of the Mathematical Model  
 
Let us assume the problem (2)-(8) formulation for a substrate S and reaction 
product P. Let Vmax be the maximal enzymatic rate of the modeled biosensor, S is 
the concentration of substrate S and P is concentration of the reaction product P. 
The problem (2)-(8), reformulated for substrate S and reaction product P, was 
solved numerically using FDM. To find a numerical solution of the problem in the 
domain [0, d]×[0, T] we introduced an uniform discrete grid ωh × ωτ, where: 
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Let us assume the following: 
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i txPP ,= , i = 0,...,N1; j = 0, ..., N2. (11) 

An implicit linear finite difference scheme has been built as a result of the 
difference approximation. The initial conditions (4) and (5) we approximated as 
follows: 
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Differential equations (2) and (3) were approximated by scheme: 
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The boundary conditions (6)-(8) were approximated as follows: 
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Equations (12) allow to calculate a solution of the problem on the layer t = t0 = 0. 
When a solution on a layer tj has been calculated, a solution on the next layer t = 
tj+1 can be calculated in two steps: 
1) calculate values of  1+j

iS , i = 0, ..., N1, solving the system of linear equations 
(13), (15); 

2) calculate values of 1+j
iP , i = 0, ..., N1, solving the system of linear equations 

(14), (16) using values of 1+j
iS , which have been calculated in step 1. 

 
The system of linear algebraic equations can be solved efficiently in both steps 
above because of the tridiagonality of matrices of the systems. 
 
Having numerical solution of the problem, the density of biosensor current at time 
t = tj is calculated by 
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In step 1), only values of the following parameters: DS, DP, Vmax, and S0 vary 
when one computer simulation changes the next one. 
 
 
4. Data Synthesis 
 
The develop computer simulation software was employed to generate data for a 
calibration of an amperometric biosensor. The mathematical model as well as the 
numerical solution of the problem was evaluated for different values of the 
membrane thickness d. The following values of the parameters were constant in 
the numerical simulation of all the experiments: 
 DS = DP = 3 × 10-6 cm2/s,        
 KM = 1 × 10-7 mol/cm3, 
  ne = 2, 
 d = 0.001, 0.0014, 0.0018, 0.0022, 0.0026 and 0.003 cm.  
The evolution of the biosensor currents were characterized by the following value 
of the maximal enzymatic rate Vmax: 
 Vmax = 1 × 10-8 mol/cm3s.    
The value of the substrate concentration S0 of the evolution of the biosensor 
currents was employed: 
 S0 = 2 × 10-8 mol/cm3. 
The active time TA of enzymatic reaction in membrane layer is: 
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 TA = 0.3 s.    
 
 
 
5. Results and Discussion 
 
 
The evolution of the biosensor current at the maximal enzymatic rate Vmax of 1 × 
10-7 mol/cm3s and active time of enzymatic reaction TA = 0.3 s is presented in Fig. 
2. The biosensor response was modeled for biosensors having six different 
membrane thicknesses d: 0.001, 0.0014, 0.0018, 0.0022, 0.0026 and 0.003 cm. 
One can see in Fig.2 the biosensor current appears with some delay at relatively 
thick enzyme layers. This delay increases with increase of the enzyme membrane 
thickness. The biosensor response is notable higher at thinner membrane (d = 
0.001 cm) than at thicker five (d = 0.0014, 0.0018, 0.0022, 0.0026 and 0.003 cm). 
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d = 0.003 cm
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Fig. 2  The dynamics of the biosensor current at the maximal enzymatic rate Vmax 

= 1 × 10-7 mol/cm3s and six membrane thickness d: (a) 0.001, (b) 0.0014, 
(c) 0.0018, (d) 0.0022, (e) 0.0026 and (f) 0.003 cm, S0 = 2 × 10-8 mol/cm3.  

 
 
6. Conclusions 
 
The mathematical model (2)-(9) of amperometric biosensor operation can be 
successfully used to investigate the kinetic regularities of enzyme membrane-
based sensors. The biosensor current is a monotonous function of membrane 
thickness d at a value of active time (TA) of enzymatic reaction in membrane layer 
(Fig. 2). Consequently, the maximal biosensor current increases with decreasing 
of the membrane thickness d. The greater the membrane thickness d, the biosensor 
response will become minimum and unstable. 
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