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ABSTRACT 
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MODELLING OF SICK BUILDING SYNDROME (SBS) SYMPTOMS AND 
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Co-Supervisor : Professor Marzuki bin Hj. Ismail, Ph.D 

 : Teh Sabariah Binti Abd Manan, PhD 

 : Associate Professor Ts. Nazri Bin Che Dom, PhD 

Faculty/ Institute : Institute of Tropical Biodiversity and Sustainable   

Development 

 

Optimum indoor air quality (IAQ) is crucial for maintaining a healthy work 

environment. This study examines the effects of IAQ on Sick Building Syndrome 

(SBS) symptoms across various economic subsectors during the monsoonal seasons in 

Terengganu, Malaysia. Four locations representing the education (S1), wholesale or 

retail trade (S2), manufacturing (S3), and services (S4) subsectors were assessed. IAQ 

was measured using ventilation indicators (carbon dioxide, CO2), chemical parameters 

(formaldehyde (HCHO), total volatile organic compounds (TVOC), and carbon 

monoxide (CO)), and physical parameters (temperature, relative humidity, air 

movement) during the Southwest Monsoon (SWM) and Northeast Monsoon (NEM). 

The objectives included evaluating IAQ compliance, simulating 3D distributions using 

Computational Fluid Dynamics (CFD), identifying IAQ factors through Principal 

Component Analysis (PCA), and developing predictive Generalized Linear Models 

(GLM). Data included SBS symptom feedback and IAQ metrics, analysed using GLM 

with SBS syptoms as the dependent variable. Results showed seasonal IAQ variations, 
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with temperatures ranging from 23.50°C to 32.91°C and relative humidity from 

57.77% to 90.68%. CO2 levels were higher in enclosed spaces, particularly in 

manufacturing and retail sectors during the SWM. CFD simulations revealed increased 

turbulence near ventilation systems, with accuracies of up to 91.90% (SWM, S1) and 

91.17% (NEM, S4). PCA identified three main IAQ contributors: physical conditions, 

chemical exposure, and human activities, accounting for up to 45.58% (NEM, S3), 

24.17% (SWM, S3), and 31.42% (SWM, S4) of variance. The GLM demonstrated 

higher predictive accuracy during the NEM, with an R2 of up to 0.9949. Seasonal 

variations in IAQ significantly impacted SBS symptoms across different economic 

sectors in Terengganu, Malaysia. Poor IAQ, driven by physical conditions, chemical 

exposures, and human activities, was found to be worse during the SWM. The study 

recommends improving ventilation in enclosed spaces, regularly monitoring IAQ to 

address seasonal changes, reducing chemical emissions, controlling indoor activities, 

and enforcing IAQ compliance to create healthier work environments. 
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ABSTRAK 
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sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah 

PEMODELAN GEJALA SINDROM BANGUNAN SAKIT (SBS) DAN 

KUALITI UDARA DALAMAN (IAQ) MERENTASI SUB-EKONOMI 

DOMINAN DI TERENGGANU: KAJIAN VARIASI MONSUN 

 

AMALINA BINTI ABU MANSOR 

2025 

Penyelia : Profesor Madya Ts. Samsuri bin Abdullah, Ph.D 
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 : Teh Sabariah Binti Abd Manan, PhD 

 : Profesor Madya Ts. Nazri Bin Che Dom, PhD 

Fakulti/ Institut : Institut Biodiversiti Tropika dan Pembangunan 

Lestari 

 

 

Kualiti udara dalaman (IAQ) yang optimum adalah penting untuk mengekalkan 

persekitaran kerja yang sihat. Kajian ini meneliti kesan IAQ terhadap gejala Sindrom 

Bangunan Sakit (SBS) merentasi pelbagai subsektor ekonomi semasa musim monsun 

di Terengganu, Malaysia. Empat lokasi yang mewakili subsektor pendidikan (S1), 

perdagangan borong atau runcit (S2), pembuatan (S3), dan perkhidmatan (S4) telah 

dinilai. IAQ diukur menggunakan indikator pengudaraan (karbon dioksida, CO2), 

parameter kimia (formaldehid (HCHO), jumlah sebatian organik meruap (TVOCs), 

dan karbon monoksida (CO)), serta parameter fizikal (suhu, kelembapan relatif, 

pergerakan udara) semasa Monsun Barat Daya (SWM) dan Monsun Timur Laut 

(NEM). Objektif kajian termasuk menilai pematuhan IAQ, mensimulasikan taburan 

3D menggunakan Dinamik Bendalir Komputasi (CFD), mengenal pasti faktor IAQ 

melalui Analisis Komponen Utama (PCA), dan membangunkan Model Linear Umum 

(GLM) ramalan. Data yang digunakan termasuk maklum balas gejala SBS dan metrik 

IAQ, dianalisis menggunakan GLM dengan SBS sebagai pemboleh ubah bersandar. 

Keputusan menunjukkan variasi IAQ bermusim, dengan suhu antara 23.50°C hingga 
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32.91°C dan kelembapan relatif antara 57.77% hingga 90.68%. Tahap CO2 adalah 

lebih tinggi di ruang tertutup, terutamanya dalam sektor pembuatan dan runcit semasa 

SWM. Simulasi CFD mendedahkan peningkatan pergolakan berhampiran sistem 

pengudaraan, dengan ketepatan sehingga 91.90% (SWM, S1) dan 91.17% (NEM, S4). 

PCA mengenal pasti tiga penyumbang utama IAQ: keadaan fizikal, pendedahan kimia, 

dan aktiviti manusia, yang menyumbang sehingga 45.58% (NEM, S3), 24.17% 

(SWM, S3), dan 31.42% (SWM, S4) daripada varians. GLM menunjukkan ketepatan 

ramalan yang lebih tinggi semasa NEM, dengan nilai R2 sehingga 0.9949. Variasi 

bermusim dalam IAQ memberi kesan ketara kepada gejala SBS dalam pelbagai sektor 

ekonomi di Terengganu, Malaysia. IAQ yang lemah, dipacu oleh keadaan fizikal, 

pendedahan kimia, dan aktiviti manusia, didapati lebih buruk semasa SWM. Kajian 

ini mencadangkan beberapa langkah seperti meningkatkan pengudaraan di ruang 

tertutup, memantau IAQ secara berkala untuk menangani perubahan bermusim, 

mengurangkan pelepasan bahan kimia, mengawal aktiviti dalaman, dan 

menguatkuasakan pematuhan IAQ untuk mewujudkan persekitaran kerja yang lebih 

sihat. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

1.1 Background of the Study 

Indoor Air Quality (IAQ) has garnered significant attention in recent years, 

particularly in developing countries, where individuals spend approximately 90% of 

their time indoors, either at home or in the workplace (Mahmoud & Abdel-Salam, 

2022). Studies have revealed that indoor air is often more contaminated than outdoor 

air, posing substantial risks to human health (Onwusereaka et al., 2022). IAQ 

assessments have become a crucial topic for both residential and office environments 

due to the high concentrations of indoor air pollutants, especially considering the 

extended exposure time individuals experience indoors (Liu et al., 2021; Zannoni et al., 

2021).  Monitoring IAQ involves evaluating physical parameters such as air movement 

(AM), temperature (T), and relative humidity (RH), along with chemical pollutants like 

formaldehyde (HCHO), volatile organic compounds (VOCs), and carbon monoxide 

(CO) (Konstantinou et al., 2022; Mu & Kang, 2022). Ventilation performance 

indicators like carbon dioxide (CO2) and particulate matter (PM) are also critical for 

IAQ assessment (Sarkhosh et al., 2021). Proper IAQ monitoring is essential to identify 

pollutant sources, evaluate potential health risks, and ensure compliance with 

recommended standard limits for building occupants' safety and comfort (Branco et al., 

2020).   

Sick Building Syndrome (SBS) symptoms is a term used to describe adverse 

health effects linked to poor IAQ, where the specific sources of health issues remain 

unidentified. The term “syndrome” underscores the complexity of factors contributing 

to symptoms such as nose, eye, and throat irritation, skin rashes, fatigue, and headaches 
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(Lucialli et al., 2020). Prolonged exposure to poor IAQ can exacerbate these conditions, 

leading to severe health implications (Meng et al., 2021). Sources of SBS symptoms 

include biological contaminants, inadequate ventilation, chemical emissions from 

paints, cleaning products, and building materials, and environmental factors like 

temperature and humidity (Sadrizadeh et al., 2022; Tainio et al., 2021).   

The effects of IAQ on SBS symptoms are particularly pronounced during 

monsoonal variations, as weather patterns significantly influence indoor environmental 

conditions. In Malaysia, the climate is shaped by the Southwest Monsoon (SWM) and 

the Northeast Monsoon (NEM), each presenting unique IAQ challenges (Abu-Rub et 

al., 2023; Berville et al., 2021).  The SWM season (June to September) brings hot and 

dry weather with higher temperatures and lower humidity (Othman et al., 2023). These 

conditions can elevate indoor temperatures, increase pollutant evaporation rates, and 

reduce air movement. Poor ventilation during SWM results in a build-up of pollutants 

such as CO2 and TVOC, exacerbating SBS symptoms like fatigue, drowsiness, and eye 

irritation (Branco et al., 2020; Salju et al., 2023). In contrast, the NEM season is 

characterized by cooler and wetter conditions with higher humidity and frequent rainfall 

(Meteorologi Malaysia, 2020). Increased moisture promotes the growth of mould, 

mildew, and dust mites, contributing to respiratory issues and allergic reactions (Branco 

et al., 2019; Capua et al., 2023). Reduced ventilation during this period intensifies 

indoor pollutant accumulation, further worsening SBS symptoms (Chawla et al., 2023).   

Terengganu’s economic activities are primarily concentrated in the agriculture, 

manufacturing, and services sectors, with services accounting for 52.7% of its GDP in 

2021 (DOSM, 2022). Sub-economies like education, wholesale and retail trade, and 

hospitality involve indoor environments with varying IAQ challenges. For instance, 

classrooms often face high CO2 levels, while retail spaces and hotels encounter 

fluctuating VOC levels due to cleaning agents and occupancy patterns (Fantozzi et al., 

2022; Deng et al., 2024). Addressing IAQ in these environments is vital for enhancing 

productivity, occupant comfort, and overall economic efficiency (Lee et al., 2020). 

Table 1.1 presents the percentage share of different economic sectors to Terengganu's 

Gross Domestic Product (GDP) from 2019 to 2021, highlighting the region's economic 

composition and dynamics over this period. The services sector consistently accounted 
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for the largest contribution, increasing from 50.3% in 2019 to 52.7% in 2021, 

underscoring its dominance in Terengganu’s economy. Within the services sector, 

wholesale and retail trade showed steady growth, rising from 16.6% in 2019 to 17.8% 

in 2021. The education sub-sector exhibited significant fluctuations, peaking at 19.9% 

in 2020, likely reflecting pandemic-related shifts in the education landscape, before 

decreasing to 15.3% in 2021. Similarly, hospitality, finance, insurance, and business 

services maintained stable contributions, hovering around 12%, while other services 

saw a gradual increase, reaching 8.6% in 2021. Meanwhile, the manufacturing sector 

demonstrated a declining trend, decreasing from 37.5% in 2019 to 34.9% in 2021. 

Agriculture showed a modest but consistent increase, contributing 8.6% by 2021. In 

contrast, mining and quarrying and construction sectors maintained relatively small 

shares, with minimal year-to-year variations. These statistics indicate a growing 

reliance on the services sector in Terengganu's economy, with implications for IAQ 

challenges due to the high concentration of indoor activities in service-related 

establishments. This highlights the importance of IAQ assessments in service-oriented 

spaces, such as retail shops, classrooms, and office buildings, to ensure a healthy and 

productive environment for occupants. 

Table 1.1  Statistic of percentage share to Gross Domestic Product (GDP), 

Terengganu (2019-2021) (DOSM, 2022) 

Type of economic sector 2019 2020 2021 

Agriculture 8.2 8.4 8.6 

Mining and quarrying 0.5 0.6 0.5 

Manufacturing 37.5 36.4 34.9 

Construction 3.3 3.2 3.2 

Services 50.3 51.4 52.7 

 Wholesale and retail trade 16.6 17 17.8 

 Education  13.9 19.9 15.3 

 Hospitality, finance insurance, and business 

services 

12.0 12.4 12.0 

 Other services 8.0 8.0 8.6 

Plus: Import duties 0.2 0.0 0.1 

Total percentages 100.0 100.0 100.0 
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Given the complex interplay of factors affecting IAQ, advanced modelling and 

analysis tools like Computational Fluid Dynamics (CFD), Principal Component 

Analysis (PCA), and Generalized Linear Models (GLM) are essential for 

comprehensive IAQ assessments. CFD provides precise spatial mapping of pollutant 

dispersion, offering insights into real-world indoor air conditions without assumptions 

(Geng et al., 2023). PCA helps identify critical pollutant sources and patterns, while 

GLM is effective for predicting pollutant levels and their health implications using 

count data (Ahlmann-Eltze & Hube, 2021). Together, these methodologies enhance our 

understanding of IAQ dynamics, support regulatory compliance, and contribute to 

achieving Sustainable Development Goals (SDG), particularly Goal 3, which aims to 

promote health and well-being for all. 

Sustainable Development Goal 3 (SDG 3), established by the United Nations in 

2015, aims to "ensure healthy lives and promote well-being for all at all ages." This goal 

is particularly relevant in addressing the challenges associated with IAQ and its 

implications for SBS symptoms. With most people spending a significant portion of 

their time indoors, especially in spaces like schools, offices, and healthcare facilities, 

maintaining high IAQ is critical to achieving SDG. Indoor air pollutants (IAP), such as 

PM or also known as respirable suspended particulate (RSP), VOCs, and other gaseous 

pollutants, can significantly impact occupants' health, leading to respiratory issues, 

allergies, and other chronic illnesses. Poor IAQ disproportionately affects vulnerable 

groups, including children, the elderly, and those with pre-existing health conditions. 

By aligning IAQ standards with SDG 3, regulatory frameworks like the Industrial Code 

of Practice for Indoor Air Quality (ICOP-IAQ 2010) provide baseline data to evaluate 

and manage pollutant levels in indoor spaces, ensuring environments conducive to 

health and well-being.  

SBS symptoms emphasize creating environments that support the health, safety, 

and productivity of their occupants while reducing environmental impact. IAQ plays a 

crucial role in ensuring that indoor environments promote physical and mental well-

being. Effective IAQ management in sustainable buildings fosters healthier occupants, 

enhances cognitive function, and supports a higher quality of life which all core 

principles of SDG 3. The adoption of advanced tools, such as CFD models, aligns with 
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SDG 3 by offering precise and scenario-specific IAQ assessments. Unlike basic spatial 

mapping models, CFD does not rely on assumptions, providing accurate real-world 

predictions of pollutant dispersion and concentration. These insights are essential for 

designing and regulating sustainable indoor environments that prioritize health. 

Workers, who spend a significant amount of time in classrooms, are particularly 

vulnerable to poor IAQ, which can reduce their working performances and productivity. 

High-quality IAQ in educational spaces ensures a conducive working environment for 

future leaders, directly supporting the well-being goals of SDG 3. Regulatory agencies 

can use spatial mapping and CFD modelling to implement policies that safeguard the 

health of this demographic. 

The integration of IAQ management within the framework of SDG 3 

underscores its significance in promoting health and well-being. Sustainable building 

practices that prioritize IAQ not only contribute to achieving SDG 3 but also create 

environments that support human development, productivity, and long-term 

sustainability. Addressing IAQ challenges is therefore critical to realizing the broader 

objectives of sustainable development and ensuring a healthier future for all. 

1.2 Problem Statement 

IAQ plays a crucial role in determining the comfort, health, and productivity of 

individuals in indoor environments. Poor IAQ is a major contributor to a range of health 

issues, including respiratory problems, cognitive impairment, and symptoms 

collectively known as Sick Building Syndrome (SBS) symptoms, such as fatigue, 

headaches, nausea, and difficulty concentrating. Industrial workplaces, where 

employees spend most of their time, are particularly vulnerable to poor IAQ. However, 

research on IAQ in Malaysia has primarily focused on educational, commercial, and 

healthcare buildings, with limited attention to industrial buildings (Nazli et al., 2024; 

Ibrahim et al., 2024). This gap exists partly due to access restrictions imposed by 

industrial facility owners, which hinder comprehensive evaluations of IAQ in these 

environments (Alwi et al., 2021). 
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Poor IAQ is driven by physical factors like high temperature, excessive 

humidity, and insufficient ventilation, as well as chemical pollutants such as carbon 

dioxide (CO2), volatile organic compounds (TVOC), particulate matter (PM), and 

formaldehyde (HCHO). These factors often exceed acceptable levels indoors, where 

pollutant concentrations can be five times higher than outdoor levels (Li et al., 2024; 

Fang et al., 2022). Long-term exposure to such environments not only increases the risk 

of respiratory and cardiovascular diseases but also impairs cognitive functions, reduces 

worker productivity, and contributes to SBS symptoms (Jia et al., 2021; Huang & Liao, 

2021). Poor IAQ is associated with stress and a significant decrease in problem-solving 

and decision-making capabilities when CO2 levels exceed 600 ppm (Mucha et al., 

2024). Furthermore, exposure to particulate matter and other airborne pollutants has 

been linked to higher rates of mortality and morbidity, underscoring the need for 

effective IAQ management (Hou et al., 2021; Sha et al., 2024). 

Seasonal variations due to Malaysia’s monsoonal climate add another layer of 

complexity to IAQ management. The East Coast of Peninsular Malaysia, including 

industrializing regions like Terengganu, experiences significant changes in temperature, 

humidity, and pollutant levels across different monsoons. These variations influence the 

indoor environment and exacerbate the challenge of maintaining acceptable IAQ 

(Rahim et al., 2023; Zaki & Bari, 2022). However, studies on how these monsoonal 

variations impact IAQ and SBS symptoms are limited, leaving a critical gap in 

understanding and mitigation strategies (Wan et al., 2024). 

Socioeconomic factors further complicate IAQ management in industrial 

settings. Low-income sectors may lack the resources to implement effective ventilation 

and pollutant control systems, making workers more vulnerable to the adverse effects 

of poor IAQ (Yahaya et al., 2023). In contrast, high-income sectors might prioritize 

energy efficiency measures over ventilation quality, which can lead to suboptimal IAQ 

(Rahim et al., 2023). This disparity highlights the need for tailored IAQ solutions that 

address varying economic contexts while ensuring worker safety and productivity. 

Future trends in how different subdominant economies may affect IAQ could manifest 

in the following ways such as resource allocation and IAQ control. Low-income sectors 

can limit budgets may hinder the adoption of advanced IAQ technologies and proper 

maintenance of ventilation systems. This could lead to higher levels of pollutants (e.g., 
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CO2, particulate matter, and TVOC) in workplaces, particularly in manufacturing or 

retail spaces where worker density is high and natural ventilation is minimal. Besides 

that, high-income sectors can afford better IAQ systems, a focus on energy efficiency 

(e.g., sealing buildings to reduce heating/cooling costs) could inadvertently compromise 

ventilation, leading to pollutant buildup in enclosed spaces. Sectors like manufacturing 

often generate higher emissions from machinery, materials, or chemical processes, 

requiring advanced pollutant management. Without targeted interventions, such sectors 

will experience worsening IAQ. Service-oriented sectors (e.g., offices) may face IAQ 

issues from overcrowding, poor ventilation, and prolonged use of synthetic materials 

(furniture, flooring). Future challenges may include balancing worker comfort with 

energy-efficient building designs. Technological disparities such as low-resource 

economies may rely on outdated equipment and cheaper materials that emit higher 

levels of formaldehyde or VOCs, exacerbating IAQ issues. In contrast, high-resource 

economies could adopt smart IAQ systems with real-time monitoring, but their benefits 

might not extend to smaller enterprises within the same subsector. Rapid urbanization 

in low-income economies could increase IAQ problems due to overcrowding and poorly 

regulated construction practices. Monsoonal climates could exacerbate humidity and 

mould issues in inadequately ventilated spaces. High-income economies might mitigate 

some climate impacts but could still face challenges in balancing urban density with 

sustainable IAQ practices. Policy and compliance gaps showed that economic 

disparities can result in uneven enforcement of IAQ regulations. Low-income sectors 

may struggle to comply due to financial constraints, whereas high-income sectors might 

focus more on cost-saving measures like reduced ventilation, leading to hidden IAQ 

risks. 

The complexity of IAQ and SBS symptoms lies in the interrelationship between 

multiple contributing factors, such as physical parameters (e.g., temperature, humidity, 

airflow), chemical pollutants (e.g., HCHO, TVOCs, CO2), and ventilation efficiency. 

Multicollinearity among these variables often poses a significant challenge to 

identifying root causes and implementing effective mitigation measures (Mansor et al., 

2024; Zhang et al., 2022). CFD is a powerful tool for modelling airflow and pollutant 

dispersion within buildings, enabling an understanding of how ventilation and interior 

layouts influence IAQ (Adelikhah et al., 2023; Zaeh et al., 2021). However, CFD 



8 
 

 

simulations require integration with statistical methods to translate airflow dynamics 

into actionable insights. 

Principal Component Analysis (PCA) addresses multicollinearity by reducing 

data dimensionality, identifying the primary contributors to poor IAQ, and simplifying 

the analysis of complex datasets (Saraga et al., 2024). Additionally, Generalized Linear 

Models (GLM) provide flexibility in modelling the relationships between IAQ 

parameters and SBS symptoms by accommodating mixed data types and various 

distributions (Albertin et al., 2023; Freihat & Al-Kurdi, 2023). These methods, when 

used in combination, can establish a robust framework for identifying the root causes 

of poor IAQ, predicting SBS risks, and informing targeted interventions. 

Despite the proven utility of CFD, PCA, and GLM in IAQ research, their 

application to Malaysia’s industrial buildings remains limited (Yahaya et al., 2023; Vita 

et al., 2023). This study aims to address these gaps by leveraging CFD simulations, 

PCA, and GLMs to evaluate the relationships between IAQ and SBS symptoms in 

Malaysian industrial settings, with a focus on the East Coast of Peninsular Malaysia. 

By incorporating monsoonal and socioeconomic variations into the analysis, this 

research will provide insights into the seasonal and economic dimensions of IAQ and 

SBS symptoms. These findings will help facility managers and policymakers 

implement evidence-based interventions, fostering healthier, more resilient work 

environments. 

1.3 Aim and Objectives 

The study aims to assess the IAQ with SBS symptoms inside buildings. The 

study embarks on the following objectives: 

1. To determine the IAQ compliances in the study areas according to the 

Industrial Code of Practice Indoor Air Quality (ICOP-IAQ 2010) and trend 

demographic factors for SBS symptoms 

2. To simulate the 3-Dimensional (3-D) distribution of real-world boundary 

IAQ parameters using Computational Fluid Dynamics (CFD) 
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3. To investigate the potential factors influencing IAQ using Principal 

Components Analysis (PCA) in Terengganu's key sub-economies 

4. To develop Generalized Linear Models (GLM) that examine the relationship 

between SBS symptoms and IAQ parameters across dominant sub-

economies in Terengganu. 

1.4 Scopes of study 

The scope of this study involves a comprehensive evaluation of IAQ and its 

impact on SBS symptoms in four dominant sub-economic sectors in Terengganu, 

Malaysia, under the influence of monsoonal variations. The focus areas, methodologies, 

and parameters are considered in this research. The study area focused on Terengganu, 

East Coast of Peninsular Malaysia, is characterized by distinct monsoonal climatic 

changes. Ventilation performance indicators were carbon dioxide and CO2 (ppm). 

Chemical parameters consist of carbon monoxide, CO (ppm), formaldehyde, HCHO 

(ppm), total volatile organic compounds, TVOC (ppm), and respirable suspended 

particulate, RSP also known as particulate matter, PM (mg/m3). The physical parameters 

included relative humidity, RH (%), temperature, T (0C), and air movement. This study 

was conducted during the working day, and data were collected inside the building. Data 

was collected during the Southwest and northeast monsoons, each lasting ten days. A 

one-day pilot test was also undertaken in the research locations. The economy of 

Terengganu was primarily driven by two dominating sectors: manufacturing, which 

consists of one subsector, and services, which consists of three subsectors. The study 

areas chosen were Mset Inflatable Composite Corporation Sdn Bhd (subsector: 

transport equipment, others manufacturing and repairs), Raia Hotel & Convention 

Centre Terengganu (subsector: hospitality/accommodation), Tunas Manja Group Mart 

(TMG Mart) (subsector: wholesale and retail trade), and the control area, which is 

Sekolah Kebangsaan Tanjung Gelam (subsector: education). These sectors were chosen 

to represent various levels of socioeconomic development and building typologies in 

the region. 
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The sampling duration for every study area ranged from seven to eight hours, 

starting at 0800 hours and ending at 1700 hours, depending on consent from the 

premises. The readings were recorded at five or ten-minute intervals, depending on the 

suitability of each research area. The readings were carried out every hour. Based on 

the ICOP-IAQ (2010), instruments were placed at a height between 75 and 120 cm from 

the floor (Mansor et al., 2021). Seasonal Sampling for data collection across different 

monsoon seasons for comparative analysis. Identification of IAQ parameters and 

pollutant sources with the highest impact on SBS symptoms was one of the expected 

outcomes. Understanding the role of monsoonal variations in influencing IAQ and 

health outcomes. Development of evidence-based strategies for improving IAQ and 

reducing SBS symptoms, tailored to the economic context and climatic challenges of 

Terengganu. Questionnaires were distributed to the staff or workers in the monitored 

premises. All building occupants from the selected sectors in Terengganu was selected. 

The questionnaire comprises four sections encompassing general information, 

background factors, occupational nature, previous or past three-month symptoms, 

present symptoms, and respondents' opinions about their workplace environment. The 

questionnaire was included in Appendix A. The general information consists of the 

name of the building or company and the department or division. The questionnaire in 

this section also asks whether your company has conducted any assessments for indoor 

air quality (IAQ). The background factors include the respondent's gender (male or 

female), age (categorized as less than 25 years, 25-39 years, 40-55 years, or over 55 

years), and smoking status (with options of yes, no, or sometimes). Respondents were 

asked to give the duration of their services in terms of years and months and the duration 

of daily work hours at the respondent's primary workplace. The environmental 

condition section encompasses inquiries regarding the type of workstations, which 

might be enclosed rooms or open concepts. The inquiries inquire about the number of 

individuals that use your workstations and the type of air conditioning in your area, 

whether it is a central or split unit. 

Analysis of how seasonal climatic changes (e.g., Northeast Monsoon (NEM) 

and Southwest Monsoon (SWM)) influence IAQ and SBS symptoms. Parameters 

considered consist of changes in external temperature and humidity besides effects of 

monsoon-driven pollutant dispersion and infiltration by evaluating the indoor-outdoor 
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(I/O) ratio. The study utilizes advanced computational and statistical tools to analyse 

IAQ and its relationship with SBS symptoms. PCA is used to identify key IAQ 

parameters contributing to poor air quality and SBS symptoms and to reduce data 

dimensionality while preserving essential trends and patterns. Next is CFD which 

simulates airflow and respirable suspended particulates (RSP) dispersion within the 

indoor spaces and evaluates ventilation efficiency and pollutant hotspots under varying 

monsoonal conditions. The last analysis was the GLM which quantifies the relationship 

between IAQ parameters and the occurrence of SBS symptoms and accommodates 

different types of data distributions and variables. 

By integrating advanced tools like PCA, CFD, and GLM, this study seeks to 

provide actionable insights into mitigating IAQ issues and improving the well-being 

and productivity of building occupants in diverse economic sectors. 

1.5 Significance of study 

Optimal IAQ is crucial for maintaining a healthy environment within buildings. 

It creates a conducive and efficient environment for individuals residing in a building, 

providing them comfort, good health, and overall well-being. Excellent air quality 

improves worker productivity. Previous studies have also proved that occupants 

working in buildings with acceptable air quality experience lower symptoms associated 

with poor air quality Indoor air quality monitoring benefits the occupant’s Early 

detection can alert the occupants to take precautionary measures, such as improving 

indoor activities and reducing sources of indoor pollution (Abouleish, 2021). These 

actions can help prevent short or long-term air pollution-related diseases like 

cardiopulmonary disease and asthma. Most people work to survive, and a convenient 

workplace is compulsory (Dominguez-Amarillo et al., 2020). Failure to follow indoor 

air pollution (IAP) standards can be mitigated by implementing a schedule (Cheek et 

al., 2021). Occupants can effectively minimize their exposure to pollutants in their 

buildings or workplaces by being aware of activities that cause IAP levels to exceed 

acceptable limits (Chojer et al., 2020). It is crucial to monitor indoor air quality to 

establish baseline data for occupants (Jo et al., 2020). For example, one way to protect 
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workers from pollutants is to minimize exposure time by scheduling maintenance or 

cleaning tasks when other building occupants are absent (Gawande et al., 2020). 

Another approach is to reduce the amount of chemicals used by or near workers, such 

as limiting the quantity used during maintenance or cleaning activities (Kumar et al., 

2023). Additionally, controlling the location of chemical use can be effective, such as 

performing maintenance work on moveable equipment in a maintenance shop rather 

than in the general area or placing equipment like printers and copiers in a separate 

room (Lee et al., 2020). This study was particularly significant in the context of 

education. Educating building occupants about IAQ is crucial (Megahed & Ghoneim., 

2021). Providing occupants with information regarding the sources and impacts of 

pollutants that they can control, as well as guidance on the correct operation of the 

ventilation system, can assist workers in becoming aware and taking measures to 

minimize their exposure (Mendoza et al., 2021). 

 SBS symptoms associated with inadequate IAQ vary depending on the specific 

type of contaminant present (Mata et al., 2022). These symptoms can be readily 

confused with symptoms of other ailments, such as allergies, stress, colds, and 

influenza. A typical indication is that individuals experience discomfort when within 

the premises, and their symptoms subside immediately after exiting the building or 

spending significant time away from it (for example, during weekends or vacations (De 

Capua et al., 2023; Chojer et al., 2020). Health or symptom surveys, such as the one 

provided in Appendix A, have been utilized to determine the presence of indoor air 

quality (IAQ) issues (Saini et al., 2020). Inadequate and delayed response by building 

owners and operators to IAQ issues can result in various detrimental health effects. The 

health consequences of IAQ can manifest immediately upon exposure or several years 

later (Nimlyat et al., 2023). Possible symptoms encompass ocular, nasal, and throat 

irritation, headaches, dizziness, rashes, muscle soreness, and exhaustion. Asthma and 

hypersensitivity pneumonitis are diseases associated with poor IAQ. The kind and 

severity of health impacts arising from poor IAQ are influenced by the specific 

pollutant, the exposure concentration, and the frequency and length of exposure (Both 

age and other medical disorders, such as asthma and allergies, can significantly impact 

the intensity of the effects Prolonged exposure to indoor air pollution (IAP) can have 
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severe consequences for health, such as respiratory disorders, heart disease, and cancer, 

which can be highly incapacitating or even deadly (Saini et al., 2020). 

The assessment of IAQ and SBS symptoms in four dominant sub-economies in 

Terengganu based on monsoonal variation using PCA, CFD, and GLM is a critical 

investigation that addresses pressing concerns surrounding human health, 

environmental sustainability, and economic productivity. The study's focus on 

integrating advanced tools and accounting for monsoonal variation uniquely positions 

it to provide valuable insights into managing IAQ in dynamic environmental contexts. 

First by enhancing public health and well-being. Indoor air pollution and its associated 

effects on human health are a growing concern, particularly in regions like Terengganu, 

where climatic variations can exacerbate exposure risks. Poor IAQ is directly linked to 

conditions such as respiratory disorders, cardiovascular diseases, and SBS symptoms, 

which negatively affect occupants’ physical and mental health (Sa et al., 2022; Settimo 

et al., 2020). By systematically assessing IAQ and its impact on SBS symptoms across 

different sub-economies, this study provides actionable insights into mitigating health 

risks, directly aligning with Sustainable Development Goal 3 (Good Health and Well-

being) (Nair et al., 2022; Megahed & Ghoneim., 2021). 

In addition, this study also addressing monsoonal variability and regional 

dynamics. Terengganu's distinct monsoonal variations significantly influence IAQ due 

to changes in temperature, humidity, and ventilation patterns (Susanto et al., 2021). 

Understanding these seasonal dynamics is critical for designing tailored interventions 

that ensure consistent indoor air quality year-round (Cheek et al., 2021; Sakellaris et 

al., 2021). The study’s emphasis on monsoonal impacts enhances the relevance of its 

findings for climate-sensitive regions, offering a template for adapting IAQ 

management strategies to diverse environmental conditions. The integration of cutting-

edge methodologies like PCA, CFD and GLM ensures a robust, data-driven approach 

to assessing IAQ. PCA simplifies complex IAQ datasets, identifying key factors that 

contribute to air quality variations across different sub-economies. CFD provides 

detailed simulations of pollutant dispersion, offering high-precision insights that 

surpass traditional models and GLM enables the development of predictive models to 

evaluate the relationship between IAQ variables, monsoonal factors, and health 
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outcomes. This combination of tools not only ensures accuracy but also provides 

policymakers and stakeholders with practical solutions for sustainable IAQ 

management. 

This study was significant as one of economic and workplace productivity 

benefit. Improved IAQ directly impacts economic productivity by reducing 

absenteeism, enhancing cognitive performance, and mitigating health-related 

disruptions (Licina & Yildirim., 2021; Mentese et al., 2020). Workers and students, who 

spend significant portions of their time indoors, are particularly vulnerable to the effects 

of poor IAQ. This study highlights the importance of maintaining high-quality IAQ in 

workplaces and educational institutions, ensuring environments conducive to 

productivity and learning. Such measures are essential for fostering long-term economic 

growth and well-being in Terengganu's sub-economies (Agarwal et al., 2021; Fu et al., 

2021). 

This research aligns with several Sustainable Development Goals (SDG) which 

involves SDG 3 (Good Health and Well-being) by reducing health risks associated with 

poor IAQ and promoting sustainable building practices, the study directly supports the 

goal of ensuring healthy lives. Secondly, SDG 11 (Sustainable Cities and Communities) 

which the findings from this study contribute to developing safer and more sustainable 

urban environments in Terengganu. By providing region-specific insights, the study 

equips policymakers and building operators with the tools needed to implement 

effective IAQ standards. These insights are critical for developing guidelines that 

account for Terengganu’s unique environmental and socioeconomic factors, ensuring 

that sub-economies are resilient to both seasonal and long-term challenges. 

Advancing scientific knowledge as one of the significant of the study. This 

research fills critical gaps in understanding how monsoonal variations influence IAQ 

and SBS symptoms, particularly in tropical and subtropical regions like Terengganu. 

The innovative application of PCA, CFD, and GLM offers a replicable framework for 

future studies in other regions with similar climatic challenges, contributing to the 

global body of knowledge on sustainable IAQ management. 
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This study is highly significant as it integrates advanced modelling techniques 

with regional and climatic considerations to address a pressing public health and 

environmental issue. Its findings have the potential to improve the quality of life for 

building occupants, support economic growth, and advance the realization of 

sustainable development objectives. By addressing IAQ challenges in Terengganu's 

sub-economies, the research contributes to a healthier, more productive, and sustainable 

future. 

1.6 Thesis Outline 

This thesis is organized as follows. Chapter 1 covers the background of the 

study, problem statement, aim and objectives, scope of study, significance of the study, 

and conceptual framework. 

In Chapter 2, a review of the literature is presented. The discussion includes a 

brief background of IAQ in Malaysia, including the introduction of IAQ and literature 

searches, which include the conclusion of the outputs from previous studies to enhance 

the importance of IAQ towards occupants or workers in Malaysia. This chapter also 

discusses the potential effects of indoor air pollutants, which can lead to SBS symptoms, 

and briefing about air pollutants such as RSP, CO2, HCHO, CO, and TVOC. The 

relationship between IAQ and SBS symptoms is also discussed in the review, including 

any past literature related to previous statistical methods for forecasting indoor air 

pollutants. 

The third chapter of this thesis (Chapter 3) presents the framework based on the 

study area, data analysis, which consists of pre-processing data collection and each 

phase in data analysis, which includes determining the trend of indoor air pollutants 

(IAP) and SBS symptoms with PCA, CFD, besides developing and validating a GLM. 

Chapter 4 presents the findings and discusses the results obtained from the 

analyses, including demographic factors and trends of indoor air pollutants to determine 

compliances of air pollutants in the stud areas, which is known as descriptive analysis, 
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then proceeds with simulation of indoor air pollutants inside the study areas using CFD. 

The result proceeded with PCA outputs, and last but not least were GLM results, which 

gave more understanding of the relationship between IAP and SBS symptoms. All the 

results are explained, along with justifications for the findings. 

Lastly, Chapter 5, Conclusion and recommendations discusses the study's 

overall conclusion, including its significance and implications. 
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CHAPTER 2  

 

 

 

 

LITERATURE REVIEW 

2.1 Indoor Air Quality 

IAQ refers to the condition of the air within industrial and workplace 

environments, specifically concerning the health, comfort, and safety of employees 

(Vardoulakis et al., 2020). It encompasses the ventilation performance indicators and 

physical and chemical parameters. Indoor temperature should be maintained within 

recommended ranges to ensure thermal comfort and prevent extreme conditions that 

affect worker performance and health (Campagna & Desai, 2019). The relationship 

between SBS symptoms and IAQ is significant, as the quality of the air inside a building 

directly influences the health and comfort of its occupants (Sun et al., 2019). IAQ is 

determined by a combination of physical and chemical parameters and the performance 

ventilation indicator (Aziz et al., 2023). When these factors are not properly managed, 

they can contribute to the development of SBS symptoms, where building occupants 

experience a range of acute symptoms that often improve once they leave the building 

(Niza et al., 2023). Workers across different sub-economy sectors experience varying 

exposure to indoor air pollutants and conditions based on their work environments and 

activities (Mentese et al., 2020). Effective indoor air quality management, including 

proper ventilation, pollutant control, and temperature and humidity regulation, is 

essential to ensure worker health and comfort in each sector (Hou et al., 2021). Tailoring 

IAQ strategies to the unique needs of each sector helps mitigate health risks and 

improve overall workplace conditions. 
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Physical parameters 

Indoor temperature plays a crucial role in occupant comfort. When temperatures 

are too high or too low, they can cause discomfort, leading to symptoms such as 

headaches, fatigue, and difficulty concentrating (Jia et al., 2021; Lim et al., 2015). For 

example, a hot environment can make people feel lethargic, while a cold environment 

can lead to physical discomfort and distraction, both of which contribute to the overall 

feeling of being unwell (Lolliet et al., 2022). Humidity levels should be controlled to 

avoid discomfort and issues such as mould growth or excessive dryness, typically within 

the range of 40-60% relative humidity (Lu et al., 2018). Adequate air circulation, or 

called air movement, is required to prevent stagnant air and ensure that fresh air is 

distributed throughout the workspace (Blanco et al., 2023). Humidity levels also 

significantly impact comfort and health. Low humidity can dry out the skin, eyes, and 

mucous membranes, leading to symptoms like dry skin, itchy eyes, and throat irritation 

(Awada et al., 2022). Conversely, high humidity can create an environment conducive 

to dust mites, which are known to cause allergic reactions and respiratory issues such 

as coughing, sneezing, and shortness of breath (Altendorf et al., 2023). These conditions 

contribute to the development of SBS symptoms by creating an indoor environment that 

is physically uncomfortable and potentially harmful (Garg et al., 2022). Inadequate air 

movement can cause areas of stagnant air, where pollutants and contaminants can 

accumulate (Canceicao et al., 2018). This leads to symptoms like headaches, dizziness, 

and feelings of stuffiness or discomfort (Chirico et al., 2017). Proper air circulation is 

crucial for dispersing pollutants and maintaining comfort. Conversely, excessive air 

movement can create drafts, leading to discomfort such as chills, dryness, and irritation, 

contributing to symptoms like dry skin and respiratory irritation (Kumar et al., 2022). 

Extreme temperatures can cause discomfort and stress, leading to symptoms such as 

headaches, fatigue, and difficulty concentrating (Kakoulli et al., 2018). High 

temperatures can make occupants feel lethargic, while low temperatures can cause 

physical discomfort and distractions (Han et al., 2015). 
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Chemical parameters 

Chemical Parameters consist of CO, TVOC, HCHO, and PM, also known as 

RSP. CO levels should be controlled and maintained below-specified limits due to their 

toxic nature (Chirico et al., 2017). Carbon monoxide is a colourless, odourless gas that 

can be extremely dangerous even at low concentrations. Exposure to CO can cause 

symptoms like headaches, dizziness, nausea, and in severe cases, impaired cognitive 

function and unconsciousness. Even low-level exposure over time can contribute to 

chronic SBS symptoms, such as fatigue and headaches. It is a gas that is produced when 

gasoline, diesel, or natural gas in car engines are not completely burned (Alkaabi et al., 

2023; Han et al., 2015). According to previous studies, traffic-related outdoor sources 

account for the majority of indoor CO (Gomez-Acebo et al., 2013). Thus, indoor 

concentrations are higher in buildings situated in naturally ventilated buildings and 

metropolitan locations (Lu et al., 2018). Research on CO concentrations in workplace 

settings revealed an average range of 0.1 to 4.48 parts per million. According to a 

different study, urban areas have higher CO concentrations (4.48 ppm) than suburban 

(3.38 ppm) and rural (3.04 ppm) (Liu et al., 2019). However, compared to urban regions 

(0.8 ppm), rural areas have greater CO levels (1.0 ppm) according to Pandya and 

Portnoy (2023). Due to its proximity to major roads and the infiltration of gas emissions 

from peak-time traffic congestion into buildings, the rural area had a high CO content 

(Mentese et al., 2020). 

TVOC levels should be monitored and kept within limits to reduce the risk of 

health issues associated with exposure to these chemicals. TVOCs are emitted from a 

wide range of indoor sources, including paints, cleaning products, adhesives, and office 

equipment (Lu et al., 2015). High levels of TVOCs can lead to symptoms like 

headaches, dizziness, nausea, and irritation of the eyes, nose, and throat. Prolonged 

exposure can exacerbate these symptoms, leading to chronic discomfort and health 

issues (Othman et al., 2023). Volatile organic compounds (VOC), which originate from 

both internal and external sources, are commonly found in school environments (Liu et 

al., 2020; Snow et al., 2019; Ghaffarianhoseini et al., 2018). This chemical 

contaminant's presence is primarily associated with interior furnishings as well as other 

construction materials like paint, solvents, adhesives, carpets, fabrics, and textiles. In 
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addition, wood-based products, which are used to make writing desks and cabinets, are 

one of the primary sources of volatile organic compounds (Salju et al., 2023; Cheng et 

al., 2021). Many toxicological consequences, both short- and long-term, such as 

headaches, weariness, drowsiness, and eye irritation, can result from exposure to 

airborne concentrations of VOC (Zainal et al., 2019). It is not feasible to measure the 

amounts of particular chemicals due to the large range of possible sources and 

compositions (Wang et al., 2024). To overcome this practical limitation, the idea of total 

volatile organic compound (TVOC) was developed. It offers a straightforward 

assessment of the total amount of volatile organic compounds without differentiating 

between different chemicals (Hong et al., 2018). The amount of TVOC found outside 

may usually be regarded as insignificant because indoor concentrations of the gas are 

often higher than outside concentrations and have been rising over the last ten years 

(Piscitelli et al., 2022). Some occupants may experience symptoms of irritation and 

discomfort in the 120–1200 ppb range (Wolkoff, 2018). These widespread symptoms 

can develop toxicity levels of up to 10,000 ppb. They can take on various shapes based 

on the species and degree of sensitivity of the residents (Subri et al., 2024). Generally 

speaking, a maximum amount of 120 ppb is advised for the indoor environment to be 

deemed healthy (Hu et al., 2017). Most nations view this level as a desirable goal and 

identify indoor environments with concentrations up to 1200 ppb as potentially 

dangerous (Sun et al., 2019). According to Snow et al. (2019), some of the VOC 

compounds involved in these considerations will be extremely dangerous at very low 

concentrations. Hence, a broad approach is necessary. TVOC, which originate from 

both internal and external sources, are commonly found in school environments (Liu et 

al., 2020; Snow et al., 2019; Ghaffarianhoseini et al., 2018). This chemical 

contaminant's presence is primarily associated with interior furnishings as well as other 

construction materials like paint, solvents, adhesives, carpets, fabrics, and textiles (Park 

et al., 2019). In addition, wood-based products, which are used to make writing desks 

and cabinets, are one of the primary sources of volatile organic compounds (VOCs) 

(Cheng et al., 2021) 

Formaldehyde (HCHO) concentrations should be controlled to avoid irritation 

and potential long-term health effects, with specific limits set for safe exposure levels. 

Formaldehyde is a common indoor air pollutant found in building materials, furniture, 
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and some textiles. It can cause significant irritation of the eyes, nose, and throat, leading 

to symptoms such as watery eyes, coughing, and respiratory distress (Salju et al., 2023). 

One of the major sources of both indoor and outdoor air pollution is HCHO. Outdoor 

sources of HCHO emissions include transportation, burning biomass, biosphere, fuel 

combustion, and atmospheric reactions involving volatile organic compounds (VOCs) 

(Chen et al., 2022). HCHO can be found indoors in wood furniture that has been adhered 

to with formaldehyde-related adhesives. It can also form indoors due to chemical 

reactions and combustion (Salthammer, 2019). Numerous research has indicated that 

one of the main causes of indoor pollution is outdoor HCHO (Chen et al., 2018). Apart 

from indoor sources within the building, which are typically caused by powerful 

emission sources, outdoor HCHO is one of the sources of indoor pollution (Liu et al., 

2020; Chen et al., 2022). Malaysia is among the developed and developing countries 

who’s outdoor HCHO concentrations, as demonstrated by studies conducted from 2007 

to 2015, typically varied from 1 to 5µg/m3. (Liu et al., 2020; Seguel et al., 2016). Most 

of the sample set measured in industrialized and developing nations indicates that the 

median I/O HCHO concentration ranges from 0.17 to 0.4, suggesting that indoor 

environments do not significantly source outdoor HCHO (Sakar, 2019). The most 

popular technique for lowering the concentration of HCHO indoors is ventilation; 

however, ventilation from the outside can interfere with infiltration, and ventilation has 

a beneficial effect on reducing indoor pollutants but can also lead to overestimation 

(Sun et al., 2019). The effect of outdoor HCHO concentration, which is normally taken 

to be equal to zero, on indoor environments has not been considered (Liu et al., 2020). 

There is typically an inverse relationship between the air exchange rate and the 

formaldehyde levels in indoor air (Salthammer et al., 2018). The tightness of buildings 

is said to drastically reduce the amount of fresh air available, which is why 

formaldehyde concentrations are higher (Tofful et al., 2021). To understand the impact 

of outdoor HCHO, particularly on natural ventilation, across various spatial and 

temporal scales, it is necessary to keep in mind that a scenario in which all doors and 

windows are closed does not accurately reflect normal living conditions where people 

are moving around and opening and closing doors and windows regularly (Liu et al., 

2020; Hu et al., 2017). RSP are tiny particles suspended in the air that can be inhaled 

into the lungs. These particles include dust, smoke, soot, and other fine particulate 

matter (Wolkoff et al., 2018). RSPs can penetrate deep into the respiratory system, 

reaching the alveoli (the tiny air sacs in the lungs). This can cause or exacerbate 
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conditions such as asthma, bronchitis, and other chronic respiratory diseases (Xiao et 

al., 2021). Individuals with pre-existing respiratory conditions are particularly 

vulnerable.  RSPs can trigger allergic reactions in sensitive individuals (Hassan et al., 

2021). Dust mites, spores, and other allergens besides vehicles often adhere to these 

particles, exacerbating allergic responses (Reuben et al., 2019; Nezis et al., 2022). 

Long-term exposure to high levels of RSPs has been associated with cardiovascular 

problems, decreased lung function, and, in severe cases, lung cancer (Zhang et al., 2021; 

Mannan & Al Ghaudi, 2021). High levels of RSPs are associated with worsening 

symptoms of SBS symptoms by aggravating respiratory conditions and contributing to 

general discomfort (Mansor et al., 2023; Blugseen et al., 2020). Effective management 

of RSP through cleaning, ventilation, and air purification is essential for improving 

indoor air quality and reducing SBS symptoms (Fantozzi et al., 2022; Ghaffarianhoseini 

et al., 2018). RSP exposure can cause a variety of long- and short-term health effects, 

including an increase in respiratory symptoms, tissue alterations, a decrease in lung 

function, asthma, and early death (Mahmoud & Abdel-Salam, 2022; Zaman et al., 2021; 

Oh et al., 2019). Humans can be exposed to RSP by inhalation, which is one of the main 

ways that it can cause harm. The effects of particulate matter exposure depend on factors 

such as concentration, duration of exposure, and chemical makeup in addition to size 

(Mosallaei et al., 2021). The air quality can be impacted by the presence of occupants, 

particularly in commercial buildings (Hattori et al., 2022). Several factors, including 

poorly cleaned indoor surfaces, a high number of people crammed into a small space, 

low building floor-to-class ratios, inadequate ventilation, and resuspension particles on 

room surfaces, can influence the presence of particulate matter (Huo et al., 2020). In 

addition to dust resuspension and intrusion from nearby roads, occupant activities inside 

the buildings also had an impact on the indoor-outdoor RSP ratio (Kumar et al., 2023; 

Cheek et al., 2021; Rasli et al., 2021). The I/O ratio at schools is typically between 0.5-

2.85, and a study conducted in Belgium revealed that there are significant differences 

in the I/O ratio with and without carpets, 2.63 and 1.03 (Chamseddine et al., 2019). 

Ventilation Performances indicator 

The level of carbon dioxide (CO2) should be kept within acceptable limits as an 

indicator of adequate ventilation and to prevent discomfort and cognitive impairment. 



23 
 

 

Elevated CO2 levels are often an indicator of poor ventilation. High CO2 levels are 

associated with symptoms such as headaches, drowsiness, and reduced cognitive 

function, which are common complaints in SBS symptoms. Poor ventilation also means 

that other indoor pollutants like TVOCs, CO, and formaldehyde are not effectively 

removed, further contributing to the development of SBS symptoms. CO2 levels are 

often used as an indicator of the effectiveness of a building’s ventilation system. High 

levels of CO2 suggest that the ventilation system is not providing adequate fresh air, 

leading to a build-up of indoor pollutants. Elevated CO2 levels can cause symptoms like 

headaches, dizziness, fatigue, and impaired cognitive function. These symptoms arise 

because high CO2 levels often correlate with low oxygen levels, leading to a decrease 

in air quality and a corresponding increase in SBS symptoms. Currently, atmospheric 

air contains 300–700 parts per million of CO2 (Mainka et al., 2015). Within the room, 

the concentration of CO2 rose, with gas equipment and living things serving as common 

sources. The amount of CO2 that building inhabitants release is influenced by their food, 

physical activity, and general health (Tsantaki et al., 2022). Naturally, the number of 

occupants and the inadequate make-up air supply were closely correlated with CO2 

concentrations, which also depended on the concentration of CO2 in the outside air 

(Abdullah et al., 2019; Zender et al., 2019). The permitted indoor CO2 content under 

the current IAQ standards was 1000 ppm, which was caused by the amounts of CO2 in 

people's exhaled air (Susanto et al., 2020). In the case of mechanical ventilation 

regulated by CO2 sensors, 1000 ppm is typically defined as the maximum concentration 

of CO2 (Oliveira et al., 2019). In metropolitan areas, factors such as the number of 

occupants, ventilation rooms, room layouts, air exchange rates, and occupant activities 

in addition to outside activity can cause CO2 levels to exceed 50–70% (Latif et al., 2018; 

Morawska et al., 2017; Leung et al., 2015). The primary source of indoor air pollution 

is the occupier, as a result of exhalation from the workers or occupants the by-product 

is CO2 (Snow et al., 2019; Liu et al., 2019). Apart from indoor activities that can raise 

CO2 concentrations to 1356 ppm in schools, nurseries, or homes, the level of carbon 

dioxide in a well-ventilated building must range between 300-1000 ppm with a floor 

building mean of 800 ppm or less (Chen et al., 2023; Stamatelopoulou et al., 2019; 

Amoatey et al., 2018). When combined with a moderate temperature and humidity 

level, complaints about indoor air quality can be lessened when there is less than 800 

parts per million of CO2. In addition to creating more frightening and dangerous 

situations, an inverse situation can lead to more complaints. When pupils are present, 
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the amount of CO2 in the classroom rises by 10% to 20% more than it does outside 

(Rodriguez et al., 2022; Mainka et al., 2018). In comparison to a typical setting, there was 

a 24% increase in mental stress and a 2.5-fold increase in physical stress due to 

excessive CO2 production indoors (Jia et al., 2021; Amoatey et al., 2018). The indoor 

CO2 level is typically higher than the outdoor level, indicating internal sources, with the 

tenant being the primary contributor (Chamseddine et al., 2019; Zainal et al., 2019).   

Malaysian Indoor Air Quality Standard 

Industrial Code of Practice on Indoor Air Quality needs to be effectively 

implemented, and companies must integrate these guidelines into their occupational 

health and safety management systems, ensuring continuous monitoring, regular 

assessments, and proactive measures to maintain a safe and healthy indoor environment. 

Examples of Standards and Guidelines consist of the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) Standards, WHO Guidelines 

for Indoor Air Quality, and A (Occupational Safety and Health Administration) 

Guidelines.  These are widely recognized guidelines for ventilation and IAQ, including 

ASHRAE Standard 62.1, which specifies minimum ventilation rates and IAQ standards 

for commercial buildings. WHO Guidelines for IAQ provides guidelines on various 

indoor pollutants, including recommendations on acceptable levels of common indoor 

air contaminants. Occupational Safety and Health Administration (OSHA) Guidelines 

were in the U.S., OSHA provides various guidelines and regulations concerning air 

quality in workplaces, particularly concerning exposure limits for hazardous 

substances. Workers in different sub-economy sectors experience varying exposures to 

indoor air pollutants and conditions. Wholesale and retail trades, education, and 

hospitality sectors each present unique challenges for IAQ management, impacting 

worker health and comfort in distinct ways. Addressing IAQ issues in these sectors 

involves tailored approaches to ventilation, pollutant control, and environmental 

conditions to promote a healthier working environment. 

Act 514, the Occupational Safety and Health Act of 1994 (OSHA 1994), 

provides a framework for ensuring workplace safety and health in Malaysia. Although 

it primarily governs occupational safety and health, it can indeed be useful for guiding 
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IAQ management in workplaces. Act 514 establishes a broad regulatory framework for 

workplace safety and health, including aspects of indoor air quality. ICOP-IAQ 2010 

provides specific guidelines and standards for managing IAQ, supporting the act’s goals 

by offering practical measures for implementation. By adhering to both the act and the 

code of practice, employers can improve worker health, enhance productivity, and 

contribute positively to the economy. The focus on good IAQ leads to a healthier, more 

productive workforce, reduces costs related to health issues, and supports sustainable 

economic growth. As Table 2.1 illustrates, standards vary throughout countries and 

display a list of indoor pollutants together with acceptable levels. Malaysian Ministry 

of Human Resources Department of Safety and Health created the ICOP-IAQ, which 

was introduced in August 2010 and the standard widely used for practitioners and 

researchers to determine the air quality inside the building.  

Table 2.1 Comparison Indoor Air Quality Standards and Guidelines 

Categories Pollutants ASHRAE WHO ICOP-

IAQ 

Chemical Carbon 

monoxide (CO) 

a35 ppm b10ppm a10ppm 

Formaldehyde 

(HCHO) 

e2ppm f0.1mg/m3 a0.1ppm 

Respirable 

particulate/ PM10 

c0.015mg/m3 c0.045mg/m3 a0.15 

mg/m3 

Respirable 

particulate/ 

PM2.5 

c0.035mg/m3 c0.015mg/m3 - 

Physical  Air movement a10L/s a0.8 ft/s or 

0.25m/s 

a0.15-

0.50m/s 

Temperature a22.78-

26.110C 

a21-280C a23-26 0C 

Relative 

Humidity 

a30-60% b30-65% a40-70% 

Ventilation 

Performance Indicator 

Carbon Dioxide a1000ppm a1000ppm a1000ppm 

Notes: 
a Exposure averaging time is 1 h 
b Exposure averaging time is 8 h 
c Exposure averaging time is 24 h 
d Exposure averaging time is 1 year 
e Exposure averaging time is 15 min 
f Exposure averaging time is 30 min 
g Exposure averaging time is 1 week 
h Acute 
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2.2 Literature searches 

The study gathered crucial data from reputable sources such as Google Scholar, 

Elsevier Bibliographic Database (SCOPUS), Science Direct, PubMed (MEDLINE), 

and Science Direct's electronic databases. This analysis encompasses articles published 

between 2017 and 2023. The study primarily examined the physical attributes, particle 

matter, and chemical air pollutants that are assessed in the indoor work setting. The 

database provided a total of 372 hits, with 294 from Scopus, 58 from Science Direct, 

and 20 from PubMed. Google Scholar revealed a total of 4,140 items, however, only 

the initial ten pages were examined, revealing six papers that were pertinent to the 

search. The final articles and the results of the database search were stored in an Excel 

spreadsheet. 

2.2.1 Inclusion/Exclusion criteria 

This evaluation includes only published research papers written in English, 

studies done in Malaysia, and papers that use quantitative data analysis. Only papers 

published after 2017 are included in the year of publication. Indoor air quality research 

started to garner attention in this year and will continue to do so until 2023, which 

represents the study's maturity year. 

2.2.2 Paper screening and data extraction 

Figure 2.1 illustrates the four stages of the paper review flow process. Following 

the completion of the searches, 372 titles and abstracts were screened to find research 

that satisfied the inclusion criteria. 85 articles were then eliminated from this list of 372 

titles. By reading the title and abstract, the authors personally verified that the 67 articles 

satisfied the qualifying requirements. For the next procedure, a total of 42 publications 

about indoor air quality and sick building syndrome symptoms were included, whereas 

16 papers that dealt with children and patients were removed. Following assessment, 4 
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papers were deemed irrelevant to the goal of the study and were not eligible for 

additional review and only 22 articles related to the objective of this study. 

 

 

 

Figure 2.1 Stage of articles selection for IAQ and SBS symptoms 

 

Previous studies were summarized in Table 2.2 which showed variations of air 

pollutants inside the buildings which can reduce the productivity of the occupants. This 
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table provides a comprehensive summary of studies conducted between 2017 and 2023 

in Malaysia that investigate the relationship between IAQ and SBS symptoms. It 

outlines the key findings from these studies, including the pollutants and IAQ factors 

that have been linked to SBS symptoms, the health impacts on building occupants, and 

the severity of symptoms reported. Additionally, the table highlights the research 

methodologies used, such as data collection methods, study settings (e.g., office 

buildings, schools, or residential areas), and sample sizes. This comparison helps to 

illustrate trends, gaps, and the current state of knowledge on how poor IAQ contributes 

to SBS symptoms in Malaysia, as well as the implications for public health and building 

management practices. There were 22 articles chosen for this study, as shown in Table 

2.2 below. Of these, 11 were conducted in Kuala Lumpur or Selangor, 5 in Johor, 2 in 

Pulau Pinang, and 1 in each of the states of Terengganu, Kelantan, Pahang, and Melaka. 

Three (3) categories can be used to classify ventilation: 1. Area with open ventilation; 

2. Area with full closed ventilation; and 3. Area with mixed ventilation. The primary 

indoor air quality issues in buildings (manufacturing, residential, educational, and 

office) that have been identified include particulate matter, carbon dioxide, temperature 

and humidity, and volatile organic compounds. Table 2.3 shows the output of each 

article. Out of the 22 articles reviewed, 5 were related to SBS symptoms and IAQ. 

Among these, only 1 article focused on an office setting, while the remaining 4 were 

conducted in educational environments. Table 2.2 summarizes research conducted in 

Malaysia from 2017 to 2023, focusing on the relationship between IAQ factors and the 

prevalence of SBSS in various indoor environments, including offices, educational 

institutions, and residential buildings. 

IAQ regulation is necessary indoor air pollutants can be diluted when fresh 

outdoor air is brought into the space, whether through an air conditioning system or a 

natural ventilation system like a window (Cheng et al., 2021). Unsatisfactory 

environmental conditions in classrooms, including insufficient ventilation, noise levels, 

and inadequate heating, have been documented since the mid-1990s (Bluyssen., 2020). 

The idea behind ventilation is to replace stale air with clean air. By installing interior 

ventilation, you may lessen the amount of outside air that enters your room. The major 

goal of using ventilation is to provide occupants with healthy air to breathe by removing 

and diluting contaminants that are already present in the air. As a result of the proper 



29 
 

 

ventilation and building shielding installed for the residents' safety, indoor air quality 

should be superior to outdoor air quality. Nonetheless, interior air pollution 

concentrations are more than two thirds higher than outdoor concentrations (Cheek et 

al., 2021; Napi et al., 2021).  High indoor readings have been linked to outdoor air 

quality, according to numerous studies. Three criteria determine how outside air enters 

an indoor space: infiltration, mechanical ventilation, and natural ventilation (Awang et 

al., 2023; Othman et al., 2022; Rodriguez et al., 2022). Building leaks, fractures in the 

structure, and possible entry points beneath doors are all potential sources of infiltration 

(Rasli et al., 2021; Snow et al., 2019). The installation of an air conditioner and fan 

indicates mechanical ventilation. On the other hand, Liu et al., (2020) states that open 

doors and windows are considered natural ventilation, which allows pollutants to enter 

the building. Table 2.2 showed previous study of IAQ in Malaysia for past 7 years.  

Good IAQ contributes to a favourable environment for students, performance of 

teachers and staff and a sense of comfort, health, and well-being. These elements 

combined to assist a building in its core mission, which is educating community. Studies 

of air pollutants movement indicate that indoor levels of pollutants may be two to five 

times and occasionally more than 100 times higher than outdoor levels. Therefore, it is 

important to determine the level of particles exposure, especially towards workers. 

Performance ventilation indicator, chemical and physical parameter was important to 

be measured to investigate how outdoor sources influence air flow inside the buildings. 

Approximately 67% of people work in non-agricultural, non-industrial indoor settings, 

which are referred to as indoor work environments. This means that nearly 70% of 

people are workers. Certain indoor environmental factors have been linked in scientific 

research to higher chances of nonspecific symptoms, respiratory disorders, and 

decreased performance (Norback et al., 2021; Abdullah et al., 2019(a)).  

Table 2.2 presents the findings from various studies conducted in Malaysia 

between 2018 and 2023, highlighting key IAQ parameters, methodologies, and 

outcomes across different indoor environments. Several studies examined the link 

between IAQ and SBS symptoms in office buildings, where poor ventilation, high levels 

of VOC, and inadequate humidity control were commonly identified as contributing 

factors to SBS symptoms (Lu et al., 2018). Research indicated that occupants in offices 

with inadequate ventilation and high levels of indoor pollutants were more likely to 
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report symptoms such as headaches, eye irritation, and respiratory issues (Alias et al., 

2020). A significant study from 2019 found that improving ventilation and reducing 

indoor pollutant levels led to a marked decrease in reported SBS symptoms. Table 2.2 

presents an overview of various studies conducted between 2017 and 2023 in Malaysia, 

examining the relationship between IAQ and SBS symptoms. The studies span different 

types of buildings, including educational, manufacturing, office, and hospital settings. 

The table highlights key factors, including the use of SBS symptoms questionnaires, the 

measurement of physical parameters (such as CO2, temperature, and humidity), and 

IAQ parameters like CO2, PM2.5, PM10, TVOCs, NO2, HCHO, and CO. Most studies 

focused on educational buildings (16 studies), followed by manufacturing (5 studies), 

office (4 studies), and hospital (1 study).  A majority of the studies used an SBS 

symptoms questionnaire to assess symptoms, though a few did not. CO₂ was frequently 

measured across many studies, followed by temperature and humidity. PM2.5 and PM10 

were often monitored, especially in educational and manufacturing buildings. TVOCs 

and NO2 were also commonly measured in educational settings, while HCHO appeared 

in several studies. The research suggests that IAQ, particularly the levels of pollutants 

like CO2, PM2.5, and TVOCs, plays a significant role in the development of SBS 

symptoms, particularly in educational and manufacturing environments. 

IAQ research also focused on schools and universities, exploring how classroom 

environments affect the health and well-being of students and staff. A 2021 study found 

that poor IAQ in educational institutions, characterized by high CO2 levels and 

insufficient air exchange, was associated with increased reports of fatigue, headaches, 

and concentration difficulties among students. The study emphasized the importance of 

proper ventilation and the use of air purifiers to improve IAQ in educational settings. 

Although less common, some studies also examined the relationship between 

IAQ and SBS symptoms in residential buildings, particularly in urban areas. A 2020 

study highlighted the impact of indoor pollutants, such as formaldehyde and particulate 

matter, on the health of residents in high-density housing. The study found a correlation 

between poor IAQ and increased symptoms of SBS, particularly among children and 

the elderly. 
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Over the years, there has been a growing awareness of the importance of IAQ 

in preventing SBS symptoms. This has led to more studies focusing on identifying 

specific indoor pollutants and their health impacts. Some studies have explored the 

effectiveness of Malaysian IAQ guidelines and regulations in mitigating SBS 

symptoms, suggesting that stricter enforcement and updated standards could further 

reduce the prevalence of SBS symptoms. The majority of studies were conducted in 

urban centres, such as Kuala Lumpur, where indoor pollution and building density are 

higher. There is a noted gap in research focusing on rural areas. 

Comparison of IAQ between old and new buildings which old building showed 

higher levels of NO2 at 24.26 ppb, CO at 0.62 ppb, and PM10 at 4.99 µg/m3 while new 

buildings had elevated levels of RH and ozone (O3).  Despite these differences, all IAQ 

measurements in both buildings complied with the standards set by the Department of 

Occupational Safety and Health (DOSH) even though there are slightly higher indoor 

pollutants at certain new buildings. 

IAQ has a significant correlation with health effects, especially SBS symptoms. 

Linked to symptoms like dry hands, scalp itching, hoarse throat, headaches, eye issues, 

and nasal problems (p-value < 0.05) were related to the cooking technique. Children in 

schools located in industrial and urban areas are particularly vulnerable to injuries 

caused by air pollution. Temperature has a significant correlation with fatigue (p = 

0.036) and dizziness (p = 0.031). Relative Humidity has correlated with dry, irritated 

eyes (p = 0.047), headaches (p = 0.045), and fatigue (p = 0.040). PM₁₀ has a strong 

correlation with eye irritation (p = 0.006). Table 2.3 shows that previous studies 

illustrate various aspects of IAQ and SBS symptoms across different settings, 

employing a range of data analysis methods. The findings emphasize the importance of 

adequate ventilation, pollutant management, and environmental control to mitigate SBS 

symptoms and enhance overall indoor air quality. 
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Table 2.2  Overview of previous studies on the relationship Between Indoor Air Quality (IAQ) and Sick Building Syndrome (SBS) 

symptoms in Malaysia (2017-2023) 

 Author Types of Building SBS Questionnaire Physical parameter IAQ monitoring Parameter besides physical parameter 

 CO2 SO2 NO2 HCHO TVOC PM2.5 PM10 CO 

1 Awang et al., 2023 Educational X X  X X   X X X 

2 Nazli et al., 2023 Manufacturing  X X    X X  X 

3 Zaki et al., 2022 Educational  X    X X  X  

4 Azlan et al., 2022 Educational X X X      X  

5 Othman et al., 2022 Educational   X     X X  

6 Ezani et al., 2022 Educational   X   X  X X  

7 Ezani et al., 2021 Educational   X     X X  

8 Rasli et al., 2021 Educational   X    X X  X 

9 Alwi et al., 2021 Manufacturing      X X X X  

10 Norback et al., 2021 Educational X  X  X X X   X 

11 Fu et al., 2021 Educational X          

12 You et al., 2023 Hospital   X      X  

13 Sarkhosh et al., 2021 Office       X  X  

14 Idris et al., 2020 Educational   X     X   

15 Khamis et al., 2019 Office       X X X  

16 Nejat et al., 2019 Manufacturing   X        

17 Zainal et al., 2019 Office X  X    X X X X 

18 Abdullah et al., 2019 Educational   X   X X X   

19 Alias et al., 2021 Educational     X X  X   

20 Dzullkiflli et al. 2018 Manufacturing        X X X 

21 Hasrunizzam et al., 2018 Office   X  X  X   X 

22 Hazrin Et al., 2017 Educational  X  X    X  X 
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Table 2.3 presents a variety of studies conducted across Malaysia between 2018 and 

2023, focusing on IAQ in different settings, from universities to schools, offices, and 

manufacturing areas. Common pollutants studied include PM2.5, PM10, CO, CO2, NO2, 

VOCs, O3, temperature (T), relative humidity (RH), and air movement (AM). These 

studies reveal the diversity of IAQ issues in various environments, with some buildings 

exceeding acceptable limits for pollutants. Many studies noted the prevalence of SBS 

symptoms among workers and students, such as headaches, fatigue, eye irritation, and 

respiratory issues (Nazli et al., 2023; Azlan et al., 2022; Alwi et al., 2021). Specific 

environments like schools, universities, and manufacturing facilities showed 

correlations between poor IAQ and the occurrence of these symptoms. IAQ was 

evaluated in both indoor and outdoor environments, such as schools, offices, 

manufacturing facilities, and museums, with some studies comparing old and new 

buildings (Sarkhosh et al., 2021; Alwi et al., 2021; Norback et al., 2021). For instance, 

old buildings had higher levels of pollutants like HCHO and CO compared to new ones 

(Yau et al., 2023). Several studies used descriptive statistics, while others employed 

more advanced techniques like regression analysis, ANOVA, and correlation tests 

(Nazli et al., 2023; Ezani et al., 2022; Fu et al., 2021; Abdullah et al., 2019). These 

analyses helped to understand the relationships between pollutants, building 

characteristics, and health symptoms. Many studies assessed IAQ against established 

standards, such as those by the Department of Occupational Safety and Health (DOSH) 

and ASHRAE. Some studies found pollutants exceeding the recommended limits, 

particularly CO2 in offices and PM2.5 in schools near industrial areas (Khamis et al., 

2019; Dzulkifli et al., 2018). Poor ventilation was often linked to elevated levels of CO2 

and PM, with activities like cooking, transportation, and high occupancy contributing 

to pollutant levels. Several studies emphasized the importance of ventilation systems in 

maintaining healthy IAQ (Zaki & Bari, 2022; Ezani et al., 2021; Idris et al., 2020). 

Overall, these findings highlight the importance of monitoring IAQ to prevent 

health issues related to poor air quality, particularly in environments with high 

occupancy or pollutant exposure. The studies also underline the need for improved 

ventilation and better building management to ensure compliance with IAQ standards. 
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Table 2.3 Summary of Findings from Previous Studies on Indoor Air Quality (IAQ) in Malaysia (2018-2023) 

 Author Study Area Data Analysis Output 

1 Awang et al., 2023 University 

 

PM2.5, PM10, O3, RH, CO, SO2, 

NO2, T 

 

SBSS 

Mann Whitney 

 

The current investigation shows that the NO2 (24.26 

ppb), CO (0.62 ppb), and PM10 (4.99 µg/m3) levels in the 

old building were significantly higher than those in the 

new building. However, the new building had noticeably 

higher RH and O3 levels. All of the IAQ measurements 

for both buildings, however, fell under the DOSH-

established standard limit 

2 Nazli et al., 2023 Manufacturing (food) Pulau 

Pinang 

 

PM2.5, CO2, TVOC, CO, T, RH 

SBSS-adopt from Department of 

Occupational and Environmental 

Medicine 

Boosted regression tree 

(BRT) 

Cooking techniques were found to be associated (p-

value < 0.05) with the following symptoms: dry hands, 

scaling/itching scalp or ears, hoarse/dry throat, 

headache, eye issues, and nasal problems. 

3 Zaki & Bari., 2022 Primary school in Pasir Gudang, 

Johor 

 

IAQ monitoring 

RH, AM, T, VOC, PM, HCHO 

Descriptive statistic Children who go to school in industrial and urban 

locations are susceptible to suffer injuries, especially 

when nearby human activity contributes to air pollution. 

4 Azlan et al., 2022 Educational building, Shah Alam 

 

T, RH, CO2, PM10, Biological 

contaminants, SBSS 

Descriptive statistics, 

Chi square 

Temperature and some symptoms, such as fatigue 

(p=0.036) and dizziness (p=0.031), are significantly 

correlated. Certain symptoms, including dry, irritated 

eyes (p = 0.047), headaches (p = 0.045), and fatigue (p 

= 0.040), were substantially correlated with relative 

humidity. Furthermore, a single symptom—itchiness, 

dryness, and irritation to the eyes—was substantially 

correlated with PM10 (p = 0.006). 
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 Author Study Area Data Analysis Output 

5 Othman et al., 2022 Primary school in Kuala Lumpur 

 

IAQ monitoring 

 

PM2.5 

Descriptive Analysis Average concentration of PM2.5 was 42.0-23.1. Spatial 

analysis of PM2.5 

6 Ezani et al., 2022 Outdoor (School., drop off and 

pickup zones) 

-Kuala Lumpur (suburban) 

 

PM2.5, NO2 

ANOVA Students that most effected towards PM2.5 and NO2 was 

the person that walking ad cycling. 10% exposure during 

school day comes from motorised travel to school and 

5% comes from drop off and pick up zones 

7 Ezani et al., 2021 Indoor and Outdoor (university., 

UPM, Serdang)-suburban 

Apartment -indoor 

 

PM2.5, traffic data 

Mann Whitney Test  Reduction of motor vehicles during MCO caused 

decreasing emission of PM2.5 at outdoor apartment. The 

distribution of PM2.5 was higher during lunch time and 

gradually increased during preparation of the evening 

meal. It is noted that most cooking styles involved pan-

frying and stir-frying for evening meal preparation, 

distinctive high peak between 17:30 to 18:30. During 

MCO the maximum concentration of PM2.5 observed 

higher during evening at 52.2ug/m3.  

8. Rasli et al., 2021 Administrative offices, USM 

(Indoor) 

 

IAQ Monitoring 

 

CO, PM10, O3, TVOC, CO2, RH, 

T, AM 

Descriptive statistic The T and RH were within the acceptable range of 23-

26°C and 40-70%, respectively by ICOP, while the AM 

was very low and less than the acceptable threshold 

range of 0.15-0.5 m/s at 0.08 m/s, 0.04 m/s, and 0.02 m/s 

at Point 1, Point 2,  

and Point 3, respectively. The indoor air contaminants 

(CO, CH2O, O3, TVOC, PM10, and TFC) met the 

standard level of ICOP, except for TBC and CO2. TBC 

exceeded the ICOP limit (500 cfu/m3) at 1000 cfu/m3 

and 1500 cfu/m3, at Point 1and Point 2, respectively, 

whereas CO2 concentrations exceeded it (1000 ppm) at 

1008.93 ppm at Point 2. 
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 Author Study Area Data Analysis Output 

9 Alwi et al., 2021 Garment Manufacturing, Kota 

Bahru Kelantan (Indoor) 

 

IAQ monitoring and 

questionnaire. 

 

 

Descriptive statistics The prevalence of SBS among workers was 82.1%. The 

most common reported symptoms were feeling heavy 

headed, fatigue, and headaches with 85.0%, 83.3%, and 

70.5% respectively. Other reported symptoms were 

nausea (25.5%), cough (64.7%), stuffy nose (58.4%), 

sore throat (58.2%), skin rash (54.4%), itchy scalp 

(35.8%), and eye irritation (19.7%). Only the mean 

temperature of 30.59 °C had exceeded the Malaysian 

Standard (ICOP-IAQ 2010) while both Relative 

Humidity (RH) and air velocity were below the 

Malaysian Standard with 54.85% and 0.31 m/s 

respectively. CO2 was within the acceptable level with 

651.25 ppm. PM2.5 and PM10 were recorded 8 µg/m3 and 

80 µg/m3 respectively. 

10 Norback et al., 2021 High school (Johor Bahru) 

 

Questionnaire, IAQ monitoring 

 

VOC, HCHO, CO2, NO2. 

Descriptive and 

correlation 

SBS symptoms such as headaches, rhinitis, fatigue and 

others symptoms caused by incompliances of physical 

and chemical parameters of insides the buildings itself. 

11 Fu et al., 2021 High school (Johor Bharu) 

 

Questionnaire 

Adopt questionnaire from Upsala 

University 

ANOVA SBS symptoms was completed by age (14-15): 

Student: 97.8%; males: 46.8%; females: 53.2% 

Female higher rates of tiredness (p=0.01) 

Headaches were more common in Malay and Chinese 

(p=0.01). 

SBS higher in female than male (p=0.08) 

12 Yau et al., 2023 Hospitals 

 

 

Non-parametric analysis The concentrations of elements accumulated in lichen U. 

misaminensis, as well as the photosynthetic parameters 

(an indicator of vitality) after the lichen samples were 

exposed to the outdoor and indoor environment in urban 

and rural areas for 2 months. The outdoor environment 
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 Author Study Area Data Analysis Output 

showed higher concentrations compared to the indoor 

environment in both areas (urban and rural) 

13 Sarkhosh et al., 2021 Office in Kuala Lumpur Regression There was a strong significant relationship between the 

number of people in the room and the increased 

prevalence of SBS symptoms (p-value = 0.000). As 

10.3% of the double rooms were positive SBS 

symptoms, this would increase to 23.1% in nine-person 

rooms.  

14 Idris et al., 2020 Kindergarten inside UKM 

 

IAQ monitoring 

 

PM2.5, AM, T, RH 

Principal Component 

Analysis 

Average temperatures ranged from 28.81°C ± 31.62°C. 

The average relative humidity was 72.02% ± 0.58 for the 

upper floor and 71.19% ± 1.03 for the lower floor. The 

average mass concentration of PM2.5 was 80.2 ± 31.1 

mg/m3 for the upper floor and 96.4 ± 27.0 mg/m3 for the 

lower floor. 

15 Khamis et al., 2019 Office university, UTHM 

 

Questionnaire and IAQ 

Monitoring 

 

CO, CO2, SO2 

Descriptive statistics Previous study: T= 22.5oC-24.7oC 

Current study: T=24.9°C 

Previous study: AM=0.065m/s 

Current study: AM=0.19m/s 

Previous study: CO=13.5PPM 

Current study: CO=0.2PPM-12.2PPM 

Previous study: CO2- 721.5PPM-478.5PPM 

Current study: CO2-635ppm 

16 Nejat et al., 2019 UTM 

 

IAQ monitoring 

Descriptive statistic Air movement was ranged between 0.4 m/s to 0.5m/s. 

This study showed that IAQ analysis for airflow and air 

change rate was satisfy minimum requirements 

recommend by the standard. the high mean age of air 

was seen in speeds below the average (2.5 m/s) which 

led to a big dead zone area (area with air velocity below 

0.1 m/s) in this range of the wind speed 

17 Zainal et al., 2019 Office workers in public 

university (indoor), UKM 

Univariate, Multivariate 

and 

Most reported symptoms were mucosal symptoms 

(19.6%), skin symptoms (10.2%), general symptoms 
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 Author Study Area Data Analysis Output 

 

Questionnaire, IAQ monitoring 

 

 

 bivariate analysis (18.7%) and this study showed 1.5 to 2 times higher 

findings compared to children in China study 

Men (22.1%) 

Smokers (175%) higher prevalence of being diagnosed 

with asthma than women up to 11.8% 

18 Abdullah et al., 2019 Kindergartens (Kuala Nerus Kuala 

Terengganu) 

 

IAQ monitoring 

 

PM, CO, CO2 T, RH, AM 

correlation Ranged of the pollutants inside kindergartens was not 

normally distributed and Spearman correlation was used 

Exceed the limit for all parameters at certain time due to 

indoor activities 

19 Alias et al., 2021 Primary school (Kuala Lumpur) 

 

IAQ monitoring 

 

PM2.5, HCHO, TVOC 

descriptive statistics Highest average for PM2.5 concentrations in an indoor 

classroom was recorded at the school located in the 

industrial area (23.5 μg/m3) followed by urban (18.6 

μg/m3) and suburban (9.58 μg/m3). The indoor to 

outdoor (I/O) ratio values for PM2.5 concentrations were 

slightly above one, indicating that open doors and 

windows highly affected indoor PM2.5 concentrations 

20 Dzullkiflli et al. 2018 Museum (Indoor and outdoor 

monitoring at Melaka Sultanate 

Palace Museum & History and 

Ethnography Museum) 

 

PM2.5, SO2, CO2 

Descriptive statistics 

 

NO2 exceed the standard in evening and outdoor contain 

high concentration compared to indoor. This is due to 

the location of the museum closed to roadside. 

SO2 not exceed the limit. 

Exceed the limit almost all the time during operating 

hours for CO2. 

PM2.5 exceed the limit due to numerous sources of 

pollution such as motor vehicles, infrastructure, 

manufacturing, construction sites and more. 

21 Hasrulnizzam et al., 

2018 

Inside KTM Komuters 

 

ASHRAE Standard 62-2001 

 

Regression analysis – to 

predict number of 

passengers 

In the morning, a gradual increase in temperature was 

observed due to the rising number of passengers, 

highlighting the need for attention to air quality inside 

the cabin. In the evening, CO2 levels inside the train 
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 Author Study Area Data Analysis Output 

 exceeded ASHRAE 62-2001 standards, showing a 

strong positive correlation between passenger numbers 

and CO2 levels. 

22 Hazrin et al., 2017 Educational 

 

PM, CO2, T 

Descriptive statistics CO2, produced by human respiration, does not impact 

classroom CO2 levels during occupancy, likely due to 

the natural ventilation systems that bring in fresh air. 

Adequate ventilation is key to reducing CO2 levels and 

maintaining a comfortable learning environment for 

students. 

 



40 
 

 

2.3 Sources of Indoor Air Quality 

Main sources of indoor air pollution can be attributed to cooking and heating 

activities, namely the use of stoves, heaters, or fireplaces that burn gas, wood, or oil. 

These activities can result in the emission of dangerous gases such as CO and nitrogen 

dioxide (NO2). Many household cleaners, air fresheners, and disinfectants include 

VOC, which are chemicals that can be harmful to indoor air quality. Building materials, 

particularly paints, varnishes, and specific types of furniture or flooring, can emit 

pollutants that contaminate indoor air. Tobacco Indoor smoking emits a multitude of 

noxious compounds into the air, impacting both smokers and bystanders. Mould and 

dust are typical contributors to indoor air pollution. Damp places can promote the 

formation of mould, while dust and pet dander accumulate over time. These pollutants 

can potentially aggravate allergies or respiratory problems. Pollutants originating from 

external sources, such as automobile emissions or industrial discharges, can infiltrate 

inside spaces through windows, doors, or ventilation systems (Taheri & Razban, 2021). 

The final item on the list was personal care products. Products such as hairspray, 

perfumes, and deodorants have the potential to emit hazardous substances that might 

negatively impact the interior air quality. By acknowledging these sources, we may 

implement measures to enhance indoor air quality and safeguard our well-being. 

Table 2.4 presents the primary contributors to IAP, which include cooking and 

heating activities, cleaning chemicals, building materials, tobacco smoke, mould and 

dust, outdoor air, environmental factors, and personal care products. The simplified 

mechanisms of toxicity, as presented in Table 2.4, include the formation of harmful 

compounds, chemical irritation, the presence of particulate matter, and the release of 

allergens. Poor indoor air quality can have detrimental impacts on health, including 

respiratory problems, cardiovascular concerns, neurological effects, increased risk of 

cancer, and allergic reactions. Various indoor pollutants can lead to a range of health 

problems, including respiratory disorders and chronic diseases such as cancer or heart 

disease. Ensuring optimal air quality is essential for maintaining overall well-being.  
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Table 2.4 Sources of Indoor Air Pollution, Mechanisms of Toxicity, and Health Impacts on Indoor Air Quality (IAQ) 

Pollutants Source of emission/ Authors Mechanism of toxicity Health impacts 

CO Smoke from stoves, boilers, 

fuel-burning heaters, kerosene, 

and gas heaters. Burning fossil 

fuels such as oil, coal, natural gas 

and outdoor air pollution 

(Sarkhosh et al., 2021) 

Formation of carboxy-

hemoglobin and decreased 

oxygen supply higher bronchial 

function 

Vomiting, nausea, weakness, dizziness, headache, and 

loss of consciousness 

Lung diseases and skin problems 

Headache, dizziness, weakness, nausea, vomiting, and 

unconsciousness begin to develop through the placenta 

and into the fatal circulation. 

NO2 Pollutants from motor vehicles in 

garages, fuel burning, 

Factory pollution, traffic (Zaki et 

al., 2022) 

Significant elevation in bronchial 

activity and an increased risk of 

lung infection 

Respiratory infections, wheezing, coughing, fever, chest 

pain, dyspnea, headache. 

Infections of the respiratory system that aggravate long-

term respiratory conditions, including pneumonia, 

asthma, bronchial reactivity, and asthma 

CO2 Metabolism, combustion 

activities and motor vehicle usage 

Occupancy has a significant 

impact on IAQ (Hazri et al., 2017) 

Blocking acetylcholinesterase 

from hydrolyzing 

Fatigue and headaches, Higher concentration leads to 

nausea, vomiting, and dizziness. 

Respiratory infection, lung conditions, heart 

arrhythmias, convulsions, cerebral illness and trauma 

victims, and decreased performance 

VOCs Pesticides, adhesives, varnishes, 

stains, polishes, cleansers, 

lubricants, sealants, dyes, copy 

machines, printers, tobacco 

products, perfumes, dry-cleaned 

clothing, building materials and 

furnishings, etc. (Ghia et al., 

2022) 

 

 

Carcinogenic, mutagenic, 

neurotoxic, and genotoxic 

Irritation in eyes, throat, skin, and nose. Headaches, 

respiratory symptoms, fatigue, damage to the kidney, 

central nervous system and liver, trigger symptoms of 

allergy. 

Breathing difficulties, dry throat, impatience. 

Disorders such as asthma, anaphylaxis, cardiovascular, 

and cancer 
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Pollutants Source of emission/ Authors Mechanism of toxicity Health impacts 

Respirable 

particulate 

Environmental factors such as 

cooking, combustion activities, 

outside environment, and cleaning 

activities (Khamis et al., 2019). 

the office equipment, such as 

printers, fax machines, 

photocopiers, and central air 

conditioning systems (Awang et 

al., 2023) 

Antigen from the flower (Zaki et 

al., 2022) 

Oxygen stress and inflammation 

on a systemic level 

 

Premature death by heart or lung disease, irregular 

heartbeat, Trigger symptoms of allergy 

Attacks of asthma, long-term bronchitis, heart disease, 

lung cancer, diabetes, respiratory disorders, limited 

activity, and early death 

Humidity Ventilation system (Alias et al., 

2021; Hazrin et al., 2017) 

Germs and viruses cause disease 

to thrive and grow in the air with 

a relative humidity of more than 

60% and can cause respiratory 

problems (respiratory droplet 

dispersal via droplet and airborne 

means. The size of the droplets 

affects how quickly they settle 

(droplet/fomite spread) or how 

long they stay in the air (airborne 

spread). 

Eyes become dry and irritated, skin gets flaky, dries out 

the mucous membrane lining the respiratory tract and 

increases heat disease admissions.  

 

Temperature Ventilation system (Soleimani et 

al., 2019) 

 Sweating, tired eyes, light-headedness, rapid breathing, 

elevated heart rate, and discomfort that is warm 
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Source Apportionment in IAQ monitoring 

PCA is a powerful statistical technique often used in the analysis of  IAQ data. 

It helps to simplify and interpret complex datasets by reducing dimensionality while 

preserving as much variability as possible (Greenacre et al., 2022). PCA is a method 

that transforms a large set of variables into a smaller set of uncorrelated variables called 

principal components (Kherif & Latypova, 2020). These components capture the most 

significant variations in the data (Schreiber, 2021). Application of PCA in indoor air 

quality analysis as one of the data reduction methods (Hasan et al., 2021).  The purpose 

of data reduction in indoor air quality studies often involves multiple variables (e.g., 

levels of various pollutants, temperature, humidity). PCA reduces the number of 

variables by combining correlated variables into principal components, which can 

simplify the dataset, making it easier to analyse and visualize (Zhao et al., 2020). 

Identifying key pollution was one of PCA's strengths. PCA's capability helps to 

identify which pollutants contribute most significantly to the variation in air quality 

(Cotta et al., 2020). This helps analysis to focus on the most critical factors affecting 

IAQ, aiding in targeted interventions (Rodríguez-Urrego & Rodríguez-Urrego, 2020). 

PCA can reveal patterns and correlations between different pollutants, potentially 

indicating common sources of indoor pollution, which can help in tracing the origin of 

pollution, such as identifying if certain activities or materials contribute to specific 

pollutant clusters (Liu et al., 2021). PCA results are often visualized in plots or graphs, 

such as biplots or scree plots, which show the relationships between principal 

components and original variables (Wen et al., 2019). This output helps provide a clear 

and intuitive way to understand complex data and highlight major trends. The last point 

was analysing the principal components; researchers can interpret the underlying 

structure of the data and identify the most influential factors affecting IAQ. This 

structure can enhance understanding of how different variables interact and impact air 

quality. 
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2.4 Previous studies about spatial mapping 

Indoor air quality spatial mapping entails generating a comprehensive depiction 

of the variations in air quality across indoor air. This can aid in the identification of 

regions with poor air quality, optimizing ventilation systems, and enhancing the general 

health of indoor environments. There are several prevalent strategies employed in 

geostatistical methods, machine learning, and simulation models. Geostatistical 

methods employ spatial interpolation techniques, such as kriging, to estimate air quality 

levels in areas located between sensors. This allows the generation of a continuous 

representation of air quality throughout the area. Figure 2 showed the screening process 

to determine the best method used for simulating RSP inside the building. 

 

Figure 2.2 Stages of spatial mapping determination using CFD 
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CFD was not initially designed for the purpose of modelling buildings. 

Nevertheless, during its evolution, this technique can be utilized in diverse domains, 

including heat transfer, fire simulation, the design of different turbo engines, the study 

of air pollutant flow phenomena, and the analysis of thermal comfort. Utilizing machine 

learning algorithms to assess sensor data and forecast air quality trends or detect 

pollution sources by examining spatial and temporal patterns. Simulation models 

include sophisticated techniques such as Suffer and CFD models to replicate airflow 

and the spread of pollutants. These models take into account the building's layout and 

ventilation systems. This tool can forecast air quality in various situations and assist in 

the development of more effective ventilation schemes. CFD has been utilized since the 

1970s to calculate airflow in indoor and constructed spaces, regardless of whether it is 

caused by wind, buoyancy, or mechanical ventilation systems like HVAC and fans.  

Once a CFD model is built, different types of studies can be performed. For example, 

various studies have analyzed the indoor flow pattern, the influence of sub-models 

representing heat and mass sources from animals and litter, and the impact of different 

boundary conditions on the internal field velocity. A few papers refer to the application 

of CFD models in studying naturally single-sided ventilation, cross-mechanical 

ventilation, tunnel ventilation, and mechanical single-sided ventilation for poultry 

houses. However, it is noted that the CFD technique has not been widely applied to 

study the tunnel ventilation system used in poultry houses. Therefore, the overall aim 

of the present study is to make contributions to the evaluation of indoor environmental 

parameters for giving enough ventilation. The objectives of this work are to develop a 

three-dimensional CFD model with different boundary conditions to simulate the indoor 

airflow, air temperature, and relative humidity distribution. Validate the CFD model by 

comparing simulated results with the field measurements from an experimental-

oriented tunnel-ventilated laying hen house. Provide scientific data to evaluate the 

ventilation system's performance and guidance on optimizing the ventilation design 

using the validated CFD model. 

Currently, the application of CFD has extended beyond the study of air's 

physical phenomena to include the assessment of thermal comfort and IAQ. CFD is a 

computer-based simulation method that uses mathematical equations to solve and 

visualize physical phenomena numerically. Equations discretize the collection of 
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variables to represent the original physical occurrences in space and time. It determines 

the precise spatial arrangement of airspeed, temperature, and levels of contaminants by 

solving the Navier-Stokes and species-conservation equations. CFD can be categorized 

into three main methods: direct numerical simulation (DNS), large eddy simulation 

(LES), and the Reynolds averaged Navier-Stokes equations with turbulence models 

(RANS). The DNS method is highly reliable for simulating contamination dispersion, 

but it requires significant computer resources and can take many years to predict, even 

in a small facility. LES outperforms DNS with excellent outcomes. However, it remains 

impractical because of its requirement for substantial computer memory and extended 

computational time spanning several weeks. The RANS equation, which employs a 

turbulence model, is the most commonly utilized method for simplifying the calculation 

of turbulence effects. Although there is a minor inaccuracy, the result is still excellent 

in providing precise information on the distribution of airflow and contaminant 

concentration. Furthermore, it significantly reduces the requirements for computer 

memory and computing time.  

To obtain reliable outcomes, users must possess knowledge of several complex 

techniques. The key components of the study include the geometric properties of the 

item being examined, the process of dividing the volume into discrete elements 

(meshing), the model used to simulate turbulence, and the conditions at the boundaries 

of the system. Data processing is essential for analyzing and presenting convergent 

simulation results. The validity of the results is substantially influenced by the accuracy 

and precision of the applied boundary conditions, meshing density, resolution method, 

and assumptions used. Ansys Fluent, Phoenics, and Airpak are all commercial CFD 

software. Table 2.4 provides a summary indicating that air quality research commonly 

utilizes three distinct types of software to simulate air movement and indoor pollutants. 

The available models are CONTAM (a multi-zone model), Ansys Fluent (a CFD 

model), and CONTAM - CFD0 (a combination of multi-zone and CFD models). This 

table summarizes a variety of studies utilizing different computer simulation models 

and software to assess indoor air quality (IAQ) in various environments. The primary 

software used in these studies includes CFD (Computational Fluid Dynamics) models 

combined with CONTAM (multizone airflow model) and Ansys Fluent, which are 

employed to simulate airflow, pollutant dispersion, temperature, humidity, and other 
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IAQ variables. The studies span diverse building types, including housing, office 

spaces, poultry houses, laboratories, and hospitals, showcasing the flexibility of 

simulation models across different environments. 

Simulation software showed most studies use CFD models, with some 

combining CFD with CONTAM for more detailed analyses of air movement and 

pollutant transport. The Ansys Fluent software is particularly common in studies 

involving complex airflow and pollutant dispersion. A range of IAQ parameters are 

simulated, including ventilation rates, pollutant concentration, temperature, air 

movement, and moisture. These simulations are used to optimize ventilation systems, 

understand airflow dynamics, and predict pollutant behaviour in various settings. The 

studies emphasize improving IAQ through better building design, such as optimal 

window placements, air curtain use, and proper ventilation types. They also address 

specific concerns, such as pollutant transport in medical or laboratory settings, and the 

impact of weather conditions (wind direction and velocity) in outdoor urban 

environments. Some studies highlighted the importance of using transient ventilation 

rates (e.g., in Murga et al., 2019) and sensitivity analysis (e.g., Cheng et al., 2021) to 

assess how changing conditions affect IAQ. Additionally, studies like those of Heibati 

et al. and Wang et al. discuss the trade-offs between different turbulence models and 

computational costs for more accurate results. Overall, the combination of CFD models 

and CONTAM software provides an effective means to simulate IAQ and optimize 

building ventilation, though the limitations of these models in fully capturing chemical 

reactions and pollutant transformations are also noted. 

 

Multi-zone model (CONTAM) 

The CONTAM software allows for multi-zone modelling, which accurately 

simulates air mass and pollutant concentrations in structures that include internal 

partitions, such as office buildings, hospitals, or high-rise apartment houses with many 

rooms (Yan et al., 2022; Mei & Gong, 2019). This simulation tool also enables the 

modelling of entire buildings, including multiple ventilation zones, with high 
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computational efficiency (Dols et al., 2021). In addition, it has the capability to consider 

the existence of mobile occupants as a factor in the simulation (Wang et al., 2022). 

Furthermore, CONTAM can be integrated with energy analysis software such as 

EnergyPlus and TRNSYS (Tian et al., 2020). An obstacle to using this program is the 

challenge of effectively employing it due to the significant amount of input needed. 

Input is required for each zone regarding parameters pertaining to all internal partitions 

of the building (Fine & Touchie, 2021). Furthermore, both the COMIS and CONTAM 

systems lack a user-friendly interface for data input, and their graphical presentation of 

findings is similarly unappealing. Another notable constraint is that this model can 

assess the overall performance of the building, but it cannot predict the exact 

distribution of temperature and air velocity within the room (Tian et al., 2020). This 

limitation arises from the assumption that the pressure, temperature, and pollutant 

concentration in each zone will be uniform (Less et al., 2019). Air is regarded as fixed 

in order to prevent any influence on the air pressure results caused by air movement in 

the area (Ferdyn-Grygierek et al., 2019; Dols et al., 2015). Therefore, it is not ideal for 

accurately depicting genuine natural ventilation, which involves varying temperature, 

velocity, and air pressure (unsteady) (Sarna et al., 2022; Dols et al., 2021; Kolarik et 

al., 2019). Furthermore, it is essential to supplement the implementation of this model 

with additional models for evaluating thermal comfort (Wang et al., 2020). Modelling 

complex structures or expansive areas can be particularly challenging. Although it has 

imperfections, the scientific community has embraced the results of simulations 

utilizing this multi-zone model to analyse airflow and the spread of pollutants.  

Ansys Fluent Software 

Ansys Fluent is now the leading brand of CFD software (Bhatti et al, 2022). 

Proficiency in numerical fluid dynamics and the use of high-performance computers are 

necessary. The CFD simulation outcomes must be validated by comparing them with 

experimental results. The primary benefit of the CFD model lies in its user-friendly and 

visually captivating interface and graphics (Dang et al., 2022). Ansys Fluent's latest 

iteration incorporates a 3D software called Design Modeler, which facilitates the input 

of data and the creation of geometric structures (Gialelis et al., 2023). Unlike 

CONTAM, Ansys Fluent uses fluid mechanics to accurately compute the dynamics of 
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air, mass, heat, and contaminants (Kochkov et al., 2021; Mohammadi & Calautit, 2021). 

It excels in providing intricate and detailed simulations of natural and mechanical 

ventilation (HVAC) under both steady-state and unsteady-state conditions (Wang et al., 

2020; Chen et al., 2020). Nevertheless, the simulation now requires additional time. 

Despite the requirement for specialized expertise and effort, CFD remains the most 

informative simulation program currently accessible.  

CONTAM – CFD0 Software (Multi-zone and CFD model combination) 

An intermediate solution for combining the multi-zone model and CFD can be 

achieved by using the widely used applications CONTAM and CFD0. In CONTAM 

models, mistakes commonly arise in the atria, which are areas with significant natural 

ventilation apertures, as well as in zones where contaminants are sourced (Waeytens et 

al., 2019). CFD0 addresses the shortcomings in these areas by simulating fluid 

movement using the Reynolds-averaged Navier-Stokes (RANS) equation. The multi-

zone model calculates the average airflow characteristics and pollutants, while the CFD 

technique predicts the three-dimensional dispersion of these parameters (Cheng et al., 

2021). The integration of CFD0 and CONTAM allows for the inclusion of data 

pertaining to wind pressure and exterior contaminant concentrations in the CONTAM 

room simulation. Additionally, it enables the utilization of comprehensive CFD zone 

descriptions in the simulation of airflow and contaminant distribution in CONTAM (Du 

et al., 2019). Furthermore, this combination significantly improves CONTAM's 

effectiveness in accurately predicting airflow and temperature distribution while also 

increasing the speed of CFD computation (Barbosa et al., 2018). Nevertheless, 

adjustments are evidently necessary for the input and output data due to the utilization 

of two distinct programs. Iterations are necessary to determine the most efficient method 

of converting data and transmitting information between the two programs (Heibati et 

al., 2021; Murga et al., 2019). 
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Table 2.5 IAQ studies with various computer simulation models and software used 

Author Object 

(location) 

Simulation model: 

software 

Variable Measurement 

conditions 

Highlight of Method 

Heibati et al., 

2021 

Housing CFD CONTAM Relative humidity, 

temperature 

Airtight-fan off, 

airtight-fan on, 

leaky-fan off, and 

leaky-fan on 

CONTAM is focused on heat and moisture 

transport. The pollutant transport modeling in 

CONTAM is too simplified for specific indoor air 

quality studies. It might not fully capture chemical 

reactions, deposition, or transformation of 

pollutants within the indoor environment. 

 

Murga et al., 

2019 

Office Combination 

CFD- multizone 

model: CFD-0 

CONTAM 

Wind direction and wind 

velocity  

ventilation rate and 

air change per hour 

(ACH) 

Combining CFD with control volume analysis, the 

transient ventilation rate, which accounts for 

fluctuations in wind pressure throughout the day, 

can be calculated. 

 

Gialelis et al., 

2023 

Office CFD- Ansys Breathing rate, wind 

speed 

Breathing flow for 

occupants inside the 

building 

Observations have been made regarding the poor 

quality of indoor environments under different 

airflow conditions and at specific times of the day 

 

Du et al., 2019 Poultry 

house 

CFD-CONTAM 

multizone  

Air movement, 

temperature, wall 

temperature, air 

moisture 

Inlet and outlet flow The verified CFD model generated illustrative 

planes, which were then utilized to examine the 

potential optimal air intake configurations for 

tunnel-ventilated poultry houses. 

 

Waeytens et 

al., 2019 

Laboratory CFD- CONTAM 

multizone model 

Boundary condition The best location to 

put the sensor inside 

the building 

The numerical method is utilized to analyse a 

physical laboratory space with regulated airflow 

conditions. An initial experimental campaign has 

been carried out to verify the proposed numerical 

technique. 
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Author Object 

(location) 

Simulation model: 

software 

Variable Measurement 

conditions 

Highlight of Method 

Barbosa et al., 

2018 

Hospital Combination 

CFD- multizone 

model: CFD-0 

CONTAM 

Boundary condition Airborne 

contaminant 

transport 

The CFD-0 model yields accurate outcomes when 

used to simulate the dispersion of pollutants in 

laboratory and hospital environments. 

Wang et al., 

2020 

Housing CFD-Ansys Fluent Window type, Pollutant 

source location, wind 

velocity, wind direction 

ACH, pollutant 

concentration 

LES offers more accuracy for time-dependent, 

complex turbulence but at a much higher 

computational cost. RANS provides faster results 

with lower computational requirements and is 

suitable for many industrial applications where 

steady-state accuracy is acceptable. 

Chen et al., 

2020 

Kitchen- 

Housing 

CFD: Ansys 

Fluent 19.04 

Air curtain, volume 

exhaust 

Concentration 

distribution, air age 

The enhanced computational fluid dynamics (CFD) 

model is a pragmatic and dependable instrument for 

assessing indoor air quality (IAQ) and thermal 

comfort in the kitchen. 

Mohammadi 

& Calautit, 

2021 

Urban 

canyon-city 

CFD: Ansys 

Fluent  

Ventilation type, 

window opening 

behavior, location and 

geometry of urban 

canyon, wind direction 

Pollutant 

concentration 

Among the k-ω BSL, k-ε RNG, and RSM 

turbulence models, k-ω is the most reliable model. 

Cheng et al, 

2021 

Office with 

many 

partitions 

CFD: Ansys 

Fluent  

Door size, the material 

of the door, solar 

radiation 

Concentration and 

distribution of PM 

Sensitivity analysis can facilitate the simulation of 

multi-zone CFDs without the requirement for 

excessively complex or detailed meshing.  
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In conclusion, the choice of tool for IAQ studies depends on the complexity of 

the environment, as shown in Table 2.6, the level of detail required, and the available 

computational resources. ANSYS Fluent is the best option for high-fidelity, room-level 

IAQ simulations. It excels in detailed airflow and pollutant transport analysis within 

complex environments, making it ideal for critical settings where tight control over air 

exchange and pollutant levels is essential (Cheng et al., 2021). However, it is resource-

intensive and requires expertise. CONTAM is optimal for multi-room or whole-building 

IAQ studies, where airflow between zones is key. It simplifies multi-zone analysis, 

providing building-wide insights into ventilation practices without the need for complex 

CFD modelling (Barbosa et al., 2018). It’s ideal for large-scale studies but lacks the 

detailed flow analysis capabilities of Fluent. CFD0 is a simple and lightweight tool 

suitable for smaller, less complex environments (Waeytens et al., 2019). It provides 

basic IAQ insights but lacks the depth and versatility for detailed analysis or advanced 

simulations. Therefore, it's a good choice for scenarios with limited computational 

resources. Thus, selecting the appropriate tool depends on the specific goals of your 

IAQ study, whether detailed room-level analysis or large-scale building-wide airflow 

modelling is needed. 

Table 2.6 Comparison of ANSYS Fluent, CFD0, and CONTAM for Indoor Air Quality 

(IAQ) Simulations 

Feature ANSYS Fluent CFD-0 CONTAM 

Computational 

Requirements 

High 

(computationally 

heavy) 

 

Low (lightweight) Low (multi-zone 

models) 

Ease of Use Complex (steep 

learning curve) 

Simple (easier to 

use) 

Simple (IAQ-

focused) 

 

IAQ Focus General-purpose 

CFD tool 

IAQ and indoor 

airflow focused 

IAQ and multi-zone 

focused 

 

Post-Processing 

Capabilities 

Advanced 

visualization tools 

Basic visualization 

tools 

Basic reporting, no 

CFD-level 

visualization 

 

Use Case Detailed single-

room studies, 

complex airflow, 

pollutants. 

 

Small-scale IAQ, 

simple geometries 

Whole-building 

ventilation, zone-to-

zone airflow 
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2.5 Indoor Air Quality evaluation from previous study 

Previous studies, as shown in Table 2.6, showcase the wide array of modelling 

tools employed to examine IAQ. Time series models, such as the one employed by Wei 

et al. (2022), are highly suitable for continuous monitoring and detecting thresholds of 

pollutant concentrations. On the other hand, multiple linear regression, as demonstrated 

in the study by Yuchi et al. (2019), is particularly effective in establishing connections 

between different environmental factors and levels of air pollutants. Generalized linear 

models and multiple logistic regressions, employed by Ravindra et al. (2019) and Alwi 

et al. (2021), offer a comprehensive insight into the relationship between IAQ and 

health outcomes, as well as symptoms such as SBS symptoms and selection of the paper 

shown in Figure 2.3. 

 

Figure 2.3 Stages determination of the best IAQ model for prediction 

qualitative and quantitative data 
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When comparing Gamma distribution GLM with other models like Multiple 

Linear Regression (MLR), Time Series Analysis, Logistic Regression, and Multiple 

Logistic Regression, it's essential to consider how each method handles different types 

of data and research objectives. There are advantages and disadvantages of each model 

depending on the types of data and its application as summarized in Table 2.7. Gamma 

Distribution GLM advantages are that it can handle skewed continuous data, 

incorporate both continuous and categorical predictors, and also have flexibility (Islam 

et al., 2021; Vieira et al., 2019).  The gamma distribution is excellent for modelling 

positive and skewed continuous variables, such as pollutant concentrations and air 

exchange rates (Fu et al., 2022). It can also effectively model right-skewed data (Huang 

et al., 2020). Allows integration of categorical predictors (e.g., presence of SBS 

symptoms) and continuous predictors (e.g., temperature, humidity) in the same model 

besides providing flexibility with different link functions (e.g., log link) and can capture 

complex relationships between predictors and outcomes (Orabi, 2020; Ravindra et al., 

2019). Disadvantages of Gamma distribution GLM was complexity which requires 

careful specification of the distribution and link function. Incorrect model assumptions 

can lead to biased results (Sarkhos et al., 2021). Assumption dependence was one of the 

disadvantages of the GLM distribution model, which assumes that the dependent 

variable follows a Gamma distribution, which may not always be appropriate for all 

continuous data (Belotti et al., 2020). 

The second model was MLR. This model's strength was its simplicity and 

interpretability, which made it easy to implement and interpret. It models linear 

relationships between continuous variables and predictors. MLR can handle continuous 

predictors and determine model relationships between continuous predictors and 

outcomes (Alwi et al., 2021). The model's weakness was its assumption of normality, 

which assumes that residuals are normally distributed. This can be problematic for 

skewed IAQ data, leading to inaccurate results if the data are not normally distributed 

(Yuchi et al., 2019). Besides that, the deficiency of the model is limited to categorical 

data. Categorical variables can be included via dummy coding, but MLR is less effective 

at capturing complex interactions between categorical and continuous variables. 
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The next model was time series analysis, which consists of temporal dynamics, 

which are ideal for analysing data collected over time, capturing trends, seasonality, and 

temporal dependencies, and suitable for forecasting (Ali et al., 2022). Useful for 

predicting future values based on historical data, which is valuable for understanding 

how pollutant levels change over time (Wei et al., 2022). The weakness of the model is 

that it was not designed for categorical data (Elshawi et al., 2019). It primarily focuses 

on continuous data over time and does not directly handle categorical predictors like 

SBS symptoms. Last was time series models can be complex and require careful 

parameter tuning (Truquet, 2019). Integrating categorical data requires additional steps 

and can be less straightforward (Nelias, 2021). 

Logistic Regression has a few advantages which well-suited for modelling 

binary or ordinal outcomes. Besides can also provide odds ratios that are easy to 

interpret in terms of the likelihood of an outcome occurring based on predictors (Kim 

et al., 2019). The disadvantages of logistic regression are that it is not suitable for 

continuous outcomes, and it cannot model continuous variables like pollutant 

concentrations directly (Arulmozhi et al., 2021). It focuses on categorical or binary 

outcomes. Disadvantages of logistic regression also have less effectiveness at capturing 

complex interactions between predictors and continuous outcomes compared to GLMs 

with a Gamma distribution (Laurent et al., 2021). 

Multiple Logistic Regression was one of the models compared in this chapter. It 

has advantages, such as its capability to handle multiple categorical outcomes 

(Afrabandpey et al., 2019). This model is suitable for modelling multiple categorical or 

ordinal outcomes, which can be useful if SBSS is measured with more than two 

categories or levels (Loy-Benitez et al., 2019). Flexibility with predictors was one of 

the multiple predictors to assess their impact on the outcome (Park et al., 2023). 

Disadvantages were not for continuous outcomes, which, like logistic regression, is not 

designed for continuous outcome variables such as pollutant concentrations (Tripathi., 

2023; Elshawi et al., 2019). Complexity is one of the disadvantages of multiple logistic 

regression can become complex with many predictors and interactions, potentially 

leading to model overfitting (Yuchi et al., 2019). Each of these models provides vital 

insights into the field of IAQ research, enhancing our understanding of how to sustain 
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healthy indoor environments through sophisticated predictive models, data analysis, 

and real-time control systems. 

Table 2.7 Summary IAQ models categorized by data type and output 

Authors Type of model Types of data Observation 

Wei et al., 

2022 

Time series Scale (Quantitative) 

Variables: CO2 

Determines the ideal threshold by 

assessing the reconstruction loss 

rates for each data point across all 

time-series sequences. 

Yuchi et 

al., 2019 

Multiple 

Linear 

Regression 

(MLR) 

Scale (Quantitative) 

Variable: PM2.5, 

Temp, RH, RH, SO2, 

NO2. CO2 

Create predictive algorithms for 

estimating weekly indoor PM2.5 

concentrations and evaluate and 

contrast the effectiveness of Multiple 

Linear Regression (MLR) and 

Random Forest Regression (RFR). 

Kim et al., 

2019 

Logistic 

regression 

Ordinal, Nominal 

(Qualitative) 

Variables 

occupant ventilation 

behaviour; 

development of the 

automatic ventilation 

control 

The automatic ventilation control 

algorithm is integrated into a 

building ventilation system that is 

linked to different IEQ 

measurements, 

 

Ravindra 

et al., 

2019 

Generalized 

Linear Model 

(GLM-GAM) 

 Nominal 

(Qualitative) 

Scale 

(Quantitative) 

Variables 

Ambient air 

pollutants, climate 

change, and health 

A generalization of ordinary linear 

regression, which allows response 

variables to have errors that are not 

normally distributed and determines 

the relationship between the 

variables 

Alwi et 

al., 2021 

Multiple 

Logistic 

Regression 

(Chi-Square) 

Ordinal, Nominal 

(Qualitative) 

Scale 

(Quantitative) 

Variables 

IAQ parameters 

&SBSS 

Association between IAQ level and 

SBS symptoms 

When analysing a dataset with both continuous and categorical variables, 

particularly if the continuous data is skewed, the Gamma Distribution GLM offers 

several advantages that make it a frequently suitable choice. Here’s an expanded view 

of why the Gamma Distribution GLM is often preferred in such scenarios, such as the 



57 
 

 

capability of the Gamma Model to handle skewed continuous data and categorical data. 

Continuous variables such as indoor air pollutant concentrations (e.g., PM2.5
, CO, CO2, 

TVOC, and HCHO) often exhibit skewed distributions, meaning they are not 

symmetrically distributed around the mean. The Gamma distribution is specifically 

designed to handle positive, continuous data that are right-skewed or have long tails 

(Ahlmann-Eltze & Huber, 2021). The Gamma Distribution GLM can accommodate the 

non-normality of skewed data by using a Gamma distribution with a suitable link 

function (e.g., the log link) which allows for accurate modelling of data that does not 

conform to the assumptions of normality required by traditional linear models (Perley 

& Coleman, 2024). 

The incorporation of both continuous and categorical predictors is one of the 

strengths of the gamma distribution model. Continuous predictors can be included in 

the gamma distribution. The model can include continuous variables such as 

temperature, humidity, and various pollutant levels as predictors. This helps in 

understanding how these continuous factors influence the outcome variable, whether it 

be another continuous variable or a transformation of the outcome. Gamma Distribution 

GLM can also incorporate categorical variables (e.g., SBS symptoms) through dummy 

coding or factor variables. This allows the model to assess the impact of different 

categorical levels on the continuous outcome, facilitating a comprehensive analysis of 

how various factors contribute to indoor air quality. 

Flexibility in model specification, which selection of link functions. GLMs offer 

flexibility through different link functions (e.g., log, identity) that relate the mean of the 

response variable to the predictors. For Gamma Distribution GLMs, the log link 

function is commonly used, which is effective for modelling the multiplicative effects 

of predictors on the outcome (Mentese et al., 2020). The Gamma distribution allows for 

modelling the variance of the response variable as a function of its mean, which can be 

crucial when dealing with data that exhibits heteroscedasticity (i.e., non-constant 

variance) (Belotti et al., 2020). Gamma Distribution GLMs provide accurate parameter 

estimates and robust standard errors for the predictors, which helps in making reliable 

inferences about the relationships between predictors and the outcome variable 

(Soleimani et al., 2019). In addition, the gamma model facilitates diagnostics to assess 
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the goodness of fit and to identify any potential issues, such as outliers or leverage 

points. This ensures that the model’s assumptions are met and that the results are 

credible.  

The gamma distribution in GLMs is particularly suited for modelling positive, 

continuous data with skewness, such as pollutant concentrations or symptom severity 

scores, for the following reasons due to the capability to handles positive data. IAQ 

measurements like pollutant concentrations (e.g., VOCs, PM2.5, HCHO, CO, CO2, 

PM10) or symptom scores are inherently positive, making gamma an appropriate choice. 

Gamma distribution effectively captures the right-skewed nature of many IAQ-related 

variables, where extreme values (e.g., high pollutant spikes) are rare but significant. By 

using the log-link function, the GLM-Gamma model transforms the dependent variable 

into a linear relationship with predictors, improving model interpretability and accuracy 

(Perley and Coleman, 2024). This approach avoids the pitfalls of ordinary least squares 

regression, which assumes normally distributed errors. Integration of qualitative and 

quantitative data using GLMs allow for both categorical predictors (e.g., room type, 

HVAC presence, symptoms) and continuous predictors (e.g., pollutant concentrations, 

humidity levels). Interaction terms can capture relationships between qualitative and 

quantitative IAQ factors, enhancing predictive capability (Vieira et al., 2019). The 

gamma model accommodates heteroscedasticity (non-constant variance in residuals), 

which is common in IAQ data. Model’s non-normal data and handles both continuous 

and categorical variables which can be handle by GLM-Gamma distribution models 

which relevance to IAQ datasets which captures the characteristics of IAQ 

measurements and symptom severity effectively (Licina & Yildrim, 2021). These can 

facilitates understanding of how specific IAQ factors impact outcomes. These models 

can provide accurate predictions for planning interventions and mitigating SBS 

symptoms. In conclusion, the GLM-Gamma model is a robust choice for addressing the 

complexities of IAQ prediction by integrating diverse data types and addressing key 

statistical challenges. 
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2.6 Summary of the chapter 

Research conducted from 2017 to 2023 in Malaysia highlights a significant 

relationship between IAQ and SBS symptoms across various indoor environments, such 

as offices, schools, residential buildings, and manufacturing facilities. Poor IAQ has 

been consistently linked to the prevalence of SBS symptoms, including headaches, 

fatigue, dry or irritated eyes, dizziness, nasal problems, and respiratory discomfort. The 

main contributors to poor IAQ include high levels of particulate matter (PM10 and 

PM2.5), volatile organic compounds (VOCs), carbon dioxide (CO2), and inadequate 

temperature and humidity control. 

PCA has proven to be an essential analytical tool for identifying pollutant 

sources, quantifying their impacts, and guiding effective IAQ management strategies. 

Enhanced regulations, coupled with proactive building design and maintenance, are 

crucial to reducing SBS prevalence and improving indoor environments. 

In Ansys Fluent, more efficient algorithms or simplified models that can reduce 

computational requirements without sacrificing accuracy are needed. Research could 

explore ways to optimize the simulation process for indoor environments to make it 

more accessible for real-time applications or large-scale studies using Ansys Fluent. 

More validation studies, including experiments in controlled environments, can 

enhance confidence in ANSYS Fluent models for IAQ applications compared to other 

models, in which ANSYS Fluent more represents the real-time situation. This can be 

especially valuable in complex geometries such as hospitals, laboratories, and multi-

occupant spaces.  Implementing uncertainty quantification techniques can improve the 

robustness of CFD simulations by providing a range of possible outcomes, which can 

be valuable for decision-making in real-world building operations. 

When dealing with a dataset that contains both continuous and categorical 

variables, especially if the continuous data is skewed, the Gamma Distribution GLM is 

frequently the most suitable option. This is because the Gamma Distribution GLM is 

capable of handling skewed distributions and can effectively incorporate both types of 

predictors. MLR, or multiple linear regression, is a less powerful method when dealing 
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with data that is skewed or when there are categorical predictors. Time Series Analysis 

is a useful tool for examining patterns across time, but it is not suitable for studying 

categorical data. Logistic Regression and Multiple Logistic Regression are optimal for 

modelling categorical outcomes, but they are not appropriate for continuous variables 

such as pollutant concentrations. The choice of an appropriate model is contingent upon 

the research inquiry, attributes of the data, and objectives of the study.  
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CHAPTER 3  

 

 

 

 

METHODOLOGY 

3.1 Introduction 

This chapter explains the overall research conducted to achieve all objectives in 

this study. The overview of the research flowchart is shown in Figure 3.1. It started with 

site selection and information on the study area. Site selection is essential to determine 

significant site selection for this study. Four buildings with different economic activities 

represent the dominant sub-economy in Terengganu. The parameters measured in this 

study consists of IAP which consists of physical parameters (air movement, AM (m/s); 

temperature, T (⁰C); relative humidity, RH (%)), chemical parameters (carbon dioxide, 

CO (ppm); total volatile organic compound, TVOC (ppm); formaldehyde, HCHO 

(ppm); respirable suspended particulates, RSP also known as particulate matter PM 

(mg/m3)) and ventilation performances indicators (carbon dioxide, CO2 (ppm)). 

Sampling or IAQ monitoring was conducted during the monsoonal season because 

Terengganu was one of the states significantly affected during the monsoonal season, 

consisting of Southwest Monsoon (SWM) and Northeast Monsoon (NEM). The 

selection of instruments used to measure IAP was in the data acquisition and pre-

processing section, which also consists of pilot tests or pre-processing for IAQ 

monitoring and questionnaires. Questionnaires were distributed to occupants or workers 

to determine the presence of past and present symptoms of SBS Symptoms. Flow charts 

proceed with data analysis, which consists of four phases; each phase was conducted to 

embark on each objective in this study. Phase 1 showed the data analysis conducted 

trends for ventilation performance indicators, air pollutants, and physical and chemical 

parameters. Data analysis proceeds with spatial mapping using CFD simulation using 

Ansys Fluent to determine the air movement inside the building at study areas. Phase 3 
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in data analysis investigated influencing factors inside the building using one type of 

factor analysis, PCA, to determine the primary source that contributes towards air 

pollutants inside the study areas. Phase 4 establishes the statistical model for the 

prediction of SBS symptoms and IAP concentration using the GLM, and this study used 

gamma distribution because the datasets show that gamma distribution is suitable for 

these types of datasets. After developing the model, the equation produced was 

validated. 

 

Figure 3.1 Overview of research flowchart 

Start 

Site selection 

Data Acquisition 

and Pre-Sampling 

Data Analysis   

Validate model 

Result and 

discussion 

End 

Different building in Terengganu 

1. SK Tanjung Gelam 

2. Tunas Manja Group (TMG), Mart (S2) 

3. Mset Inflatable Composite Corporation 

Sdn. Bhd. 

4. Raia Hotel & Convention Centre 

Terengganu 

 

IAQ Monitoring and distribution of 

questionnaire by monsoonal season 

(IAP & SBS symtoms)  

Objective 1- Trend physical 

and chemical parameter 

Objective 2-Spatial mapping- 

CFD-ANSYS 

 

Objective 3- Investigate the 

influencing factors of IAQ 

using Principal Components 

Analysis (PCA) 

 

Objective 4- Establish the 

statistical models for the 

prediction of IAQ and SBS 

concentration using GLM 

model. 

(PCA) 

Phase 1 

Phase 2 

Phase 3 

Phase 4 
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3.2 Site Selection 

The NEM, SWM, and two shorter transitional monsoon seasons can all be 

identified based on these variations (Abdullah et al., 2020; Meteorologi Malaysia., 

2020). In Peninsular Malaysia, the NEM, which runs from November to March, and the 

SWM, which runs from May to September, typically impact the east coast state of 

Malaysia, especially Terengganu (Othman et al., 2022; Ismail et al., 2020).  Since the 

South China Sea borders Terengganu, the NEM significantly impacts the state's 

economy by bringing storms and heavy rainfall, which can directly affect Terengganu's 

economic sectors due to most of the workers or occupants spending time indoors and 

high risk of exposure to poor IAQ (Arsad et al., 2023; Meteorologi Malaysia., 2020). 

Increased humidity during NEM can increase IAP, and airborne allergens can lead to 

poor air quality, harming occupants' respiratory health (Isa et al., 2022). Since the NEM 

brings high humidity, which can promote mold growth, dust mites, and mildew, it 

negatively affects indoor air quality (IAQ) compared to SWM (Abdel-Salam., 2021). 

During both monsoonal seasons, monitoring indoor air quality (IAQ) within the 

building sector of the Terengganu economy was crucial for assessing indoor air quality 

and understanding how occupants responded to the SBS symptoms. The assessment of 

indoor air quality (IAQ) among employees is essential for various reasons, broadly 

classified into three categories: health, productivity, and economic consequences 

(Pawankar et al., 2020). Services accounted for 52.7% of Terengganu's GDP in 2021, 

with manufacturing coming in second with 34.9% (DOSM, 2022). Services sectors 

contain three dominant sub-economies, also known as subsectors, which consist of 

wholesale and retail trade (17.8%), education (15.3%), and hospitality (12%) in 2021 

(DOSM, 2022). Study areas are determined by the dominant sectors that contribute to 

the economy of Terengganu. The school (teacher's room) at Sekolah Kebangsaan 

Tanjung Gelam represented the education subsector. In contrast, wholesale and trade 

were represented by TMG Mart, hospitality by Raia Hotel & Convention Centre 

Terengganu, and manufacturing, boat building manufacturing by Mset Inflatable 

Composit Corporation Sdn. Bhd. 
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3.2.1 Site Selection Procedure 

Acquiring authorization from regulatory bodies, property owners, or managers 

was mandatory. The research was conducted only after the necessary consent was 

obtained from individuals or groups impacted by the assessment, mainly if it involved 

personal data or potentially disruptive occupants (Hishamuddin et al., 2022). The ever-

increasing necessity for a representative statistical sample in scientific studies has 

generated the demand for an effective method of determining sample size. Krejcie and 

Morgan (1970) developed a table to determine the sample size for a specific population 

and the minimum sample size of 10 (Uakarn et al., 2021). This was done in order to 

address the extant gap. The IAQ monitoring process must be initiated when the number 

of occupants must exceed 10 (N=10) (Amzah & Wahid, 2024). 

Permission was requested from 29 primary schools in Kuala Nerus, Terengganu, 

based on the local educational portal list (PPDKN, 2022). Permission to conduct IAQ 

monitoring in the teacher's room was obtained through a walk-in, direct call to the 

school office, email, and a letter requesting permission. Only one school, Sekolah 

Kebangsaan Tanjung Gelam (S1), granted this request, and site one was obtained to 

represent services sectors with subsector education. Sectors and subsectors refer to the 

dominant economy and sub-economy terms.  Plenty of business in Terengganu involved 

wholesale and retail trade, but the number of occupants or workers was insufficient.  A 

supermarket that sells groceries to consumers is included in wholesale and trade sub-

sectors. Four potential supermarkets were located in Kuala Nerus, Terengganu. A letter 

to request permission to conduct IAQ monitoring was given, and only Tunas Manja 

Group (TMG) Mart (S2) was permitted to conduct IAQ monitoring for both monsoonal 

seasons. Manufacturing sectors specified manufacturing, transport equipment, and 

repairs (DOSM, 2022). The boat-making manufacturing industry is one of the 

established manufacturing sectors in Terengganu due to the many specialists in boat-

making gatherings in Terengganu, Malaysia, and Indonesia (Ali, 2022). The adequacy 

of occupants or workers inside the building was determined before requesting 

permission during walk-ins and direct calls to potential companies. Managers or 

regulatory bodies requested a letter of permission by walk-in after making an 

appointment at Mset Inflatable Composite Corporation Sdn. Bhd. (S3). Companies 

granted permission. The last sector is services with sub-sectors hospitality. Five hotels 
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and resorts had a response number of workers. They were suitable for IAQ monitoring, 

but only one hotel was permitted to do so in their lobbyists and offices, Raia Hotel & 

Convention Centre Terengganu (S4). 

 

The location of study areas is shown in Figure 3.2, which shows the location of 

each study area; it is essential to plan transportation and movement of sampling to avoid 

unexpected events. After getting permission from the property owner to run IAQ 

monitoring, this study determines the sampling point and duration for which time 

interval to run pre-sampling or pilot test at each study area, as shown in Table 3.1. Table 

3.1 shows the study areas' characteristics used as a reference to replicate the sampling 

for both monsoonal seasons that consists of the sampling date, pre-sampling date, time 

interval, sampling point, longitude, and latitude of each study area. Table 3.1 shows S1 

has eight sampling points with 5-minute intervals, seven inside the teacher’s room and 

one ambient air or outdoors. S2 consists of 10 sampling points (9 indoors; 1 outdoors) 

with 6-minute time intervals, and the IAQ monitoring takes place from 0900 to 1700 

hours for both monsoons. S3 consists of 7 sampling points, six indoor and one outdoor 

sampling point for pre-sampling and during data collection for SWM and NEM. S4 has 

12 sampling points indoors and one sampling point outdoors. S4 has 5-minute intervals, 

and IAQ monitoring was conducted between 08830 and 1630 hours. Sampling point 

was conducted based on ICOP-IAQ 2010 guidelines which the recommended minimum 

number of sampling points for indoor air quality assessment depends on the total floor 

area served by a mechanical ventilation and air-conditioning (MVAC) system. The 

guidance can be broken down as follows which stated in TableA4-1 (ICOP-IAQ 2010): 

 

1. For areas less than 3,000 m²: A general rule of 1 sampling point per 500 m² is 

recommended. This ensures sufficient coverage for smaller spaces while 

maintaining a reasonable balance between accuracy and practicality. 

2. For areas between 3,000 m² and 5,000 m²: A minimum of 8 sampling points is 

recommended to adequately represent the air quality conditions in this mid-sized 

space. 

3. For areas between 5,000 m² and 10,000 m²: The number of sampling points 

increases to a minimum of 12 points, reflecting the need for more measurements 

in larger spaces to account for variability. 
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4. For areas between 10,000 m² and 15,000 m²: A minimum of 15 sampling points 

is required. As the area grows, more sampling points help capture differences in 

air quality across various zones. 

5. For areas between 15,000 m² and 20,000 m²: The recommended minimum 

increases to 18 sampling points, ensuring sufficient data is gathered for larger 

environments. 

6. For areas between 20,000 m² and 30,000 m²: A total of 21 sampling points is 

advised to provide adequate spatial coverage and representation of indoor air 

quality. 

7. For areas greater than or equal to 30,000 m²: A broader rule of 1 sampling point 

per 1,200 m² is applied. This reflects the logistical challenge of assessing very 

large areas while balancing coverage and practical resource allocation. 

 

In summary, the number of sampling points increases proportionally with the 

floor area to ensure that air quality is assessed comprehensively. Smaller spaces use a 

"per area" ratio, while larger spaces transition to a specific number of points for practical 

efficiency. This method ensures reliable air quality evaluation across different building 

sizes. However, depending on the type and nature of the buildings, additional samples 

should be taken if it is considered necessary 
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Figure 3.2 Location of study area 
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Table 3.1 The study area classification is based on the sectors and subsectors, the number of sampling points, the duration of sampling, the 

sampling date, the pilot test or pre-sampling date, the monsoon, the longitude and latitude. 

 

Location Sector, 

subsector 

Sampling 

points 

Duration Sampling Date Pre-sampling 

Date 

Monsoon Longitude/Latitude 

SK Tanjung Gelam (S1) Services, 

Education 

8 points 

(7 indoors, 

one 

outdoor) 

5 minutes 

interval 

(8 am-3 pm) 

5 Feb 2023- 16 

Feb 2023 

20 Feb 2023 NEM 103° 4'50.64"E 

5° 24'46.89"N 

11 Sept 2022- 

22 Sept 2022 

25 Sept 2022 SWM 

Tunas Manja Group 

(TMG), Mart (S2) 

Services, 

wholesale, and 

retail trade 

10 points 

(9 indoors, 

one 

outdoor) 

6 minutes time 

interval 

(9 am-5 pm) 

19 Feb 2023- 2 

March 2023 

7 March 2023 NEM 103° 4'52.13"E 

5° 22'53.06"N 

21 May 2023-  

1 June 2023 

5 June 2023 SWM 

Mset Inflatable Composit 

Corporation Sdn. Bhd. 

(S3) 

Manufacturing, 

transport 

equipment, and 

repairs. 

 

7 points 

(6 indoors, 

one 

outdoor) 

10 minutes 

time interval 

(8.30 am-5.30 

pm) 

21 Nov 2022-  

2 Dec 2022 

6 Dec 2022 NEM 103° 4'46.21"E 

5° 22'45.13"N 

7 May 2023- 

18 May 2023 

23 May 2023 SWM 

Raia Hotel & Convention 

Centre Terengganu (S4) 

Services, 

Hospitality  

13 

(12 indoors, 

one 

outdoor) 

5 minutes time 

interval 

(8.30 am-4.30 

pm 

5 March 2023-

16 March 2023 

20 March 

2023 

NEM 103° 6' 4.863" E 

5° 22' 23.8002" N 

4 June 2023-  

15 June 2023 

19 June 2023 SWM 

SWM-Southwest Monsoon; NEM- Northeast Monsoon 
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3.3 Data Acquisition and Pre-Sampling  

Data acquisition was conducted from September 2022 until June 2023. The IAP 

were measured using instruments borrowed from Fluid Lab, Universiti Malaysia, 

Terengganu. IAP consists of ventilation performance indicator (carbon dioxide, CO2), 

chemical parameters (total volatile organic compound, TVOC; formaldehyde, HCHO; 

carbon monoxide, CO; respirable suspended particulate, RSP), and physical parameters 

(air movement, AM; temperature, T; relative humidity, RH). Figure 3.3 shows the 

instruments used for data collection. Figure 3.3, from the left in the first row, shows the 

TSI Climomaster Model 9545, DustTrax DRX Aerosol Monitor 8533, and Q-Trak 

Indoor Air Quality Monitor 7575. View from the left in the second row showing 

Formaldehyde meter and Portable VOC Monitor MiniRae 30000. 

 TSI Climomaster Model 9545 measured physical parameters such as 

temperature, relative humidity, and air movement. This instrument is equipped with a 

straight telescopic probe. Optimal for optimizing HVAC system performance, 

commissioning, plant maintenance, critical environment certification, and duct 

traverses. Range probe for TSI Climomaster Model 9545 range for velocity or air 

movement between 0-30 m/s, temperature range between -10 to 60⁰C, relative humidity 

probe range between 5 to 95% (Alwi et al., 2021; Nazli et al., 2023).  This meter utilizes 

a single probe with multiple sensors to measure and record multiple parameters 

simultaneously. Dust Trak DRX Aerasol Monitor 8533 was used to measure RSP, as 

shown in Figure 3.3. Both mass and size fractions can be measured simultaneously by 

the DustTrak™ DRX Aerosol Monitor 8533. The DustTrak DRX desktop monitor is a 

multi-channel, battery-operated, data-logging, light-scattering laser photometer that 

captures a gravimetric sample and provides real-time aerosol mass readings range 0.001 

to 150 mg/m3(Singh et al., 2023).  It is appropriate for various outdoor applications, 

harsh industrial environments, construction and environmental sites, and clean office 

settings (Branco et al., 2024). The DustTrak DRX monitor monitors aerosol 

contaminants, including smoke, vapors, mists, and dust. Q-Trak Indoor Air Quality 

Monitor 7575 Figure 3.3 was the last instrument in the first-row view from the left, 

simultaneously displaying CO2 (reading range between 0-5000ppm) and CO (reading 

range 0 to 500 ppm). This instrument is equipped with a straight telescopic probe. 
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The second-row view from the left for Figure 3.3 shows the Formaldehyde 

meter. The formaldehyde meter is equipped with an electrochemical sensor that 

accurately and precisely measures the concentration of formaldehyde gas in real-time, 

following the acceptance criteria of the U.S. National Institute for Occupational Safety 

and Health (NIOSH) with range 0-30 ppm (Law et al., 2024; Lu et al., 2024). The last 

figure from the second-row view from the left was Portable VOC Monitor MiniRae 

30000, which measured total volatile organic compound concentration (TVOC). The 

MiniRAE 3000 + is a comprehensive handheld VOC (Mainka et al., 2018) monitor that 

employs a third-generation patented PID technology to measure one of the highest 

levels of ionizable compounds precisely (Feng et al., 2023). It comprehensively 

measures VOCs within the 0 to 15,000 ppm range. These five instruments must position 

the inlets of samplers at a height of 75 to 120 cm, at least 1 meter from localized sources, 

and not within 2 meters of doors during data acquisition (Abas et al., 2021). The 

instruments must be positioned to minimize the interruption of work activities within 

the study area while representing the workstation layout and work activities (Zubir et 

al., 2022). 

 

Figure 3.3 Instruments used for data collection 

 

View from the left in the first row showing TSI Climomaster Model 9545, Dust Trax DRX Aerosol Monitor 8533 and Q-Trak Indoor Air Quality 

Monitor 7575. 

View from the left in the second row showing Formaldehyde meter and Portable VOC Monitor MiniRae 30000 
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After determining the instruments used for IAQ monitoring, the next step is pre-

sampling or pilot test. Pre-sampling or pilot testing is an initial test or a miniature 

version of a larger-scale study or activity. The term "pilot" refers to testing a plan, 

initiative, or other strategy before conducting the sampling for data collection (Deng et 

al., 2023). Collecting an overview of the study area shown in Tale 3.2 is essential. 

Indoor characteristics measured and observed during pre-sampling were study area 

dimensions, level of the study area room, and mechanical ventilation, such as the 

number of ceiling fans, windows, doors, and air conditioning. Besides that, traffic 

conditions, building age, and building materials were noted for worst-case scenarios 

during sampling time, number of occupants, and operating hours.  

Pre-sampling or pilot tests are essential for questionnaire distribution 

(Dhungana & Chalise, 2020). It is crucial to determine whether occupants or workers 

understand the questionnaires given to them and proceed with Cronbach's alpha after 

running a pilot test for the SBS symptoms questionnaire. Cronbach alpha is a reliability 

coefficient used to assess the internal consistency of tests and measures (Amzah & 

Wahid, 2024). The complete questionnaires, particularly those used for data collection 

and after checking reliability from the pilot test or pre-sampling questionnaires, can be 

found in Appendix A 

The layout of the study area is crucial in determining the appropriate sampling 

points to ensure accurate and reliable data collection, while also preventing replication 

mistakes during the sampling cycle. This layout serves as a reference for subsequent 

monsoonal seasons, allowing for consistent determination of IAQ sampling points at 

each study area. Figure 3.4 illustrates the specific layouts for each study location. Figure 

3.4 a) shows the layout for Sekolah Kebangsaan Tanjung Gelam (S1), where the 

sampling is conducted in the teacher’s room. Figure 3.4 b) represents Tunas Manja 

Group (TMG) Mart (S2), focusing on the supermarket area. Figure 3.4 c) depicts 

Inflatable Composit Corporation Sdn. Bhd (S3), with sampling points located within 

the manufacturing area. Figure 3.4 d) outlines the layout for Raia Hotel & Convention 

Centre Terengganu (S4), targeting the office and lobby areas. 
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Additionally, the figures include the number of sampling points at each location, 

ensuring the sampling covers various zones within the buildings. Figure 3.4 e), f), g), 

and h) illustrate the specific number and locations of sampling points for S1, S2, S3, 

and S4, respectively. The positioning of these points is based on the suitability 

concerning the movement and activities of the occupants and workers within each 

building. The selection of sampling locations adheres to the guidelines provided in 

ICOP-IAQ 2010, ensuring that the sampling points are representative of the typical 

environmental conditions in the respective areas. This strategic placement aims to 

capture a comprehensive overview of the IAQ across different zones, thereby 

facilitating accurate assessment and comparison of air quality during different 

monsoonal periods. 
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Table 3.2 Overview of ventilation in study areas 

 

Characteristics S1 S2 S3 S4 

Location of study area Teachers room Supermarket Manufacturing area Office & lobby 

Study area dimension Area: 126m2 

Volume: 378m3 

Area: 880m2 

Volume: 2640m3 

Area: 800m3 

Volume: 5600m3 

Area: 583.5m2 

Volume: 3177m3 

Level 4 1 1 1 

Windows 21 - - - 

Doors 2 2 3 2 

Ceiling fans 3 - - - 

Air Conditioning 

(operating) 

- 4 3 3 

Ventilation system Open Closed Open Closed 

Building age >10 years >10 years >10 years >10 years 

Building material concrete concrete concrete concrete 

Background location Background Industrial Industrial Residential 

Traffic condition Heavy traffic during the 

beginning and end of 

school sessions 

Heavy traffic during peak 

hours 

Traffic light conditions on 

most times 

Heavy traffic during 

lunch hours 

Operation hours 7:00 AM-3:00 PM 8:00 AM- 10:00 PM 7:30 AM- 6:30 PM 7:30 AM-7:30 PM 

Number of occupants 11 33 16 18 
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a) 

 

e) 

 

b) 

 

f) 

 

c) 

 

g) 

 

d) 

 

h) 

 

Figure 3.4 a) Layout for S1; b) Layout for S2; c) Layout for S3; d) Layout for S4; e) 

number of sampling point for S1; f) number of sampling point for S2; g) number of 

sampling point for S3; h) number of sampling point for S4 
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3.4 Data Analysis 

Data analysis was divided into four phases and used different types of analyses  

3.4.1 Status of Indoor Air Quality (IAQ) and Sick Building Syndrome (SBS) 

symptoms 

 

Figure 3.5 Flow chart for Phase 1 
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Figure 3.5 shows the overall process for phase 1 from the pre-processing, data 

collection, and data analysis stage. The pre-processing stage in this study consists of a 

pre-sampling or pilot test method for IAQ monitoring and distributing the questionnaire, 

as stated in section 3.3, for 1 day in each study area for both monsoons. IAQ monitoring 

pre-processing includes determining the number of sampling points that follow 

guidelines for sampling IAQ besides determining activities inside the buildings and 

determining the layout of the study area during pre-sampling or pilot tests and the 

position of the instruments. Pre-sampling was conducted one day for SWM and NEM. 

The questionnaires were distributed after IAQ monitoring because most occupants or 

workers needed further explanation about the question that needed to be answered. 

Then, the answers from the questionnaire are coded into the Statistical Package for 

Social Sciences (SPSS). This process needs to convert the data collected in 

questionnaires into numerical and make it easier to calculate. After that, the 

questionnaire was proceeded using Cronbach’s Alpha. Cronbach’s alpha tests to see if 

multiple-question Likert-scale surveys are reliable (Kim et al., 2019). These questions 

measure latent variables—hidden or unobservable variables like a person’s 

conscientiousness, neurosis, or openness. These are very difficult to measure in real life. 

Cronbach’s alpha will tell you how closely related a set of test items are as a group in 

each item that questions in questionnaires. The acceptable range for Cronbach’s Alpha 

is more than 0.70 (Bell et al., 2022; Mamat et al., 2020). Equation 1 shows the equation 

of Cronbach’s Alpha. 

𝛼 =  
𝑁 ∙ 𝑐̅

𝑣̅ + (𝑁 − 1) ∙ 𝑐̅
 

(1) 

 N is the number of items, 𝑐̅ is average covariance between item-pairs and, 𝑣̅ is 

average variance.  

The process in phase 1 proceeds with data collection. As shown in Table 3.1, the 

sampling date for all four study areas was selected with the same sampling point for 10 

days during the SWM and 10 days during the NEM. The sampling methods and 

instruments used were explained in detail in the section on data acquisition. 
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Descriptive analysis is a fundamental component in helping to analyse the data. 

It is used as brief descriptive coefficients that summarise the data set, representing the 

entire number of samples. Several descriptive statistics are evaluated in this study, such 

as the mean for IAP and percentage for Sick Building Syndrome Symptoms (SBS) 

symproms questionnaires.  IAP means value, known as the average number, which 

compares with the standard introduced in the ICOP-IAQ (2010). Statistical distribution 

measures, also known as descriptive statistics or summary statistics, are used to 

summarise the information from collected or set of data, and equations 1 showed 

equations for the mean (Anh et al., 2024; Mansor et al., 2024; Mansor et al., 2023) 

Mean 

To compute the mean, (X), the summation of the total value, (∑x), divided by 

the total number of samples, (n), as in the following Equation (2); 

  

𝑋 = 
𝛴𝑥

𝑛
 

(2) 

    

X is a sample mean, ∑x is the sum of scores in a distribution and n is = the 

number of samples. 

 

Percentage 

 To compute percentage (%), divide the numerator (number on the top) by the 

denominator (number on the bottom) and multiply by 100.  

% = 
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟

𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟
× 100 

(3) 

 

 % is a percentage. The numerator is the total sample obtained, and the 

denominator is the sum of the samples. 

The trend line displays the mean value for IAP, which consists of ventilation 

performance indicators and physical and chemical parameters. The mean was then 

compared with standard ICOP-IAQ 2010. The trend of IAP is displayed on the trend 

line in Microsoft Excel, and the questionnaire was analysed using SPSS.
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3.4.2 Spatial mapping of the study area using the computational fluid dynamic 

(CFD) 

 

Figure 3.6 Flow chart Phase 2 
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Phase 2 started with a pre-analysis stage, which focused on meshing generation. 

Based on computing cost and accuracy, the mesh with a high meshing number was 

chosen for the remaining simulation scenarios. CFD simulation's accuracy depends on 

precise meshing. The procedure entails the following steps: defining the problem 

domain, selecting and generating the mesh, refining and verifying the mesh, and 

establishing the boundary and initial conditions for the simulation. It is essential to 

conduct mesh independence studies and ensure high mesh quality to obtain reliable 

results, and the process proceeds with analysis and post-analysis as shown in Figure 3.6. 

Increasing the mesh number shows the relative error in the anticipated airflow of 

pollutants, and this study focused on RSP.  The mesh comprises fundamental building 

blocks known as elements or cells (Anyaegbuna et al., 2024). A mixture of these 

components, including pyramids, hexahedra, and tetrahedra, constitutes the lattice. 

Figure 3.7 shows meshing for each study area and the node number for S1, S2, S3, and 

S4. Sekolah Kebangsaan Tanjug Gelam (S1) show the nodes number in Figure 3.7 a) 

was 48375. Figure 3.7 (b) shows the number of nodes for TMG Mart (S2) was 24605, 

and Figure 3.7 (c) shows the node number was 123149 for Mset Inflatable Composit 

Corporation Sdn. Bhd. (S3). Raia Hotel & Convention Centre Terengganu (S4) meshing 

is shown in Figure 3.7 (d) with the number of nodes 33090. 

Mesh generation was located at the pre-analysis stage. Geometric construction 

is frequently executed in Computational Fluid Dynamics (CFD) and other engineering 

applications using CAD (Computer-Aided Design) software to generate and modify the 

domain's 3D models (Hatif et al., 2024). The Parasolid file format, identified by the .x_t 

extension, is widely used in CAD systems. Autodesk Inventor is an example of CAD 

software that supports Parasolid and can be used to generate a Parasolid file. If it is 

necessary to work with pre-existing models, importing Parasolid files into these 

applications is also possible. The software enables the construction of geometric shapes 

(e.g., cylinders, spheres) and the execution of operations, such as extrusion and 

revolution, to generate intricate geometries when a model is generated in CAD software 

(Ejaz et al., 2024). After creating or modifying the geometry, it can be saved or exported 

as a Parasolid file (.x_t) for subsequent analysis or use in other software. Importing a 

Parasolid file into Altair AcuSolve typically involves a series of stages to guarantee that 

the geometry is accurately imported and prepared for meshing and simulation 
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(Silfwerbrand, 2020). Altair AcuSolve is a robust CFD solver that does not explicitly 

support Parasolid files. However, importing and working with Parasolid files is possible 

using Altair's pre-processing tools, such as Altair HyperMesh. Verify the precision and 

comprehensiveness of the imported geometry. Then, the process proceeds with 

inspecting the geometry to ensure no gaps, overlaps, or errors (Ganesh et al., 2020). 

Utilize the tools provided by HyperMesh to rectify any deficiencies in the geometry. 

This may involve the reduction of spaces, the elimination of duplicate surfaces, or the 

simplification of intricate shapes. The procedure proceeds with predetermined mesh 

parameters, including refinement criteria, mesh type (structured or unstructured), and 

element size. Utilise HyperMesh's meshing tools to produce a computational mesh 

derived from the imported geometry. Ensure that the geometry is of high quality and 

appropriate for CFD analysis, then evaluate the mesh for quality metrics, including 

orthogonality, aspect ratio, and skewness (Aljuhaishi et al., 2024). After the simulation, 

use post-processing tools to analyse the results and validate your findings. Altair 

HyperMesh is an intermediary application that manages geometry and mesh generation 

when importing a Parasolid file into Altair AcuSolve. Initially, the Parasolid file is 

imported into HyperMesh, the geometry is cleaned and prepared, the mesh is generated, 

and the mesh is exported in a format compatible with AcuSolve. After that, you import 

the mesh into AcuSolve, configure your simulation, and execute the analysis. This 

workflow guarantees that the geometry and mesh are appropriately prepared for precise 

CFD simulations (Roslan et al., 2023). The accuracy of the CFD results depended on 

meshing process generation; the primary step involved assessing the RSP movement—

the grid independence analysis's simulation findings in the study area. The 

computational mesh was improved until the respirable suspended particulate (RSP) 

flow could be predicted with an acceptable error between two successive meshes. 
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d) 

 
 

Figure 3.7 a) Meshing in the study area for Sekolah Kebangsaan Tanjung Gelam (S1). 

b) Meshing in the study area for TMG Mart (S2). c) Meshing in the study area for 

Mset Inflatable Composit Corporation Sdn. Bhd. (S3).d) Raia Hotel & Convention 

Centre Terengganu. 

Before proceeding with the simulation step the dataset was split into 9 days for 

model simulation and 1 day dataset for validation process. The analysis stage contains 

flow solver analysis and setup. The flow solver step in ANSYS CFD entails the 

following steps: the simulation is established, the solver settings are configured, the 

simulation is executed, and the results are analysed. The procedure entails the following 

steps: the preparation of the geometry and mesh, the definition of physical and boundary 

conditions, the selection and configuration of the solver, and the execution of post-

processing to interpret the results. This workflow guarantees that the fluid flow 

simulation is precise and dependable and offers valuable insights for design and 

analysis. In ANSYS CFD (such as ANSYS Fluent, managing the entire workflow, from 

importing geometry to validating results, involves several steps. Here is a detailed 

explanation of each step in importing geometry in IGES format, setting up the flow 

configuration with a turbulence model, defining boundary conditions, running the flow 

solver with EURANS, checking convergence history, and validating results with data. 

The first step in this process was to import Geometry in IGES Format in ANSYS 

Workbench. Launch ANSYS Workbench by starting the ANSYS Workbench 

environment, the central platform for managing the simulations. Then, add a CFD 

Analysis System by dragging and dropping by clicking "Fluid Flow (CFD)" analysis 

system from the toolbox into the Project Schematic and double-click on the “Geometry” 

cell to open the associated geometry preparation tool then import the IGES File in Ansys 
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Design Modeler then inspect the imported geometry for any issues like gaps, overlaps, 

or errors (Marashian et al., 2023). Use the available tools to fix any issues involving 

merging surfaces, closing gaps, or simplifying complex geometry.   

Next, flow configuration with a turbulence model is done by choosing the 

suitable model. There are two types of models: k-epsilon (k-ε) and k-omega (k-ω). The 

Standard Renormalization Group (RNG) is k-ε, which is realizable and suitable for 

general turbulence modeling, and k-ω was Shear Stress Transport (SST) and used for 

better flow with boundary layered adverse pressure gradients (Sachdeva, 2022). This 

study chooses k-ε in the geometry setting for all study areas due to the model's capability 

to handle free-stream and detached flow better than k-ω (Babaoglu et al., 2020). The 

process proceeds with configuring specific parameters for the turbulence model as 

required. This process presents a flow to conduct a sensitivity analysis of different door 

gap sizes, solar intensities, and the number and orientation airflow involving air 

movement and respirable suspended particulate (RSP) variations. The CFD model of 

the floor was validated based on field measurements (Cheng et al., 2021). This study 

used FLUENT to conduct unsteady-state CFD simulations (Nandan et al., 2020). The 

SIMPLE algorithm was adopted for pressure-velocity coupling (Kwok et al., 2020; 

Chen et al., 2020). A second-order upwind scheme was used for both convection and 

viscous terms.  

The analysis proceeds with the third step, defining boundary conditions. In 

ANSYS Fluent, go to the Boundary Conditions section, select each boundary (e.g., inlet, 

outlet, walls), and define conditions such as respirable suspended particulates (RSP) 

concentration, air movement, or temperature. The next step is proper initialization. 

Proper initialization helps the solver converge to a stable and accurate solution more 

effectively. ANSYS Fluent offers two primary methods for initialization: Standard 

Initialization and Hybrid Initialization (Cheng et al., 2020). This study used to initialize 

the flow by choosing Hybrid Initialization rather than Standard Initialization. Hybrid 

initialized chosen because it is more advanced, and the adaptive initialization method is 

designed to improve convergence, especially for complex geometries and turbulent 

flows. Besides, it can help achieve faster and more stable convergence, particularly in 

complex simulations with intricate geometries or turbulent flows. It can provide a more 
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accurate starting point for the solver by considering local flow features and initial 

guesses. 

The fifth step consists of a flow solver. The term EURANS (Enhanced Unsteady 

Reynolds-Averaged Navier-Stokes) refers to a type of turbulence modelling approach 

used to improve the prediction of turbulent flows, particularly in simulations involving 

unsteady or complex flow conditions. EURANS is an advanced variant of the traditional 

Reynolds-Averaged Navier-Stokes (RANS) models, and this study used EURANS 

setup for the simulation. EURANS is designed to address some of the limitations of 

standard RANS models by improving the accuracy of turbulence predictions in 

unsteady or complex flow conditions. It combines elements of both RANS and Large 

Eddy Simulation (LES) approaches to offer enhanced performance. EURANS is an 

advanced turbulence modelling approach extending the traditional RANS framework to 

handle better unsteady and complex flow scenarios (Deb et al., 2022; Belotti et al., 

2020). By incorporating additional terms and considerations for transient effects, 

EURANS improves the accuracy of turbulence predictions in CFD simulations. In 

ANSYS CFD software, configuring EURANS involves selecting appropriate 

turbulence models, enabling unsteady effects, and setting up transient simulations. This 

approach is particularly useful for applications where capturing the dynamic behaviour 

of turbulent flows is critical for accurate results (Berville et al., 2021). 

After selecting a flow solver, the next step was to monitor its convergence 

history and output. Check the residuals in ANSYS Fluent to observe their convergence 

for continuity, momentum, and other equations. Review the convergence history plots 

to ensure that residuals decrease, and the solution converges (Silva, 2023). Adjust solver 

settings or refine the mesh if convergence issues are encountered (Morawska et al., 

2017). Then, save the simulation results and data files for post-processing and analysis 

and generate detailed reports, including convergence history, solution summary, and 

other relevant information. 

The last step is validating results and sampling data by comparing them with 

experimental data. Compare simulation results with experimental or benchmark data to 

ensure accuracy and check the sensitivity of results to changes in mesh size, boundary 
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conditions, or model parameters (Mohammad & Calautit, 2021). Details of the 

mathematical formulation for the flow solver are explained in detail in the mathematical 

formulation section below. Compare simulation results with sampling data by 

calculating the percentage error between simulation results and sampling data using the 

formula in Equation (4)  

𝐸𝑟𝑟𝑜𝑟 (%) =  |
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 − 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐷𝑎𝑡𝑎

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
| × 100 

(4) 

3.4.3 Mathematical formulations 

The cornerstone of computational fluid dynamics is the fundamental governing 

equations of fluid dynamics-the continuity, momentum, and energy equations. These 

equations speak physics line (Kwok et al., 2020). They are the mathematical statements 

of three fundamental physical principles upon which all of fluid dynamics is based on: 

i. Mass is conserved. 

ii. Newton’s Second Law 

iii. Energy is conserved. 

  

Newtonian fluid without free-surface effects, the equations of motion are the 

continuity equation (4) and Navier-Stokes equations (5). 

∇⃗⃗ ∙ 𝑉⃗ = 0 (5) 

(𝑉⃗ ∙ ∇⃗⃗ )𝑉⃗ = −
1

𝜌
∇⃗⃗ 𝑃′ + 𝑣∇2𝑉⃗  

(6) 

𝑉⃗  is the velocity of the fluid, ρ is the density, and v is the kinematic viscosity (v=µ/ρ),   

P' is modified pressure, which is used when the lack of free surface effects 

 

Equation (5) is a conservation equation, while equation (6) is a transport 

equation that represents the transport of linear momentum throughout the computational 

domain. Equation (4) is a scalar equation, while equation (6) is a vector equation. Both 

equations apply only to incompressible flows whose constants value ρ and v. Thus, 
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three-dimensional flow in Cartesian coordinates contains four coupled differential 

equations for four unknowns, u, v, w, and P' (equation 8-11). If the flow were 

compressible, Equation (8) and Equation (9) would need to be modified appropriately 

as Equation (10). Liquid flows can almost always be treated as incompressible, and for 

many gas flows, the gas is at a low enough Mach number that it behaves as a nearly 

incompressible fluid. For a working fluid with constant density(ρ) (i.e., incompressible 

flow), the rate of mass change with time (t), in a control volume is balanced by the net 

mass flow. This is shown in the continuity equation, which is Equation (7). 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

(7) 

 

Where u, v and w are the x-, y- and z-directional velocity components at a specific 

position in the control volume, respectively. 

 

A fluid element's momentum and concentration change rate in the control 

volume equals the sum of the forces acting on the element. For any 3D model, these 

forces comprise normal force stress and tangential force stress components in the x-, y-

and z-directions, respectively. In fluid dynamics, the momentum and concentration 

change rate is expressed using the following Navier-Stokes equations. 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
(
𝑢

𝜌

𝜕𝑢

𝜕𝑥
− 𝑢′𝑢′) +

𝜕

𝜕𝑦
(
𝑢

𝜌

𝜕𝑢

𝜕𝑦
− 𝑢′𝑣′)

+
𝜕

𝜕𝑧
(
𝑢

𝜌

𝜕𝑢

𝜕𝑧
− 𝑢′𝑤′) 

 

(8) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
(
𝑢

𝜌

𝜕𝑣

𝜕𝑥
− 𝑣′𝑢′) +

𝜕

𝜕𝑦
(
𝑢

𝜌

𝜕𝑣

𝜕𝑦
− 𝑣′𝑣′)

+
𝜕

𝜕𝑧
(
𝑢

𝜌

𝜕𝑣

𝜕𝑧
− 𝑣′𝑤′) 

 

(9) 
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𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
(
𝑢

𝜌

𝜕𝑤

𝜕𝑥
− 𝑤′𝑢′) +

𝜕

𝜕𝑦
(
𝑢

𝜌

𝜕𝑤

𝜕𝑦
− 𝑤′𝑣′)

+
𝜕

𝜕𝑧
(
𝑢

𝜌

𝜕𝑤

𝜕𝑧
− 𝑤′𝑤′) 

 

(10) 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧

=
𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
− 𝑢′𝐶′) +

𝜕

𝜕𝑦
(𝐷

𝜕𝐶

𝜕𝑦
− 𝑣′𝐶′)

+
𝜕

𝜕𝑧
(𝐷

𝜕𝐶

𝜕𝑧
− 𝑤′𝐶′) 

 

(11) 

Where μ is the dynamic viscosity of air; and′′uu,′′uv,′′uw,′′vv,′′vw and′′ww are the 

Reynolds stresses 

In order to study the dispersion of aerosolized particulate matter influenced by 

air conditioning systems, we will use the Computational Fluid Dynamics (CFD) 

approach. The software used for CFD analysis in ANSYS FLUENT performs a three-

dimensional (3D) numerical study of the indoors (Subhashini & Thirumaran, 2020). In 

assessing IAQ, air movement inside the built space is essential—velocity, relative 

humidity, temperature, and airflow pattern (Berville et al., 2021). CFD is an alternative 

numerical method to study the impact of different variables on the IAQ, i.e., airflow 

pattern and velocity fields (Sun et al., 2019; Kwon et al., 2019). Many reviews 

concluded that CFD applications to indoor airflow simulation succeeded considerably 

(Deb et al., 2022). The turbulent flow will be used in this study because the finer 

features of a turbulent airflow field are unsteady, and the three-dimensional areas are 

random, swirling, vortical structures suitable for simulated indoor air quality (IAQ) 

(Nandan et al., 2020). The airflow pattern depends upon various factors such as air 

supply and exhaust, position and size of window or door, furniture arrangement in the 

room, and energy source availability. To simulate and predict the indoor airflow, 

numerical models will be made following the size of the building (Abid et al., 2020). 

The advantages of CFD simulations are that they are more timesaving than experiments. 

Still, they need accurate thermal boundary conditions for airflow rate and direction, 



88 
 

 
 

temperatures, and the RSP. This is important as the air entering the computational 

domain (inflow) or leaving the domain (outflow) is generally categorized with velocity-

specified conditions or pressure-specific requirements (Yuan et al., 2021). At the inlet, 

this study must determine the airflow velocity along the inlet face. 

The temperature and turbulence properties of the incoming flow need to be 

specified (Pei & Rim, 2021). The airflow was simulated using the standard k–ε 

turbulence model known to produce accurate and experimentally validated results for 

indoor ventilation problems. Buoyancy was modelled using the Boussinesq 

approximation. Radiation was accounted for by activating the surface-to-surface (S2S) 

model, which calculates the energy exchange in an enclosure of grey-diffuse surfaces. 

The energy reflected from a surface is computed using its absolute temperature, 

emissivity, and reflectivity and the energy flux incident from its surroundings (Abid et 

al., 2020). The radiation exchange between two surfaces depends on their size, 

separation distance, and orientation. These parameters are considered using view factors 

computed by the ANSYS FLUENT (Liu et al., 2022). This is an essential step in the 

CFD process because it will define the generation of a grid representing the cells on 

which airflow variables are calculated throughout the computational domain. Modern 

commercial CFD codes come with grid generators and third-party grid generation 

programs generated in ANSYS FLUENT’s grid package used in the simulation (Geng 

et al., 2023). The determination type of airflow and model used to run the simulation 

will produce a grid and simulation of the RSP flow inside the buildings. 

In the room model, the principle of mass continuity is shown to be more 

applicable, which presents as the control volume. Therefore, the time interval of the 

change of mass in the room must be identical to the difference between the mass 

entering and exiting the room, as is evident in the following equation: 

∂ρ⁄∂t + ∇. (ρv ) = 0 (12) 

Considering ρ is the air density [kg / m3] and v is the velocity vector [m / s].  

 

The Navier-Stokes equations define the basic mathematics of the motion of 

fluids, as they mainly represent Newton’s law (Law of Motion) applied to liquids. Based 
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on Newton’s second law of fluid flow, the momentum equation can be expressed in the 

following equation: 

∇. (ρv  ⊗ v ) = ∇. (µtot∇ v ) − ∇p + F  g + F  ΔT (13) 

Where µtot [kg / m. s] represents the total molecular and turbulent viscosity, p is the 

pressure [Pa], and F  g + F  ΔT contain parameters such as thermal differences, ρv  ⊗ 

v = ρv . v  T is the outer product.  

Equations 11 and 12 describe forces (body forces), while the left side describes 

time-dependent quantities such as acceleration. 

The energy in the air is defined as the sum of thermal energy (internal and 

velocity components) and the gravitational potential energy in buoyancy-driven flows. 

Consequently, the energy can be maintained in a stable state as follows:  

∇. (v  (ρE + p)) = −∇. (∑j hj Jj) + Sh     (14) 

 

Jj is the diffusion flux of species j, hJ is the enthalpy of species j, and Sh includes the 

heat or any other volumetric heat sources defined in the simulation process. 

To numerically simulate the turbulent flow, it was modelled with the k-ε 

turbulence model. Depending on the flow's instantaneous velocity u (x, t) at position x 

and time t. The instantaneous velocity can be described at a specific location and time:  

Ui= 𝑢̅𝑖 + 𝑢1
′
i  (15) 

Ui can be described as an average of v for stable flow, and 𝑢′
i is fluctuation velocity. 𝑢′

i 

is obtained by measuring as the standard deviation of 𝑢′
i. 

Turbulence intensity (TI) can be calculated as: 

𝑇I =̅ 𝑢𝑖⁄𝑢̅𝑖 × 100 𝑖n percent (16) 

The turbulent kinetic energy k is given per unit mass as: 

𝑘 = 1/2𝑢̅𝑖
′2 = 1/2 (𝑢1

′2 + 𝑢2
′2 + 𝑢3

′2) (17) 

Computer simulations can contribute to obtaining higher accuracy of results, 

thus simplifying and improving the research process. The most crucial advantage of 
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CFDs is testing various system configurations (types of models, positions of equipment, 

etc.) virtually without creating real systems. In this way, numerical methods can 

optimize the suitable design of the ventilation system and adequate locations of air 

inlets/outlets to decrease the sources of infections in an operating room. The CFD model 

will be validated with the experimental dataset.  

3.4.4 Source Apportionment Using Principal Component Analysis 

 

Figure 3.8 Flow chart Phase 3 
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The third phase flow chart is shown in Figure 3.8. Phase 3 consists of three 

stages: pre-analysis, analysis, and post-analysis. Pre-analysis involved data collection, 

which is stated in the section Data Acquisition and Pre-sampling, and this analysis only 

involved IAP that had been monitored during IAQ sampling at study areas with different 

monsoonal variations. Data collection consists of ventilation performance indicator 

(carbon dioxide, CO2), chemical (total volatile organic compound, TVOC; 

formaldehyde (HCHO); carbon monoxide (CO); respirable suspended particulate 

(RSP)) and physical parameter (air movement, AM; temperature, (T); relative humidity 

(RH). Normalization was conducted using the min-max method or scaling. In 

developing models or analysis, the Min-Max scaling method is frequently employed to 

normalize the range of feature values to ensure they are within a specific interval, 

typically [0, 1] (Raju et al.,2020). This can be especially beneficial for enhancing the 

performance and convergence of numerous machine learning algorithms, as they may 

perform more efficiently or converge more quickly when the features are similar. By 

rescaling features to a fixed range, typically [0, 1] (Henderi et al., 2021). Min-Max 

normalization converts them to a shared scale. The equation (18) shows the Min-max 

scaling in this normalization process. 

 

𝑋𝑁𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

(18) 

 

Where X is the original value,𝑋𝑚𝑖𝑛  is the minimum value of the feature in the 

dataset, 𝑋𝑚𝑎𝑥is the maximum value of the feature in the dataset, and 𝑋𝑛𝑜𝑟𝑚 is the 

normalized value.  

 

Min-max scaling is employed to normalize features to a standard range, ensuring 

that each feature contributes equitably to the model. This is because min-max scaling 

can provide a uniform scale. This is crucial for algorithms sensitive to the magnitude of 

input features, such as gradient descent-based methods (e.g., linear regression, neural 

networks). In addition to optimization algorithms' enhanced convergence, the gradients 

will be more consistent, resulting in quicker convergence during training. Finally, 

preventing bias is crucial, as algorithms may become biased toward features with larger 

ranges if features have varying ranges. Normalization mitigates this risk by 

standardizing the input features. 
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PCA is a statistical analysis that is a quantifiable method that gives the result 

based on the correlation between variables and an uncorrelated set of data represented 

by the orthogonal conversion concept, which is interpreted as principal components 

(PCs) (Hasan & Abdulazeez, 2021). PCA is a proper mathematical method for reducing 

many data variables into a few more comprehensible factors, as shown in the PCA 

architecture model in Figure 3.9. This statistical approach reduces a set of 

intercorrelated variables into a few dimensions that gather a large amount of the 

variability of the original variables (Greenacre, 2022). In this study, PCA was used to 

obtain the sources of IAQ by quantifying the percentage of chemical and physical 

parameters. PCA can be expressed by Equation (19). 

 

𝑃𝐶𝑖 = 𝑙1 𝑖 𝑋𝑖 + 𝑙2𝑖 𝑋2 + . . . +𝑙𝑛𝑖𝑋𝑛 (19) 

 

Where 𝑃𝐶𝑖 is the ith principal component and 𝑋𝑖 is the loading of the observed 

variable 𝑋𝑖  

 

       

 T →  
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Figure 3.9 PCA architecture model 

The quantification of potential sources was determined using the Principal 

Component Analysis (PCA) technique.  Two requirements need to be fulfilled before 

proceeding with PCA. The two tests were Kaiser-Meyer Olkin (KMO) of Sampling 

Adequacy and Bartlett’s Test of Sphericity. KMO needs to determine the acceptability 

of the data set, and the value must be more than 0.5 (Gewers et al., 2021). The 

probability related to Bartlett’s Test was also one of the requirements to be fulfilled 

before conducting PCA, in which the value must be less than 0.05 (<0.05) (Mahmoudi 

et al., 2021).  Then, the extraction values in the communalities table were checked.  This 
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is important as only the parameters contributing more than 50% of its variance in the 

data set were considered for further analysis. Otherwise, it was removed, and the KMO 

and Bartlett’s tests were rechecked until all input parameters had more than 50% 

variance contribution in the data set (Beattie& Esmonde-White, 2021). 

Later, the extraction values in communalities tables were examined. It is 

essential to determine that only parameters that contribute more than 50% in the 

variance contribution in the data set were considered for further analysis. Suppose the 

data set cannot fulfil 50% variances (Allee et al., 2022). In that case, the data must be 

removed, and the KMO and Bartlett’s test must be repeated until all the parameters have 

more than 50% variance contribution. Besides commonalities, eigenvalues also play 

important roles related to each linear component after rotation and extraction. The 

function of eigenvalues was to find the relation of each factor distinction, which was 

cleared up by particular linear components, besides demonstrating and explaining their 

eigenvalue in terms of variances percentage and the total initial eigenvalues must more 

than 1 (Muelle, 2022; Abdullah et al., 2019). 

The principal components' capture of variance is denoted as the Total Variance 

Explained. Each principal component captures a portion of the dataset's total variance. 

Variance Explained by a Principal Component is the variance a specific principal 

component explains, typically expressed as a percentage of the total variance. 

Cumulative Variance Explained is the cumulative percentage of variance that can be 

accounted for by a specific number of principal components which more than 0.50 or 

50% contributions which same goes with the selection of rotated principal components 

(Alias et al., 2020). For instance, if the first two principal components collectively 

account for 85% of the total variance, these two PCs would preserve 85% of the original 

data's information. The Rotated Component Matrix is a factor analysis extension of PCA 

that simplifies the interpretation of the principal components (Arsad et al., 2023). In 

order to facilitate the interpretation of the loadings (or weights), the component matrix 

undergoes rotation. Rotation does not alter the variance explained by the components; 

however, it facilitates the interpretation of the results (Almaiah et al., 2022). 
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Principal Components (PCs) are the new axes or directions in the feature space 

that PCA identifies. Each principal component is a linear combination of the original 

features, and they are ordered such that the first principal component accounts for the 

maximum variance in the data, the second principal component accounts for the second 

most variance, and so on. The results for PCS can be divided into: PC1 Shows the first 

principal component is the direction along which the data varies the most; PC2, the 

second principal component, is orthogonal (uncorrelated) to the first and accounts for 

the next highest amount of variance; PC3 is the third principal component is orthogonal 

to both the first and second components and so forth, and the equation showed in 

equation (18)
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3.5 Model development  
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Phase 4, shown in Figure 3.10, consists of three stages. The stages consist of 

pre-processing, model development, and model validation. Data collection was the 

same as section data acquisition and pre-sampling methods. The normalization used in 

this study was min-max scaling. The data was divided into two parts: a model data set 

(9-day sampling (day 1-9)) and a validation data set (last-day sampling data (day 10)). 

This study used inferential statistics to analyze the normality of the data in a pre-

processing stage. Assuming a 95% confidence level, if p < 0.05, the null hypothesis (Ho) 

is rejected, and it is concluded that the distribution is not normal (Rodriguez et al, 2020). 

The normality test was performed by applying the Kolmogorov-Smirnov method. 

Equation (20) showed that the hypothesis was defined to determine the normality of the 

data set and considered as an overview of the variation of air pollutant concentration. 

This result should be verified and investigated further using statistical analysis of 

inferential statistics widely used in air pollution studies, such as Analysis of Variance 

(ANOVA). ANOVA was conducted to determine whether a statistically significant 

difference exists in the air pollutant concentration among the stations. The one-way 

ANOVA was anticipated, in which air pollutants were compared with a single factor 

(Station). 

Ho: Data is normally distributed 

H1: Data is not normally distributed 

(20) 

The result was that the p-value was 0.000 (p < 0.05), which is significant. 

Therefore, it rejects Ho. Thus, it rejects Ho. Therefore, the data was not normally 

distributed, and the results were the same for SBSS. In various areas of empirical 

studies, researchers are often interested in testing the homogeneity of distributions 

across different samples.  The normality test was performed by applying the 

Kolmogorov-Smirnov method (Anuar et al., 2021). This test determined whether two 

distributions or an underlying probability distribution differed from a hypothesized 

distribution (Arulmozhi et al., 2021). It is used when we have two samples from two 

populations that can be different. Thus, the data proved that it was not normally 

distributed. 
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The study proceeds with checking the second assumption of ANOVA. The 

hypothesis was defined to test co-variance in the data set. 

HO: Data has equal variance 

H1: Data has no equal variances 

 

(21) 

The co-variance was conducted by applying Levene’s Test. If the results 

revealed that the p-value was 0.000 (<0.005), it showed significance. Therefore, Ho is 

rejected for physical, chemical, and performance indicators. Both normality and co-

variance tests revealed that this dataset fails to meet parametric characteristics. 

Nonparametric tests are needed to determine the statistically significant difference 

between air pollutants and sick building syndrome symptoms (SBSS). Kruskal Wallis 

test was often used for the non-parametric test (Rodriguez, 2020; Ruxton & Beauchamp, 

2008). Kruskal–Wallis test is a non-parametric statistical test that evaluates whether two 

or more samples are drawn from the same distribution (Guo et al., 2013). Like ANOVA, 

the Kruskal-Wallis test compares two or more samples, focusing on cases with three or 

more samples. The Ho of the Kruskal Wallis was different from those of ANOVA. For 

ANOVA, the Ho was all the means of the populations from which the samples are drawn 

are the same; the alternative hypothesis (H1) implies that at least two of these means 

differ. For the Kruskal Wallis, the null H0 is stochastic homogeneity, with stochastic 

heterogeneity being the H1 (Vieira et al., 2019). The hypothesis was defined as in 

equation (22).  

Ho: µs1 = µs2= µs3= µs4 (no mean difference for the 4 sites) 

H1: µs1≠ µs2 ≠ µs3 ≠ µs4  

(22) 

Kruskal Wallis Test displayed a p-value with a statistically significant difference 

when the value was less than 0.005 (p<0.05) (Sherwani et al., 2021). Thus, Ho is 

rejected. This value showed that air pollutant concentration has a statistically significant 

difference. Further analysis was performed to compare air pollutant concentrations 

between each site simultaneously. 
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After determining the data set types, the pre-processing analysis proceeds with 

normalization. Min-max or scaling was employed to perform normalization (Ahmed & 

Jena, 2023). The Min-Max scaling method is frequently implemented in developing 

models or analyses to ensure that the range of feature values is within a specific interval, 

typically [0, 1]. This can be particularly advantageous for improving the performance 

and convergence of various machine learning algorithms, as they may perform more 

efficiently or converge more rapidly when the features are of comparable size (Wolkoff 

et al., 2018). Min-max normalization typically converts features to a shared scale by 

scaling them to a fixed range [0, 1]. The Min-max scaling in this normalization 

procedure is illustrated in equation (17). 

A GLM is frequently employed to estimate the associations between interior air 

quality and occupants (Mentese et al., 2020). Consequently, the GLM was implemented 

to identify correlations between the occupants' SBS symptoms and the IAQ 

measurement data in this investigation. The GLM combines linear and non-linear 

models that employ a distribution of exponential functions and logistic models. The 

GLM comprises three subsequent components (Wolkoff et al., 2021). 

• Random components: n values of the response variable (yi, …...yn) 

• Systematic component: a linear structure for the regression model (𝜂 = 𝛽𝑥𝑇), 

where 𝑥𝑇 = (1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛)
𝑇, i=1…m represents the explanatory or 

independent variables and; 

• Link function: a montone and differentiable function g, which connects the 

random and systematic components relating dependent variable mean (µ) with 

the linear structure in equation (23): 

 

𝑔(𝜇𝐼) = 𝑥𝑖
𝑡𝛽, 𝑖 = 1… . . 𝐾 (23) 

 

where (β = β1 β2 … βp) are the values of parameters to be estimated. Thus, if we 

consider for the function g the identity function we have: 

𝑔(𝜇𝑖) = 𝜇𝑖 (24) 
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Then 

𝜇𝑖 = 𝐸(𝑌𝑖) = 𝑥𝑖
𝑡𝛽 (25) 

 

The resulting model is the linear regression model. Alternatively, consider the 

function g as a logarithmic function, and Yi has a Gamma distribution. In that case, the 

model will result in a Gamma regression model, and each term βi is the effect of variable 

Xi in g (μi) (Licina & Yildirim, 2021). Each βi represents the “effect” of variable Xi in 

the function g(µi). In this case, the objective is to estimate indoor air quality based on 

other variables, like past and present symptoms, besides indoor air quality parameters 

that consist of physical and chemical parameters (Mentese et al., 2020).  Statistical 

Package software for Social Sciences SPSS 10.0 for Windows was used to build and 

analyse the model. 

Each distribution has a unique link function. The distribution most used on the 

estimation of air pollution health impacts in Gamma function (Belotti et al., 2020; 

Soleimani et al., 2019), of which link function is 𝜂 = log(µ),then µ = 𝑒𝑖. Thus, η 

follows a linear model’s assumptions rather than µ, using matrix notation 

Gamma 

log(µ) = 𝛽𝑥𝑇 + 𝑓 

 

(26) 

βj is the vector of the coefficients to be estimated (co-variables) and ƒ(xj) are the 

smoothing functions for the confounding variables (temperature and humidity) and 

long-term seasonality present in the data. β0 corresponds to the intercept of the curve 

associated with the vector of unitary values. Where 𝑌 = 𝑦1, … , 𝑦𝑛is the function f 

evaluated at time t=1,..n and  𝑥𝑇 is the 𝑛 × 𝑚 + 1 design matrix containing a column 

of ones and the other explanatory times series variables 𝑥𝑖 , … 𝑥𝑚. Given an 𝑚 × 𝑑 

splines basis matrix B, we can rewrite equation (27) as 

log(µ) = 𝛽𝑥𝑇 + 𝛽𝛾 

 

(27) 
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The chi-square test assesses the model's goodness of fit in the context of GLMs. 

Some applications include the deviance test, which compares the model's fit to a 

saturated model (one with a perfect fit) or a simpler model. The test statistic equation 

(28). 

Deviances = 2 [log(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑡𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)

− log(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)] 

 

(28) 

This statistic approximates a chi-square distribution with degrees of freedom 

equal to the difference in the number of parameters between the two models under the 

null hypothesis (that the simpler model is accurate). The Goodness-of-Fit test can also 

be employed to evaluate the model's overall fit compared to the null hypothesis of no 

effect. The Omnibus test assesses the model's overall significance, particularly in 

GLMs. It determines whether at least one of the predictors in the model has a non-zero 

coefficient. It frequently employs the chi-square distribution to ascertain the 

significance of the overall model fit. It entails comparing the complete model (which 

includes all predictors) and a null model (which contains no predictors). The test 

proceeds with the AIC Value (Akaike Information Criterion) as shown in equation (29). 

The AIC is employed to compare and select models. In order to prevent overfitting, the 

AIC penalizes models with an increased number of parameters. The model with the 

lowest AIC is regarded as superior in the comparison.  

𝐴𝐼𝐶 = 2 log(𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘 

 

(29) 

Likelihood is the likelihood of the model given the data; it measures how well 

the model fits the data, and k is the number of estimated parameters. 

Lower AIC values indicate a superior model fit relative to complexity. Lower 

values also indicate a model that balances simplicity and fit (Kasali & Adeyemi, 2022). 

AIC values are employed to compare various models fitted to the same dataset. The 

model with the lowest AIC is the favored option. In GLMs, including Gamma 

regression models, AIC is used to evaluate and compare the models and use the 

likelihood function for a GLM; the likelihood function represents the probability of the 

observed data given the model parameters (Li et al., 2022). 
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Model validation is a critical procedure for assessing and ensuring the reliability 

and accuracy of a statistical or machine-learning model. This process entails 

systematically assessing the model's ability to generalize to new, unobserved, validated 

data and confirming that it generates reliable results. This encompasses the utilization 

of test data. Validate the model by employing a distinct dataset not utilized during the 

model's training (Less et al., 2019). This facilitates the evaluation of the model's 

generalizability. Cross-validation entails partitioning the data into subsets, training the 

model on specific subsets, and validating the model on others. The coefficient of 

determination, frequently referred to as R2, is a critical metric utilized in model 

validation to assess the efficacy of regression models. It quantifies the extent to which 

the independent variables predict the variance of the dependent variable. The coefficient 

of determination R2 quantifies how well the model’s predictions approximate the data 

point and the equation shown in Equation (30), and a higher R2 value indicates a better 

fit of the model to the data. This R² evaluates how well the model performs on new (out-

of-sample) data, specifically comparing forecasted values to actual observed values. 

This is common in time series forecasting or predictive models applied to unseen data. 

R² as a performance indicator measures how well the model fits the existing data 

(training or testing) while R² for forecasted vs. observed measures the model's 

predictive performance on unseen data and a discrepancy between the two often 

indicates overfitting or that the model struggles with future uncertainty (Garg et al., 

2022 ; Cerqueira et al., 2019). 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(30) 

Where: 

yi actual observed values (new data). 

𝑦̂ forecasted or predicted values for new data. 

𝑦̅ mean of the observed values yi in the forecast period. 
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3.6 Model validation 

A performance indicator (PI) was used to determine the model's suitability for 

predicting the future. There are two categories of performance indicators: error 

measurement and accurate measurement. There are three performance indicators used 

to measure the error in this study: normalized absolute error (NAE), root mean square 

error (RMSE) and mean absolute error (MAE). Two performance indicators used in this 

study to measure the model's accuracy are the index of agreement (IA) and coefficient 

of determination (R2), as shown in Table 3.3.  

Table 3.3 Performances Indicator (Abdullah et al., 2019) 

Indicator Equations  

Normalized 

Absolute Error 

(NAE) 

𝑁𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
A value closer to zero 

is better. 

Root Mean Square 

Error (RMSE) 
𝑅𝑀𝑆𝐸 =

1

𝑛 − 1
∑ (𝑃𝑖 − 𝑂𝑖)

2
𝑛

𝑖=1
 

A value closer to zero 

is better. 

  

Mean Absolute 

Error (MAE) 𝑀𝐴𝐸 =
∑ |𝑃𝑖 − 𝑂𝑖|

𝑛
𝑖=1

𝑛
 

A value closer to zero 

is better. 

  

Index of Agreement 

(IA) 𝐼𝐴 = 1 − |
∑ (𝑃𝑖 − 𝑂𝑖)

2𝑛
𝑖=1

∑ |𝑃𝑖 − 𝑂̅| + |𝑂𝑖 − 𝑂̅|2𝑛
𝑖=1

| 
Value closer to one is 

better. 

  

Coefficient of 

determination (R2) 𝑅2 = (
∑ (𝑃𝑖 − 𝑃̅)(𝑂𝑖 − 𝑂̅)𝑛

𝑖=1

𝑛. 𝑆𝑝𝑟𝑒𝑑 . 𝑆𝑜𝑏𝑠
)

2

 
Value closer to one is 

better. 

  

 

 

Where n is a total number measurement, 𝑃𝑖 is a forecasted value, 𝑂𝑖 and is an 

observed value, 𝑃̅ is mean forecasted value,𝑂𝑖̅ is mean observed value, 𝑆𝑝𝑟𝑒𝑑 is the 

standard deviation of forecasted value and 𝑆𝑜𝑏𝑠 is the standard deviation of the observed 

value.
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CHAPTER 4  

 

 

 

 

RESULTS AND DISCUSSION 

4.1 Results 

 This section shows the results of each objective in completing this chapter. 

Section 4.1.1 showed demographic and SBS symptoms and IAP compliance with the 

standard. Section 4.1.2 shows the simulation of computational fluid dynamics for all 

study areas, while Section 4.1.3 presents the PCA result. Lastly, a GLM at Section 4.1.4 

using a gamma model was developed and validated for each study area with different 

monsoonal seasons at different sub dominant economy. 

4.1.1 Demographic, Sick Building Syndrome (SBS) symptoms and Compliances 

of the Indoor Air Quality (IAQ) 

 The questionnaire was distributed among respondents in the study areas. This is 

important to determine the point of view of occupants or workers inside the buildings. 

Demographic factors showed the age, gender and department of each respondent or 

worker in each study area. Figure 4.1 shows the percentage of age range for all study 

areas, and Table 4.1 shows results for gender percentages in each study area. The 

percentage of each occupant’s departments or division in each study area is shown in 

Figure 4.2. In Figure 4.1, Sekolah Kebangsaan Tanjung Gelam (S1) showed that 54.5% 

(N=6) of the age respondents aged less than 25 years old, 9.1% (N=1) from23-39 years 

old, 27.3% (N=3) for 40-55 years old and 9.1% (N=1) for more than 55 years old. The 

number of teachers in the teachers’ room at Sekolah Kebangsaan Tanjung Gelam was 

11, which consisted of 5(45.5%) males and six females (54.5%), as shown in Table 4.1. 
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Figure 4.2 shows the results percentage of each occupant’s departments or division in 

each study area, which consists of mathematics, English, Islamic education, sciences 

and Malay language division for each teacher at Sekolah Kebangsaan Tanjung Gelam 

(S1). 

 There were 33 workers who contributed to answering the questionnaire at TMG 

Mart (S2). According to the study, 39.4% of the workers were male, and the rest, 60.6%, 

were female, as shown in Table 4.1. Workers in TMG Mart consist of four stages of age 

range consists of less than 25 years old (21.2%, N=7), 25 to 39 years old (54.5%, N=18), 

40 to 55 years old (21.3%, N=7), and more than 55 years old (3%, N=1) as shown in 

Figure 4.1. TMG Mart (S2) workers were divided into three divisions: admin or clerk, 

cashier, and sales assistant. The administrative or clerk position consists of 3 workers 

(9.10%), the cashier position is ten workers (30.3%), and the sales assistant position is 

20 workers (60.6%), which involves answering questionnaires related to SBSS. 

Administrative or clerical roles in a supermarket involve a diverse range of tasks that 

support the operational efficiency of the store. These roles are critical for ensuring 

smooth daily operations, effective customer service, accurate record-keeping, and 

overall organisational success. The subsequent division in TMG Mart was a sales 

assistant, responsible for delivering excellent customer service, managing product 

displays, handling transactions, and maintaining store operations. This role requires 

strong communication skills, attention to detail, and the ability to work effectively as 

part of a team to create a positive customer shopping experience. 

Next, demographic factors were evaluated in Mset Inflatable Composite 

Corporation Sdn. Bhd. (S3), which involved 16 workers, and all workers were male. 

Figure 4.1 showed that 68.8% (N=11) of workers aged 25-39 years old and 31.2% (N=5) 

of workers ranged from 40-55 years old. Workers at S3 include fiberglass, blacksmiths, 

electricians, technology executives, and boat makers division or specialty.  31.30% 

(N=5) of the workers were in the glass division which consists of resin applications, 

curing, and hardening, which allows the resin and fiberglass to cure appropriately by 

controlling the temperature and humidity to ensure that fiberglass sets appropriately and 

achieves the desired strength. Boat maker specialists or divisions are involved in 

sanding and fairing the surfaces to prepare them for painting or coating, besides painting 
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and coating by applying protective and decorative finishes such as primer, paint, and 

gel coats. The boat-maker workers who contributed to answering the questionnaires 

were six workers, which is 37.50% of the total workers who are working in the study 

area, as shown in Figure 4.2 c).  Two workers specialised in blacksmithing, which 

involved procuring and preparing raw metal materials, cutting and shaping them, and 

hammering and shaping them. Wielding and soldering to ensure robust and clean 

welding to maintain structural integrity was a job scope for blacksmiths. Two out of 

sixteen respondents or workers in S3 were electricians, and one was a technician 

executive. Their function was to install electrical wiring throughout the boat, including 

power cables, control wires, and communications lines, besides ensuring all wiring was 

routed properly and safely. 

The fourth study area represents hospitality subsectors: Raia Hotel & 

Convention Centre Terengganu (S4). Ten out of eighteen workers answering the 

questionnaire come from the administrative department located in the lobby and public 

office of S4, and the remaining 8 (44.4%) workers come from the food and beverages 

(F &B) department. Table 4.1 showed that 55.6% (N=10) of the workers were male, and 

the rest were female. All workers who contributed to answering the questionnaire 

ranged between less than 25 years old (38.9%, N=7), 25-39 years old (44.4%, N=8), 

and 40-55 years old (16.7%, N=3), as shown in Figure 4.1. 55.66% of the workers 

involved in this study were male, and the rest were female. The worker division is 

divided into admin, assistant manager food and beverages (F&B), manager F&B, bell 

boy, coffee maker, and front desk. The admin involved administrative support such as 

office management, such as managing supplies, equipment, and paperwork, as well as 

document handling and coordinating staff schedules by ensuring adequate coverage for 

different shifts and departments and managing time-off requests and attendance 

tracking. 33.3% (N=6) of the respondents who answered the SBSS questionnaire come 

from the admin division. The subsequent division is assistant manager F&B (1 worker, 

5.6%), coffee maker (1 worker, 5.6%), manager F&B (1 worker, 5.6%), and waitress (5 

workers, 27.80%). All of these workers are part of the F&B department. The food and 

beverage department in a hotel encompasses a wide range of responsibilities aimed at 

providing exceptional dining experiences, managing operational efficiency, and 

ensuring high standards of quality and service. This role requires a combination of 
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management skills, financial acumen, and a passion for hospitality to create memorable 

experiences for guests while driving the success of the hotel's F&B offerings. 

Administrative departments consist of admin (33%, N=6), bell boy 11.10%, N=2), and 

front desk (11.10%, N=2). The administrative department of a hotel is accountable for 

a diverse array of responsibilities that contribute to the hotel's overall operations. This 

encompasses the coordination of other departments, the management of visitor services, 

the management of financial transactions, and the assurance of regulatory compliance. 

This position requires effective communication, meticulous attention to detail, and 

strong organisational abilities. 

 

 

Figure 4.1 Percentage of age range in the study area 

 

Table 4.1 Percentage gender of respondents in the study area 

Gender S1 (N) S2 (N) S3 (N) S4 (N) 

Male 45.5 (5) 39.4 (13) 100 (16) 55.6 (10) 

Female 54.5 (6) 60.6 (20) 
 

44.4 (8) 

N=number of occupants 
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a) 

 
b) 

 
c) 

 
d) 

 
 

Figure 4.2 a) Percentage of each occupant’s departments in S1; b) Percentage of each 

occupant’s departments in S2; c) Percentage of each occupant’s departments in S3; d) 

Percentage of each occupant’s departments in S4. 
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The SBS symptoms questionnaire consists of past 3-month symptoms. The 

symptoms that been stated in the questionnaire were draught, room temperature too 

high, varying room temperature, room temperature too low, stuffy bad air, dry air, 

unpleasant odour, passive smoking, dust and dirt, as shown in Table 4.2 for Southwest 

Monsoon (SWM) and Northeast Monsoon (NEM).  The first question for these sections 

was a draught, in which occupants agreed that their workplace faced draught, with 

27.3% (S1), 60.6% (S2),12.5 (S3) and 5.6% (S4) answering “Yes, often (every week)” 

during SWM and 36.4% (S1), 54.5% (S2), 25% (S3) and 16.7% (S4) for NEM. The 

remainder of the workers or occupants answered “Yes, sometimes” with45.5% (S1), 

30.3% (S2), 87.5% (S3), 88.9% (S4) for SWM and 36.4%(S1), 24.2% (S2), 75%, 66.7% 

(S4) for NEM.  Most of the workers in the study areas agreed that they faced draught, 

but some workers believe that they did not face draught situation because the workers 

answered “No, never” with 27.3% (S1), 9.1% (S2), 5.6% (S3) during SWM and 27.3% 

(S1), 21.2% (S2), 16.7% (S4) for NEM.  

The other item asked in the questionnaire was whether the room temperature 

was too high. Most of the workers believe that they face high room temperatures 

sometimes, with 45.5% (S1), 33.3% (S2), 68.8% (S3), 44.4% (S4) for SWM and 45.5% 

(S1), 33.3% (S2), 81.25% (S3), 44.4% (S4) for NEM which agreed with the answer 

“Yes, sometimes”. 18.2% (S1), 54.5% (S2), 25% (S3), 27.8% (S4) during SWM and 

27.3% (S1), 48.5% (S2), 18.75% (S3), 33.3% (S4) during NEM which the workers were 

agreed that their room temperature too high with the answer “Yes, often (every week)”. 

Reminder workers agreed that their workplace temperature is not too high with the 

answer “No, never”.  36.4% (S1), 12.1% (S2), 63% (S3) and 2.8% (S4) of the workers 

agreed that their workplace temperature was not too high during SWM and 27.3% (S1), 

18.2% (S2), 22.2% (S4) for NEM. 

Varying room temperature was one of the items questioned in the SBS 

symptoms questionnaire. The workers agreed that they did not face varying room 

temperatures, with 18.2% (SWM) and 9.1% (NEM) at S1, 3% (SWM) and 9.1% (NEM) 

for S2, 25% (SWM) and 12.5% (NEM) for S3, 38.9% (SWM) and 27.8% (NEM) for 

S4 with “No, never” answered.  Table 4.2 also shows that the workers also feel varying 

room temperatures with the answer “Yes, often (every week)” and “Yes, sometimes”.  
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Most of the workers decided the room was varying with 72.7% (NEM) for S1, 66.7 

(SWM) and 60.6% for S2, 37.7% (SWM) and 25% (NEM) for S3, 33.3% for S4 with 

the answer “Yes, sometimes”. 

SBS symptoms questionnaire also asked about stuffy “bad air”. Workers at S1, 

S2, S3, and S4 agreed that their workplaces occasionally have varying levels of foul air, 

with 90.9%, 63.6%, 75%, and 61.1% of workers responding "Yes, sometimes" during 

SWM. The labourers also experience a sense of stuffiness and poor air quality during 

NEM, with 81.8%, 51.5%, 62.5%, and 61.1% of respondents at S1, S2, S3, and S4 

responding "Yes, sometimes". Meanwhile, 3% (SWM), 6.1% (NEM), 12.5% (SWM), 

25% (NEM), and 33.3% (SWM), 22.2% (NEM) for S2, S3 and S4 of the respondents 

answered "No, never" in response to the absence of stuffy, poor air in the workplace.  

Most employees concur that their workplace is dry air, with responses of "Yes, 

often" and "Yes, sometimes". Conversely, a small number of employees indicate that 

their workplace is comfortable, with responses of "No, never." The employees were 

exposed to dry air in the following proportions: 27.3% (SWM), 36.4% (NEM) for S1, 

51.5% (SWM), 48.5% (NEM) for S2, 25% (SWM), 12.5% (NEM) for S3, and 44.4% 

(SWM), 61.1% (NEM) for S4 with workers responded, "Yes, sometimes". The 

percentage of employees who disagreed that the workplace had dry air was 27.3% for 

SWM and NEM for S1, 9.1% for SWM and NEM for S2, 38.90% (SWM), 33.3% 

(NEM) for S4, and only S3 did not have workers who disagreed with the presence of 

dry air, with responses of "No, never." 

The response "Yes, sometimes" was given in response to an unpleasant odour. 

For S1, the percentage of employees who encountered disagreeable odours was 36.4% 

for NEM and SWM, 69.7% for NEM and SWM, 63.6% for SWM and S2, 68.8% for 

SWM and SWM, 87.5% for S3, and 55.6% for SWM and NEM and S4 with the 

response "Yes, sometimes". The workers who denied that they encountered unpleasant 

odours responded, "No, never." The percentage of employees who responded "No, 

never" was 45.5% for S1 SWM and NEM, 6.1% (SWM), 12.1% (NEM) for S2, and 

38.9% for S4 in both monsoonal variations. 
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"No, never" is the response of the majority of the occupants who do not engage 

in passive smoking. The percentage of individuals who did not engage in passive 

smoking was 90.9% for both monsoonal variations at S1, 33.3% for both monsoonal 

variations at S2, 33.3% (SWM) and 16.7% (NEM) for S4. In addition, the workers were 

passively smoking, as indicated by the response "Yes, often". S2 and S3 showed that 

the 24.2% and 93.75% percentages during SWM and NEM consisted of 38.9% and 

22.2% during NEM at S4. 

The questionnaire included indicators such as dirt and dust. Majority of 

employees concur that they encountered dust and debris at their place of employment, 

except S4, which responded with "Yes, often" and "Yes, sometimes." At S1, 81.8% of 

workers contribute in both monsoons, 75.8% of workers participate in NEM and SWM 

at S2, 12.5% of workers participate in SWM, and 6.25% of workers participate in NEM 

at S3 and the percentage of respondents who responded "Yes, sometimes" was 16.7% 

in SWM and 27.8% in NEM at S4. S1 and S2 showed that 18.2% and 15.2% of 

workers participated in SWM and NEM, respectively. The percentages for SWM and 

NEM are 87.5% and 93.75%, respectively, as illustrated in Table 4.2 for S2. The 

percentage of S4 respondents who answered "Yes, often" was 5.6% for SWM and 

16.7% for NEM. 

Table 4.2 Percentage of past 3-month symptoms among workers in each study area 

Past 3-month symptoms               
 S1 S2 S3 S4 

 SWM NEM SWM NEM SWM NEM SWM NEM 

Draught 
  

    
  

Yes, often (every week) 27.3 36.4 60.6 54.5 12.5 25 5.6 16.7 

Yes, sometimes 45.5 36.4 30.3 24.2 87.5 75 88.9 66.7 

No, never 27.3 27.3 9.1 21.2 - - 5.6 16.7          
Room temperature too high  

 
  

  

Yes, often (every week) 18.2 27.3 54.5 48.5 25 18.75 27.8 33.3 

Yes, sometimes 45.5 45.5 33.3 33.3 68.8 81.25 44.4 44.4 

No, never 36.4 27.3 12.1 18.2 6.3 - 27.8 22.2          
Varying room temperature  

 
  

  
Yes, often (every week) 18.2 18.2 15.2 12.1 37.5 43.75 5.6 16.7 

Yes, sometimes 63.6 72.7 81.8 78.8 37.5 43.75 55.6 55.6 

No, never 18.2 9.1 3 9.1 25 12.5 38.9 27.8          
Room temperature too low  

 
  

  
Yes, often 72.7 - 9.1 3 - - 66.7 50 

Yes, sometimes  72.7 66.7 60.6 37.5 25 33.3 
 

No, never 27.3 27.3 24.2 36.4 62.5 75 - 50          
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Stuffy bad air 
 

  
  

  
Yes, often 9.1 18.2 33.3 42.4 12.5 12.5 5.6 16.7 

Yes, sometimes 90.9 81.8 63.6 51.5 75 62.5 61.1 61.1 

No, never   3 6.1 12.5 25 33.3 22.2          
Dry air 

  

    

  

Yes, often (every week) 45.5 36.4 39.4 42.4 37.5 43.75 16.7 5.6 

Yes, sometimes 27.3 36.4 51.5 48.5 25 12.5 44.4 61.1 

No, never 27.3 27.3 9.1 9.1 
  

38.9 33.3          
Unpleasant odour 

 

  

    

Yes, often (every week) 18.2 18.2 24.2 24.2 31.3 12.5 5.6 5.6 

Yes, sometimes 36.4 36.4 69.7 63.6 68.8 87.5 55.6 55.6 

No, never 45.5 45.5 6.1 12.1   38.9 38.9          
Passive smoking 

  

  

    

Yes, often (every week)  24.2 24.2 93.75 93.75 38.9 22.2 

Yes, sometimes 9.1 9.1 42.4 42.4 6.25 6.25 27.8 61.1 

No, never 90.9 90.9 33.3 33.3   33.3 16.7          
Dust and dirt 

  

  

  

  
Yes, often 18.2 18.2 15.2 15.2 87.5 93.75 5.6 16.7 

Yes, sometimes 81.8 81.8 75.8 75.8 12.5 6.25 16.7 27.8 

No, never   9.1 9.1   77.8 55.6 

 

Table 4.3 shows the workers' answers to the present symptoms. The first present 

symptom that has been evaluated is a headache.  Most workers faced headaches with 

the answer “Yes, sometimes,” with percentages of 72.7 %, 33.4%, and 66.7% for both 

monsoonal seasons for S1, S2, and S4. S3 shows that 68.8%(SWM) and 87.5% (NEM) 

with the answer “Yes, sometimes” from the workers.  Even though most of the workers 

agreed that they suffered a headache for the present symptoms, there were also a few 

workers who disagreed that faced headaches with the answer “No, never,” with 

percentages of 18.2% for S1 and 42.4% for S2 at both monsoonal seasons, besides 

18.8% (SWM), 27.8% (NEM) for S3 and 27.8% (SWM), 22.2% for S4. 

The second symptom was feeling heavy-headed; almost all the workers agreed 

that they faced those symptoms with the answers “Yes, often” and “Yes, sometimes.” 

Most workers agreed they faced heavy headedness with the answer “Yes, sometimes,” 

with 45.5% for S1 during SWM and NEM and 36.4% for both monsoonal seasons at 

S2. 43.8% (SWM), 25% (NEM) was the percentage of workers that agreed that they 

faced feeling heavy-headed at S3 and 55.6% (SWM),50% (NEM) at S4. Some workers 

disagreed that they felt heavy-headed by answering “No, never,” with 27.3% and 42.4% 

for S1 and S2 for both monsoonal seasons, SWM and NEM.  56.3% (SWM), 68.75% 
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(NEM) for S3, and 33.3% (SWM), 22.2% (NEM) for S4 disagreed that they felt heavy-

headed with the answer “No, never.” 

Next is fatigue and lethargy, which most workers agreed they felt for the present 

symptoms.  During SWM, 63.6%, 48.5%, 75%, and 66.7% of the workers at S1, S2, 

S3, and S4 agreed that they felt fatigued and lethargy with the answers “Yes, 

sometimes,” while 63.6% (S1), 48.5% (S2), 93.75% (S3) and 50% (S4) for NEM. A 

few workers disagree that they faced fatigue and lethargy, with 18.2%,27.3%, 12.5%, 

and 11.1% for S1, S2, S3, and S4 during SWM and 18.2%, 27.3%, 11.1% for S1, S2 

and S4 during NEM with the answer “No, never.” 

Drowsiness is one of the present symptoms evaluated. A few of the workers 

disagree that they faced it for the present symptoms with the answer, “No, 

never.”.27.3%, 6.1%, 37.5% and11.1% were answered from workers during SWM with 

the answer “No never” for S1, S2, S3, and S4. 27.3%, 12.1%,54.25% and 61.1% for S1, 

S2, S3 and S4 for NEM. Most workers felt drowsiness with the answer “Yes, often” and 

“Yes, sometimes.” 63.6% and 9.1% of the workers answered, “Yes sometimes” and 

“Yes, often” for S1; the same goes with S2 workers which answered “yes, sometimes” 

with 66.7% during SWM, 63.6% for NEM and “Yes, often” with 27.3% (SWM) and 

24.2% (NEM) at S2. 

The fifth symptom was dizziness, of which 72.7% and 51.5% of the workers at 

S1 and S2 during SWM and NEM agreed that they felt dizziness by the answer “Yes, 

sometimes.” 62.5% and 77.8% of the workers at S3 and S4 also agreed that they feel 

dizziness for present symptoms for SWM and 75% (S3), 27.8% (S4) for NEM.  A few 

workers agree that they felt dizziness, which is frequently by answering “Yes, often,” 

with 18.2% for both area SWM and NEM at S2 and 6.25% during NEM at S3. Even 

though most of the workers agree that they faced dizziness, there are a few workers that 

disagree with 27.3% during SWM and NEM at S1, 30.3% during SWM and NEM at 

S2, 37.5% (SWM), 18.75%(NEM) for S3 and 22.2% (SWM), 72.2% (NEM) for S4 that 

answer “No, never.” 
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Nausea or vomiting is one of the present symptoms, and most workers disagree 

that they feel it. 72.7% for both monsoonal seasons at S1, 84.8% at both monsoonal 

seasons for S2, 56.3% (SWM), 75%(NEM) for S3, and 55.6% (SWM), 61.1% (NEM) 

for S4 answered “No, never” towards nausea or vomiting symptoms. A few of the 

workers agreed that they felt nausea or vomiting by answering “Yes, sometimes” and 

“Yes, often”. “Yes, often” answers consist of 9.1% for SWM and NEM in S1, 6.25% 

for NEM at S3, and the rest 18.2% of workers during SWM and NEM at S1, 15.2% 

during SWM and NEM at S2, 43.8% (SWM),18.75%(NEM) for S3 and 44.4% (SWM), 

38.9% (NEM) at S4 answer “Yes, sometimes”. 

Workers agreed that they cough, with a majority of them answering, “Yes, 

sometimes.”. 63.6% of workers at S1 at both monsoons, 54.5% (SWM),45.5% (NEM) 

for S2, 62.5% (SWM), 18.75% (NEM) for S3 and11.1% and 55.6% for S4 of the 

workers answer “Yes, sometimes.” There also workers that answered that they 

frequently felt cough with the answer “Yes, often,” with 18.2% for both monsoonal 

areas at S1, 15.2% (SWM), 6.1% (NEM) at S2, 12.5% during NEM at S3 with the 

answer “Yes, often”. “No, never” was answered by workers who had never felt a cough 

during the present time. There were18.2%  for NEM and SWM at  S1, 30.3% (SWM), 

48.5% (NEM) for S2, 37.5% (SWM), 68.75% (NEM) for S3, and 88.9% (SWM), 44.4% 

(NEM) for S4 that agreed that they never felt cough for the present time. 

Next is an irritated, stuffy nose, which most of the workers in all study areas 

agreed that they felt sometimes by answering: “Yes, sometimes.” 100%  of the workers 

at S1 felt irritated stuffy nose, 60.6% (SWM), 57.6% (NEM) for S2, 62.5% (SWM), 

50% (NEM) for S3, and 55.6% (SWM), 50% (NEM) for S4 with the answered: “Yes, 

sometimes.” Figure 4.3 also showed that a few workers never felt irritated stuffy nose 

with 24.2% (SWM), 33.3%(NEM) at S2, 12.5%(SWM), 37.5% (NEM) for S3 and 

44.4% (SWM) and 16.7% (NEM) for S4 that answered: “No, never.” 

Hoarse or dry throat is one of the symptoms asked in the questionnaire.  54.5% 

of the workers at S1 agreed that they felt hoarse or dry throat for both monsoonal 

seasons. 48.5% during SWM and 42.4% during NEM of S2 workers also answered 

“Yes, sometimes” for hoarse and dry throat symptoms.   There were 37.5% (SWM), 
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56.25% (NEM) for S3 and 66.7% (SWM), and 44.4% (NEM) for S4 workers that agreed 

with the same answers, which are “Yes, sometimes.” There are a few workers who 

disagree that they felt hoarse or dry throat by answering “No, never,” with 27.3% for 

SWM and NEM at S1, 18.2% (SWM), 30.3% (NEM) for S2, 37.5% (SWM), 31.25% 

(NEM) for S3 and 16.7% (SWM), 11.1% (NEM) for S4. 

The third last present symptom that was asked of workers was skin rashness or 

itchiness.   Most of the workers answered “Yes, sometimes,” which showed that they 

faced skin rashness symptoms with 36.4%, 57.6% for both monsoonal seasons at S1 

and S2, 50% during SWM, 6.25% during NEM for S3, 66.7% for SWM and 44.4% for 

NEM at S4. Few workers disagree by answering “No, never,” with 45.5%, 21.2% for 

SWM and NEM at S1 and S2, 18.8% (SWM), 87.5% (NEM) for S3, and   11.1% for 

SWM and 33.3% for NEM at S4. 

Irritation of the eye showed that most workers agreed that they faced symptoms 

with the answer “Yes, sometimes.” with 36.4%, 60.6% of the workers at S1 and S2 

during SWM, 50% (SWM), 25%(NEM) for S3 and 50% (SWM), 38.9%(NEM) for S4.  

Workers that answered “Yes, often” consisted of 27.3% and 21.2% for S1 and S2 during 

SWM and NEM, 50% during SW M for S3 and 11.1% (SWM), and 38.9% (NEM) for 

S4.  Even though most workers faced eye irritation, a few disagreed with that statement 

and answered, “No, never.” with 36.4% (S1) and 18.2% (S2) for both monsoonal 

variations, 75% during NEM for S3 and 38.9% (SWM), 27.8% (NEM) for S4. 

The last present symptoms were scaling and itching, to which most workers 

answered “No, never” felt those symptoms in the current situation. Percentages value 

in Table 4.3 shows that 72.7% of the workers at S1 during SWM and NEM, 24.2% 

(SWM), 36.4 (NEM) for S2, 25% (SWM), 100% (NEM) for S3 and 38.9% (SWM), 

27.8% (NEM) for S4 that answer “No, never.” The rest of the workers believe they 

faced eye irritation with the answers “Yes, sometimes” or “Yes, often.” 9.1% of workers 

at S1 agreed that they faced irritation of the eye with the “Yes, sometimes” answer, 

51.5% (SWM), 45.5% (NEM) for S2, 43.8% during SWM for S3 and 55.6% (SWM), 

27.8% (NEM) for S4.
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Table 4.3 Percentage of present symptoms among workers in each study area 

Present Symptoms               

 S1 S2 S3 S4 

 SWM NEM SWM NEM SWM NEM SWM NEM 

Headache 
  

  
    

Yes, often (every week) 9.1 9.1 24.2 24.2 12.5 6.25 5.5 11.1 

Yes, sometimes 72.7 72.7 33.4 33.4 68.8 87.5 66.7 66.7 

No, never 18.2 18.2 42.4 42.4 18.8 6.25 27.8 22.2          
Feeling heavy headed 

 
 

 

  

  
Yes, often (every week) 27.3 27.3 21.2 21.2 - 6.25 11.1 27.8 

Yes, sometimes 45.5 45.5 36.4 36.4 43.8 25 55.6 50 

No, never 27.3 27.3 42.4 42.4 56.3 68.75 33.3 22.2          
Fatigue lethargy 

  

  

  

  
Yes, often (every week) 18.2 18.2 24.2 24.2 12.5 6.25 22.2 38.9 

Yes, sometimes 63.6 63.6 48.5 48.5 75 93.75 66.7 50 

No, never 18.2 18.2 27.3 27.3 12.5 - 11.1 11.1          
Drowsiness 

  

  

  

  
Yes, often (every week) 9.1 9.1 27.3 24.2 25 - 22.2 38.9 

Yes, sometimes 63.6 63.6 66.7 63.6 37.5 43.75 66.7 
 

No, never 27.3 27.3 6.1 12.1 37.5 56.25 11.1 61.1          
Dizziness 

  

  

    

Yes, often (every week)   18.2 18.2 - 6.25   
Yes, sometimes 72.7 72.7 51.5 51.5 62.5 75 77.8 27.8 

No, never 27.3 27.3 30.3 30.3 37.5 18.75 22.2 72.2          
Nausea vomiting 

  

  

    

Yes, often  9.1 9.1   - 6.25 
  

Yes, sometimes 18.2 18.2 15.2 15.2 43.8 18.75 44.4 38.9 

No, never 72.7 72.7 84.8 84.8 56.3 75 55.6 61.1          
Cough 

  

  

    

Yes, often (every week) 18.2 18.2 15.2 6.1 - 12.5 
  

Yes, sometimes 63.6 63.6 54.5 45.5 62.5 18.75 11.1 55.6 

No, never 18.2 18.2 30.3 48.5 37.5 68.75 88.9 44.4          
Irritated stuffy nose 

 

  

    

Yes, often (every week)   15.2 9.1 25 12.5 
 

33.3 

Yes, sometimes (2-3 week) 100 100 60.6 57.6 62.5 50 55.6 50 

No, never   24.2 33.3 12.5 37.5 44.4 16.7          
Hoarse dry throat 

 

  

    

Yes, often (every week) 18.2 18.2 33.3 27.3 25 12.5 16.7 44.4 

Yes, sometimes 54.5 54.5 48.5 42.4 37.5 56.25 66.7 44.4 

No, never 27.3 27.3 18.2 30.3 37.5 31.25 16.7 11.1 

Skin rash itchiness 
 

   
  

  
Yes, often (every week) 18.2 18.2 21.2 21.2 31.3 6.25 22.2 11.1 

Yes, sometimes 36.4 36.4 57.6 57.6 50 6.25 66.7 55.6 

No, never 45.5 45.5 21.2 21.2 18.8 87.5 11.1 33.3          
Irritation of the eye 

 

  

  

  
Yes, often (every week) 27.3 27.3 21.2 21.2 50 - 11.1 33.3 

Yes, sometimes 36.4 36.4 60.6 60.6 50 25 50 38.9 

No, never 36.4 36.4 18.2 18.2 - 75 38.9 27.8          
Scaling itching 

  
 

 

  

  
Yes, often (every week) 18.2 18.2 24.2 18.2 31.3 - 5.6 11.1 

Yes, sometimes 9.1 9.1 51.5 45.5 43.8 - 55.6 61.1 

No, never 72.7 72.7 24.2 36.4 25 100 38.9 27.8          
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The questionnaire consists of demographic factors, past 3-month symptoms, 

present symptoms and a section about workers' response to present symptoms. Table 

4.4 shows that three questions were asked in this section. The first question asked about 

the opinion of workers if they said “Yes” or “Yes, sometimes” or “Yes, often” in the 

present symptoms section; this is due to the environment of the workstation or not. The 

answer provided to workers or respondents was “Yes” or “No”. Results from Table 4.4 

showed that most workers agreed that the symptoms were due to the workplace 

environment, with 90.9% (S1) and 66.7% at both monsoonal seasons for S1 and S2 

occupants answering “Yes” for these questions. 68.75% (SWM),81.25% (NEM) 

workers at S3 and 44.4%(SWM), 33.3% of workers inside S4 also answered “Yes” to 

these questions.  

The next question was, “When do you experience relief from the symptoms?” 

and workers needed to answer either “After leaving the workplace”, “After leaving 

buildings”, or “Not sure”. Most of the workers answer, “After leaving the workplace”, 

with 63.6% for S1, 72.7% for S2, 50% (SWM) and 62.5% (NEM) for S3 and 44.4% for 

S4. The rest of the respondents answered, “After leaving the building”, except for 6.3% 

of occupants, who answered “Not sure” during southwest monsoon at S3. 

  The last question for this section was, “When do the symptoms occur?”. The 

workers agreed that the symptoms mainly occurred during “Lunch or evening”, with 

45.5% for S1, 57.6% for S2, 81.25% for S3, 88.9% and 55.6% for S4. A few respondents 

agree the symptoms occurred during “Morning”, with 9.1% for S1,30.3% for S2 and 

33.3% for NEM for S4. The rest of the workers answered “Not sure” with the question 

given. The percentage of respondents that answered “Not sure” was 45.5% for S1, 

12.1% for S2, 18.75% for S3 and 11.1% for S4, as shown in Table 4.4. 
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Table 4.4 Percentage response of workers toward present symptoms 

 S1 S2 S3 S4 

 SWM NEM SWM NEM SWM NEM SWM NEM 

If yes, this is due to the environment of the workstation 

Yes 90.9 90.9 66.7 66.7 68.75 81.25 44.4 33.3 

No 9.1 9.1 33.3 33.3 31.25 18.75 55.6 66.7 

         

When do you experience relief from the symptoms? 

After leaving workplace 63.6 63.6 72.7 72.7 50 62.5 55.6 55.6 

After leaving the buildings 36.4 36.4 27.3 27.3 43.8 37.5 44.4 44.4 

Not sure     6.3 -   

         

When do the symptoms occur? 

Morning 9.1 9.1 30.3 30.3 - - 0 33.3 

Lunch/Evening 45.5 45.5 57.6 57.6 81.25 81.25 88.9 55.6 

Not sure 45.5 45.5 12.1 12.1 18.75 18.75 11.1 11.1 

         

Number of occupants 11 33 16 18 

 

According to ICOP-IAQ (2010), the acceptable range for temperature is 23-

26°C, relative humidity is 40-70%, and air movement is 0.15 to 0.50 m/s. The chemical 

parameters include formaldehyde (0.1ppm), carbon monoxide (10ppm), total volatile 

organic compound (3ppm), and interior air contaminants, including RSP (0.15mg/m3). 

Indicators of ventilation performance include CO2 (1000 ppm). Figures 4.3 a), 4.3 b), 

and 4.3 c) show a trend of SK Tanjung Gelam (S1) during the SWM and Figures 4.4 a), 

4.3 b), and 4.4 c). The mean value was taken from 10 sampling days to determine 

compliance with the IAQ inside the study area. Figure 4.3 a) showed that SWM for 

temperature was between 27.62-30.84 0C for T, 72.92%-90.68% for RH, and air 

movement was the range between 0.148-0.695 m/s, while for northeast monsoon was 

in between 26.84-29.58 0C for temperature, 76.13-86.04% for relative humidity and 

0.16-0.23 m/s for air movement (Figure 4.4a). The trend showed that physical 

parameters exceeded ICOP-IAQ (2010) standards, especially for T and RH. Movement 

trends for T and RH were inversely proportional, which showed that increasing 

temperature caused a decrease in the relative humidity value. Air movement values were 

insufficient almost constantly, below the standard range of 0.15-0.50 m/s. 
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Figures 4.3 b) and 4.4 b) showed chemical parameters for S1 for southwest and 

northeast monsoon. Figure 4.3 b) showed the SWM trend for CO (0.38-2.07ppm), CO2 

(365.73-417.17ppm), and HCHO (0.03 -0.04 ppm) and NEM chemical parameters were 

CO (0.08-0.58 ppm), CO2 (408.44-470.22 ppm) and HCHO (0.018-0.020) at Figure 4.4 

b). The trends showed compliance with physical parameters inside the room for both 

monsoons. HCHO came from furniture inside the rooms, and most of the furniture used 

pressed wood products. CO2 comes from occupants inside the rooms, which consist of 

not more than 16 people. CO comes from cooking activities inside the rooms, such as 

water heaters and cooking apparatus such as air fryers and waffle makers. The reading 

of chemical parameters in NEM is higher than that of SWM. 

Figures 4.3 c) and 4.4 c) display the trends in respirable suspended particles 

(RSP) for both the SWM and NEM. During SWM, the RSP levels ranged from 0.038 

to 0.050 mg/m3, while in NEM, they ranged from 0.025 to 0.035 mg/m3. There was a 

noticeable slight decrease in RSP readings during the NEM, indicating a reduction in 

airborne particulate matter during this period. RSP levels in the building can be 

influenced by both internal and external factors. The internal sources primarily stem 

from the movements of occupants and teachers within the rooms, as their daily activities 

such as walking, shifting furniture, or engaging in classroom activities, stir up dust and 

particles that become airborne. Additionally, housekeeping practices within the building 

were rarely conducted, which could have contributed to the accumulation of particulate 

matter within the indoor environment. External sources of RSP can also contribute to 

the levels observed inside the rooms, particularly during times when ventilation is 

inadequate, or external air quality is poor. RSP can infiltrate the building from the 

outdoors, particularly when windows or vents are open or if the building is in an area 

with high levels of dust or vehicular emissions. The combination of these internal and 

external factors results in fluctuating RSP levels, which can affect indoor air quality and 

potentially influence the health and comfort of occupants. These findings highlight the 

importance of regular housekeeping and effective ventilation strategies to minimize 

RSP accumulation and ensure a healthier indoor environment. 



119 
 

 
 

 

a) 

 
 

b) 

 

c) 

 

Figure 4.3 a) Physical parameters during SWM for S1; b) Chemical parameters during SWM for S1; c) Respirable Suspended Particulate during 

SWM for S1 

 

a) 

 

b) 

 

c) 

 
Figure 4.4 a) Physical parameters during NEM for S1; b) Chemical parameters during NEM for S1; c) Respirable Suspended Particulate during 

NEM for S1 
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 Figures 4.5 and 4.6 show a physical, chemical, and RSP trend for TMG Mart 

Gong Badak. Figure 4.5 a) and Figure 4.6 a) showed that southwest monsoon for 

temperature was in between 27.62-29.93⁰C for temperature, 57.77-82.29% for relative 

humidity and air movement ranged between 0.07-0.16 m/s, while for northeast monsoon 

was in between 25.98-27.43 0C for temperature, 61.52-66.47% for relative humidity and 

0.074-0.130 m/s for air movement. The trend showed that physical parameters exceeded 

ICOP-IAQ (2010) standards, especially for T and RH. The movement trend for T and 

RH was inversely proportional, which showed that increasing temperature caused a 

decrease in the relative humidity value. The temperature sparks between 1300 hours 

and 1400 hours inside the building due to many customers coming to buy groceries. Air 

movement values were insufficient almost constantly, below the standard range of 0.15 

-0.50 m/s. Trends also showed that SWM is warmer than NEM reading of physical 

parameters. 

 The chemical parameters for S2 for the southwest and northeast monsoon 

were depicted in Figures 4.5 and 4.6 b). The SWM trend for CO2 (464-587 ppm) and 

HCHO (0.02-0.04 ppm) was depicted in Figures 4.5 b), while the NEM chemical 

parameter was CO2 (566-606 ppm) and HCHO (0.02-0.03). For both monsoons, the 

trends indicated that the physical parameters within the room were in accordance. 

HCHO is emitted by furniture within buildings. Within the buildings, CO2 is generated 

by the occupants, which includes both customers and employees. Compared to SWM, 

the chemical parameter measurement in NEM is relatively high. Air pollutants with RSP 

trends are depicted in Figures 4.5 and 4.6 c). SWM's RSP trend ranged from 0.021 to 

0.030 mg/m3, while NEM's ranged from 0.014 to 0.027 mg/m3). During the NEM, there 

was a modest decrease in the reading of RSP.
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a) 

 

b) 

 

c) 

 
 

Figure 4.5 a) Physical parameters during SWM for S2; b) Chemical parameters during SWM for S2; c) Respirable Suspended Particulate during 

SWM for S2 

 

a) 

 

b) 

 

c) 

 
 

Figure 4.6 a) Physical parameters during NEM for S2; b) Chemical parameters during NEM for S2; c) Respirable Suspended Particulate during 

NEM for S2 
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The trends at Mset Inflatable Composit Corporation Sdn. Bhd (S3) during SWM 

and NEM are shown in Figures 4.7 and 4.8. During SWM, temperatures ranged from 

27.12-32.91⁰C, relative humidity from 68.25-89.57%, and air movement from 0.12-0.16 

m/s (Figure 4.7 a). For NEM, temperatures ranged from 27.28-32.4⁰C, relative humidity 

from 67.37-89.95%, and air movement from 0.139-0.228 m/s. Both monsoons exceeded 

ICOP-IAQ (2010) standards for temperature and relative humidity, with an inverse 

relationship between the two. Temperature peaks between 1400 and 1500 hours were 

due to intense activities like forklift operations, welding, painting, and sanding. Air 

movement remained insufficient during both monsoons due to confined spaces and 

limited operation of blowers. SWM was consistently hotter than NEM based on physical 

parameter readings.  

During the SWM, the recorded CO2 levels ranged from 312 to 326 ppm, total 

volatile organic compounds (TVOC) from 0 to 6.5 ppm, and formaldehyde (HCHO) 

from 0.01 to 0.14 ppm, as illustrated in Table 4.7 b). These values indicate a moderate 

range of chemical pollutants within the indoor environment during this monsoon. In 

contrast, the NEM showed elevated levels for the same parameters, with CO2 ranging 

from 320 to 363 ppm, TVOC from 0 to 0.19 ppm, and HCHO from 0.019 to 0.052 m/s, 

as depicted in Table 4.8 b). The rise in chemical parameter readings during NEM 

suggests a more pronounced accumulation of pollutants, possibly due to differing 

ventilation dynamics or external environmental factors that influence indoor air 

conditions during this period. The presence of TVOC and HCHO, which are common 

indoor air pollutants, underscores the importance of effective ventilation and source 

control in maintaining IAQ. The comparison between the two monsoons reveals that 

while the physical parameters of the buildings complied with both monsoon periods, 

the elevated chemical parameters during NEM highlight a need for enhanced 

monitoring and mitigation strategies during this season. During SWM, the RSP levels 

fluctuated between 0.04 to 0.134 mg/m³, whereas during NEM, they ranged from 0.05 

to 0.32 mg/m³. These findings emphasize the variability of indoor air quality parameters 

across different monsoonal periods and the need for tailored IAQ management practices 

that account for seasonal changes. Understanding the trends in chemical parameters and 

RSP levels during SWM and NEM allows for more targeted interventions.
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a) 

 

b) 

 

c) 

 
 

Figure 4.7 a) Physical parameters during SWM for S3; b) Chemical parameters during SWM for S3; c) Respirable Suspended Particulate during 

SWM for S3 

 

 

a) 

 

b) 

 

c) 

 
 

Figure 4.8 a) Physical parameters during NEM for S3; b) Chemical parameters during NEM for S3; c) Respirable Suspended Particulate during 

NEM for S3 
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The Raia Hotel & Convention Centre Terengganu (S4) trend is illustrated in 

Figures 4.9 and 4.10. The SWM was characterised by a temperature (T) ranging from 

24.20 to 25.36 0C, a relative humidity (RH) of 69.15 to 71.2%, and an air movement of 

0.09 to 0.12 m/s. The northeast monsoon was characterised by a temperature (T) ranging 

from 23.5-24.2⁰C, a relative humidity of 67.19 to 71.6 %, and an air movement of 0.10-

0.13 m/s. These findings are illustrated in Figures 4.9 a) and 4.10 b). The trend indicated 

that the physical parameters, particularly the relative humidity, exceeded the standards 

established by the ICOP-IAQ (2010). The movement trend for T and RH was inversely 

proportional, indicating that the relative humidity value decreased as the temperature 

increased. The air movement values were insufficient, falling below the standard range 

of 0.15 to 0.50 m/s. Additionally, the trends indicated that the SWM was hotter than the 

NEM reading of the physical parameters.  

The chemical parameters and ventilation performance indicators for S4 in SWM 

and NEM were presented in Tables 4.9 and 4.10. Table 4.9 b) displayed the SWM trend 

for CO2 (550.19-674.22 ppm) and the NEM ventilation performances indicator for CO2 

(501-643 ppm). The trends indicated that the ventilation performance indicator 

complied within the chamber during both monsoons. CO2 is generated by individuals 

who reside within the study area. The ventilation efficacy indicator reading in the NEM 

is lower than that of the SWM. Air pollutants with respirable suspended particulates 

(RSP) trend are depicted in Figures 4.9 b) and 4.10 b). SWM's RSP trend ranged from 

0.021 to 0.035 mg/m3, while NEM's ranged from 0.026 to 0.037 mg/m3. During NEM, 

there was a modest increase in the reading of RSP. The RSP is derived from the 

movements of individuals within the study area. The frequent door opening allows RSP 

to enter the study area inside and outside. 
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a) 

 

b) 

 

Figure 4.9 a) Physical parameters during SWM for S4; b) Chemical parameters during SWM for S4 

 

 

a) 

 

b) 

 
Figure 4.10 a) Physical parameters during NEM for S4; b) Chemical parameters during NEM for S4 
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Indoor-outdoor ratios (I/O ratios) for each study area with distinct monsoonal 

seasons are illustrated in Table 4.5. The indoor-outdoor ratio assesses the disparity 

between the indoor concentration and the corresponding outdoor levels. The I/O ratios 

of 1.2 or greater indicate that the indoor concentration exceeds that of the outdoors and 

may be attributed to indoor sources. I/O ratios of 0.8-1.2 indicate that the indoor 

concentration is equivalent to that of the outdoors, and I/O ratios of 0.8 or less suggest 

that the indoor concentration is less than that of the outdoors, illustrating the possibility 

of outdoor influence. 

Table 4.5 indicates that the interior and outdoor air concentrations in SK Tanjung 

Gelam (S1) were nearly identical, except for CO in SWM. The I/O ratio was more 

significant than 1.2 due to the occupants cooking in the instructors' rooms, which 

resulted in a dominant indoor concentration. According to TMG Mart (S2), the 

operational air conditioning in the study area was inadequate for ventilation within the 

study area, resulting in AM values of 3.74 (NEM) and 2.69 (SWM) for each monsoonal 

season, which exceeded 1.2. The study area was expansive, and the operating air 

conditioning was inadequate, as it was only functioning on four occasions. 

Mset Inflatable Composit Corporation Sdn. Bhd. (S3) was one of the boat-

making companies. The I/O ratio indicated that indoor and outdoor air intrusion was 

equivalent, except TVOC, which was derived from indoor sources. These sources 

included resin, paint, paint thinner, and aldehydes, which were used in the production 

of boats during both monsoons. The I/O ratios were 1.48 (NEM) and 1.52 (SWM). The 

physical parameters of Raia Hotel & Convention Centre Terengganu (S4) were more 

significant than 1.2, indicating that indoor sources were the dominant factor. This was 

attributed to the use of air conditioning during both the SWM and NEM monsoons. The 

indoor concentration of CO2 was equivalent to that of the outdoor concentration during 

both monsoons, with an I/O ratio of 0.92. The I/O ratio for RSP was also equivalent 

between 0.8 and 1.2. 
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Table 4.5 I/O ratio for Northeast Monsoon and Southwest Monsoon 

  T RH AM TVOC HCHO CO CO2 RSP 

S1 NEM 1.00 1.01 0.66 - 1.07 1.09 1.14 0.995 

SWM 0.87 0.99 0.96 - 0.98 1.55 1.03 1.00 

S2 NEM 1.25 1.09 3.74 - 1.51 - 0.85 0.96 

SWM 1 1.12 2.69 - 0.97 - 0.93 1.13 

S3 NEM 1.01 0.98 1.00 1.48 1.02 - 1.02 1.38 

SWM 1.00 0.99 0.94 1.52 0.9 - 1.01 1.43 

S4 NEM 1.06 1.96 1.64 - - - 0.92 1.09 

SWM 1.92 1.24 1.54 - - - 0.92 0.85 

4.1.2 Simulation of Computational Fluid Dynamics 

Complex mathematical equations describing the behaviour of fluids are solved 

using computer-based approaches in CFD based modelling. These simulations offer 

quantitative and qualitative insights into the dispersion of radioactive gasses in a 

particular environment. This is accomplished by combining numerical methods, such 

as separation and solution techniques, mathematical modelling, which applies partial 

differential equations (PDE), and specialised software tools, such as solvers, 

preprocessing utilities, and post-processing utilities. Methodically, the analytical 

process in CFD modelling consists of multiple stages, and the output is shown in Figure 

4.11-4.18. Simulation of CFD for SK Tanjung Gelam (S1) is shown in Figure 4.11-

Figure 4.12. Data used consists of 9 days sampling period and for validation used one 

remaining sampling period 

Figures 4.11 and 4.12 illustrate the airflow patterns predicted by the CFD 

numerical simulation for the NEM and SWM at SK Tanjung Gelam (S1). The 

simulation reveals that fresh air introduced through the inlet circulates within the 

teacher's room, blending with the air exhaled by the occupants. This is depicted by the 

vectors showing airflow velocity along the streamlines. As the airflow progresses 

through the room and moves toward the outlet, a decrease in velocity is observed 
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downstream. The velocity distribution at a cut plane near the ventilation fan indicates 

significant pressure and velocity gradients around S1. The contour map of turbulent 

kinetic energy at this cut plane highlights high turbulence near the mechanical 

ventilation for both monsoons. The simulation accuracy was 91.9% for SWM and 

89.57% for NEM compared to the measured values from SK Tanjung Gelam. The fan's 

clockwise rotation and the dispersion effects due to open windows and doors in the 

teacher’s room were also demonstrated in the simulation. R² values for observed versus 

predicted values from simulations across each study area shown at Figure 4.19. 

 

Figure 4.11 SK Tanjung Gelam (S1)-Southwest Monsoon 
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Figure 4.12 SK Tanjung Gelam (S1)- Northeast Monsoon 

 

Figure 4.13 shows a simulation of TMG Mart (S2) for SWM, and Figure 4.14 

shows simulation S2 for NEM.  The supermarket interior was circulated by the fresh air 

injected from the inlet, which was diverted downward and combined with the air the 

workers breathed. It shows the vectors of airflow velocity along the room's airflow 

streamlines. While the airflow moved through the supermarket layout and then toward 

the outlet, it was noticed that the downstream airflow velocity reduced. The shape of 

airflow velocity is at a cut plane near the ventilation, which is air conditioning. Around 

the S2, significant pressure and velocity gradients in the air were noted. The contour of 

turbulent airflow kinetic energy is shown at the cut plane. The vicinity of the mechanical 

ventilation was found to have high turbulent kinetic energy for both monsoons. The 

accuracy of the simulation for SWM at the study area was 77.75% and 70.64% for NEM 

compared with the sampling value conducted in the TMG Mart. Air movement in the 

study area was shown in the simulation, and dispersion was not widespread in the study 

area, especially at the center of the study area (S2).
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Figure 4.13 TMG Mart (S2)-Southwest Monsoon 

 

Figure 4.14 TMG Mart (S2)-Northeast Monsoon 
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Mset Inflatable Composite Corporation Sdn. Bhd. (S3) is simulated in Figure 4.15 for 

the SWM, while Figure 4.6 illustrates the simulation of S3 for the NEM. The fresh air 

injected from the inlet was diverted downward and combined with the workers inhaled 

air to circulate the ship's manufacturing interior. It displays the vectors of airflow 

velocity along the warehouse airflow streamlines. The downstream airflow velocity 

decreased as the airflow progressed through the warehouse layout and toward the 

outflow. The shape of airflow velocity at a cut plane near the ventilation system, which 

is a blower. Significant pressure and velocity gradients in the air were observed near the 

S3. The kinetic energy contour of turbulent airflow is illustrated. The turbulent kinetic 

energy near the mechanical ventilation was high during both monsoons compared to the 

sampling value conducted by Mset Inflatable Composit Corporation Sdn. Bhd., the 

simulation's accuracy for SWM in the study area was 88.06%, and for NEM, it was 

86.62%. The simulation depicted air movement in the study area, and dispersion was 

not prevalent in the study area, particularly at the centre (S3). In addition to loading and 

unloading materials for boat construction, the warehouse was equipped with open 

ventilation and a large door that enabled forklifts to convey the product, a manufactured 

fibre boat. Based on the simulation, the warehouse's airflow was sufficient to reach all 

areas. The only side that lacked airflow was the one that contained the boat mould. 

 

Figure 4.15 Mset Inflatable Composit Corporation Sdn. Bhd. (S3)-Southwest 

Monsoon 
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Figure 4.16 Mset Inflatable Composit Corporation Sdn. Bhd. (S3)- Northeast 

Monsoon 

 

The simulation of Raia Hotel & Convention Centre Terengganu (S4) for SWM 

is depicted in Figure 4.17, while the simulation of S4 for NEM is in Figure 4.18. The 

fresh air injected from the inlet was diverted downward and combined with the workers' 

inhaled air to circulate the hotel's interior. It displays the vectors of airflow velocity 

along the airflow streamlines of the room. It was observed that the downstream airflow 

velocity decreased as the airflow progressed through the hotel layout and toward the 

outflow, the shape of airflow velocity at a cut plane near the ventilation system, which 

is air conditioning. Significant pressure and velocity gradients in the air were observed 

near the S4. The turbulent kinetic energy near the mechanical ventilation was high 

during both monsoons. Compared to the sampling value obtained at the Raia Hotel & 

Convention Centre Terengganu (S4), the simulation's accuracy for SWM at the study 

location was 89% and 91.17% for NEM. The observed effects of the fan movement and 

room openings also help us understand how these factors influence airflow distribution 

and ventilation efficiency. Figure 4.18 showed the performance of the system was 

evaluated across four study sites (S1, S2, S3, and S4) during the SWM and NEM 

seasons. The highest performance was observed at Site S1, with values of 91.90% for 

SWM and 89.57% for NEM. Site S2 recorded the lowest performance, with 77.75% 

during SWM and 70.64% during NEM. Sites S3 and S4 demonstrated consistently high 

performance, with values exceeding 86% for both monsoons. These results indicate that 
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site-specific factors may influence the performance metrics during different monsoon 

seasons. 

 

Figure 4.17 Raia Hotel & Convention Centre Terengganu (S4)-Southwest Monsoon 

 

 

Figure 4.18 Raia Hotel & Convention Centre Terengganu (S4)-Northeast Monsoon 
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Figure 4.19 R² values for observed versus predicted values from simulations across 

each study area. 

 

4.1.3 Principal Component Analysis (PCA) 

Table 4.6 shows the KMO and Bartlett’s Test values for all sites. The KMO and 

Bartlett’s Test values satisfy the PCA requirement in Table 4.6. All sites showed the 

adequacy of the data, with a range of 0.440 to 0.702 for the KMO Test. Acceptability or 

adequacy of the data set must be more than 0.5, and the results of KMO showed that 

the data can proceed with PCA. Bartlett’s test showed a significant value smaller than 

0.05 (p-value<0.05), which is 0.00 at all sites. Both tests showed that all data sets 

showed the full-fill requirement for PCA. 

Table 4.6 KMO and Bartlett's Test 

Study 

area 

Monsoon Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy. 

Bartlett's Test of 

Sphericity 

(Sig) 

S1 SWM 0.702 0.000 

 NEM 0.523 0.000 

S2 SWM 0.456 0.000 

 NEM 0.440 0.000 

S3 SWM 0.532 0.000 

 NEM 0.590 0.000 

S4 SWM 0.560 0.000 

 NEM 0.533 0.000 
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Then, the analysis proceeds with commonalities shown in Table 4.7. The initial 

value showed a value of 1.00 for all parameters. Extraction values in communalities 

tables were crucial as only the parameter with more than 50% variance in the data set 

was considered for further analysis. Otherwise, it was removed, and the KMO and 

Bartlett’s tests were rechecked until all input parameters had more than 50% variance 

contribution in the data set, as shown in Table 4.7. Table 4.7 shows that all parameters 

contribute more than 50% and proves that all parameters significantly impact the 

formation of poor IAQ in the study area. Table 4.7 showed that S1 has extraction value 

ranged 0.136-0.726 for SWM and 0.552-0.767 for NEM, S2 ranged 00.585-0.808 for 

SWM and 0.568-0.731 for NEM, S3 ranged 0.610-0.964 for SWM and 0.458-0.875, S4 

ranged 0.319-0.652 for SWM andutilising586 for NEM. This showed that all 

parameters have more than 50% variance contribution. 

Table 4.7 Communalities 

SK TANJUNG GELAM (S1) 

 SWM NEM 

 Initial Extraction Initial Extraction 

T 1.000 .707 1.000 .732 

RH 1.000 .726 1.000 .577 

AM 1.000 .136 1.000 .572 

CO2 1.000 .442 1.000 .552 

CO 1.000 .619 1.000 .751 

HCHO 1.000 .462 1.000 .767 

RSP 1.000 .582 1.000 .731 

TMG (S2)     

 SWM NEM 

 Initial Extraction Initial Extraction 

T 1.000 .808 1.000 .693 

RH 1.000 .772 1.000 .731 

AM 1.000 .585 1.000 .568 

CO2 1.000 .766 1.000 .629 

HCHO 1.000 .619 1.000 .634 

RSP 1.000 .772 1.000 .614 

MSET (S3)     

 SWM NEM 

 Initial Extraction Initial Extraction 

T 1.000 .964 1.000 .875 

RH 1.000 .960 1.000 .838 

AM 1.000 .804 1.000 .607 

CO2 1.000 .743 1.000 .495 

HCHO 1.000 .610 1.000 .458 

TVOC 1.000 .714   

RAIA HOTEL (S4)   

 SWM NEM 

 Initial Extraction Initial Extraction 
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T 1.000 .556 1.000 .466 

RH 1.000 .597 1.000 .568 

AM 1.000 .319 1.000 .488 

RSP 1.000 .608 1.000 .550 

CO2 1.000 .652 1.000 .586 

Extraction Method: Principal Component Analysis. 

 

Table 4.8-4.11 lists the eigenvalues related to each linear component before 

extraction and after rotation. Before extraction, linear components are perceived 

separately inside the instructive list for S1, S2, S3, and S4. The eigenvalues related to 

each component or also called as factor address the distinction cleared up by that linear 

component and demonstrate their eigenvalue in terms of the percentage of variance 

explained. PCA separates all elements with eigenvalues of more than 1. Utilising two 

factors, the variability was around 49.243%(S1) and 54.046% (S4) for SWM and 

65.453% (S3) and 53.143% (S4) for northeast monsoon. Other sites utilising three 

factors which are 64.025% (S1), 64.490% (S2) for NEM, 70.342% (S2), and 79.943% 

(S3) for SWM.   

The rotation has the effect of enhancing the factor structure and one outcome for 

this data. This shows that the relative hugeness of the three components is levelled. 

Before rotation, factor 1 (34.434%) represented significantly more difference than the 

other factor 2 (14.829%) for S1 for SWM and factor 1(28.182%), factor 2 (19.024) and 

factor 3 (16.819%) for NEM which showed in Table 4.8. However, after extraction, 

there are slightly increasing and decreasing factor contributions such as factor 

1(31.389%) and factor 2 (17.873%) for SWM for S1 at row rotation sums of squared 

loadings row at % of variances for S1 and factor 1 (27.315%), factor 2 (18.919%) and 

factor 3 (17.792%) for NEM. 

Table 4.8 Total Variance Explained (S1) 

SOUTHWEST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 2.755 34.434 31.389 31.389 

2 1.186 14.829 17.873 49.263 

3 .978    



137 
 

 
 

4 .859    

5 .760    

6 .725    

7 .494    

8 .243    

     

 

 

NORTHEAST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 1.973 28.182 27.315 27.315 

2 1.332 19.024 18.919 46.234 

3 1.177 16.819 17.792 64.025 

4 .875    

5 .746    

6 .492    

7 .404    

 

Before rotation, factor 1 (31.134%) represented significantly more difference 

than the other factor 2 (20.602%) and factor 3 (18.606%) for S2 (SWM), while factor 

1(26.6%), factor 2 (20.546%) and factor 3 (17.343%) for NEM which showed in Table 

4.9. However, after extraction, there are slightly increasing and decreasing factor 

contributions such as factor 1(27.915%), factor 2 (22.635%) and factor 3 for SWM at 

S1 at row rotation sums of squared loadings row in column % of variances for S2. After 

extraction, there are slightly increasing and decreasing factor contributions such as 

factor 1 (25.553%), which decrease from extraction before this in factor 1 (26.6%), 

factor 2 (19.866%), which decrease from previous extraction for factor 2 which 

19.866% and increasing rotation from 17.343% to 19.071% for factor 3 at S2 during 

northeast monsoon. 

 

Table 4.9 Total Variance Explained (S2) 

SOUTHWEST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 1.868 31.134 27.915 27.915 

2 1.236 20.602 22.635 50.550 

3 1.116 18.606 19.792 70.342 

4 .739    
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5 .701    

6 .339    

     

NORTHEAST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 1.596 26.600 25.553 25.553 

2 1.233 20.546 19.866 45.418 

3 1.041 17.343 19.071 64.490 

4 .915    

5 .771    

6 .445    

 

 

During the southwest monsoon (SWM), factor 1 (37.960%), factor 2 (23.979%), 

and factor 3 (18.004%) accounted for the majority of the variance (% of variance) in 

the extraction sum of squared loading for S3 (Figure 4.10). After the rotation, the value 

of factor 1 decreased from the previous value by 35.79%, while factor 2 and factor 3 

increased by 24.169% and 19.984%, respectively. The Northeast monsoon (NEM) 

demonstrated that factor 1 (43.727%) represented a substantially more significant 

difference than factor 2 (21.726%) before rotation. After extraction, the factor 

contributions are marginally increasing and decreasing, with factor 1 (42.583%) 

exhibiting a decreasing value and factor 2 (22.870%) increasing value during NEM in 

S3. 

 

Table 4.10 Total Variance Explained (S3) 

SOUTHWEST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 2.278 37.960 35.790 35.790 

2 1.439 23.979 24.169 59.959 

3 1.080 18.004 19.984 79.943 

4 .657    

5 .533    

6 .014    

NORTHEAST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 
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Total % of Variances % of 

Variance 

Cumulative % 

1 2.186 43.727 42.583 42.583 

2 1.086 21.726 22.870 65.453 

3 .893    

4 .702    

5 .132    

 

Table 4.11 presents the total variance explained for both the SWM and NEM. In 

the case of the SWM the first component has an initial eigenvalue of 1.575 and explains 

31.504% of the variance, which reduces slightly to 31.415% after extraction, 

contributing to a cumulative variance of 31.415%. The second component has an initial 

eigenvalue of 1.157, explaining 23.143% of the variance, and after extraction, it 

accounts for 23.231%, bringing the cumulative variance explained to 54.646%. 

Components three, four, and five have eigenvalues less than 1, indicating minimal 

contributions to the total variance, thus they are not extracted or rotated. 

 

For the NEM, the first component shows an initial eigenvalue of 2.186, 

accounting for 28.561% of the variance, which adjusts to 28.523% post-extraction, 

resulting in a cumulative variance of 28.523%. The second component, with an initial 

eigenvalue of 1.086, explains 24.582% of the variance, which slightly increases to 

24.620% after extraction, leading to a cumulative variance of 53.143%. Similarly, 

components three, four, and five in the Northeast Monsoon have eigenvalues less than 

1, making their contribution to the variance negligible, and they are not further analysed. 

Overall, two components in both monsoons collectively explain over 50% of the 

variance, with the first component contributing the most. 

 

Table 4.11 Total Variance Explained (S4) 

SOUTHWEST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 1.575 31.504 31.415 31.415 

2 1.157 23.143 23.231 54.646 

3 .937    

4 .746    

5 .585    
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NORTHEAST MONSOON 

Component Initial 

Eigenvalues 

Extraction Sum of 

squared loading 

Rotation Sum of Squared 

Loadings 

Total % of Variances % of 

Variance 

Cumulative % 

1 2.186 28.561 28.523 28.523 

2 1.086 24.582 24.620 53.143 

3 .893    

4 .702    

5 .132    

 

This table 4.12 presents the rotated component matrix from a Principal 

Component Analysis (PCA), which identifies underlying relationships between 

variables across different study areas during two distinct monsoon seasons: Southwest 

Monsoon (SWM) and Northeast Monsoon (NEM). The study areas include SK Tanjung 

Gelam (S1), TMG (S2), MSET (S3), and Raia Hotel (S4). The analysis is performed for 

four study areas (S1, S2, S3, S4). Each area is analysed separately for two seasons which 

consists of SWM and NEM. There are components which each variable's loading value 

indicates how strongly it is associated with a particular component. Components 1, 2, 

and 3 represent the key latent factors extracted through PCA. Variable loadings show a 

high positive or negative value (close to ±1) indicates a strong correlation between the 

variable and the component. Values below ±0.4 are generally considered weak and 

insignificant. Rotation method uses Varimax with Kaiser Normalization to rotate 

components, enhancing interpretability by maximizing variance between variables. 

SK Tanjung Gelam (S1) results during SWM showed Component 1 consists of 

Temperature (T) has a strong negative loading (-0.840), while RH (0.822) and CO2 

(0.610) have strong positive loadings while Component 2 consists of CO (0.775) and 

HCHO (0.642) are strongly correlated. During NEM showed Component 1 was 

Temperature (T, 0.841) and RSP (0.831) dominate with strong positive loadings and 

Component 2 was CO2 (-0.702) and RH (-0.625) show significant negative correlations. 

TMG (S2) results from Table 4.12 during SWM has 2 components which Component 1 

consists of Temperature (T, -0.891) shows a strong negative correlation, while RH 

(0.776) and AM (0.684) are positively associated, and Component 2 involves of HCHO 

(0.603) and RSP (0.878) are highly correlated with this component while during NEM 

there are 2 components. Component 1 contain RH (0.843), AM (0.733), and 
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Temperature (T, 0.682) are strongly correlated and Component 2 occupies HCHO 

(0.769) dominates. Third study area was MSET which during SWM consists of 2 

significant components. Component 1 has Temperature (T, 0.979) and RH (-0.974) are 

strongly associated, indicating an inverse relationship and Component 2 consists of 

HCHO (0.862) and TVOC (0.831) dominate this component and during NEM, 

Component 1 has RSP (0.987) and CO2 (0.666) have strong positive loadings and 

Component 3 has RH (0.893) and AM (-0.771) dominate. Last study areas were Raia 

Hotel (S4) which during SWM has Component 1 that involves RSP (0.705) is strongly 

associated with this component and Component 2: RH (0.762) and CO2 (-0.803) 

dominate, with CO2 showing an inverse relationship. During NEM S4 has 2 component 

which Component 1 has RH (0.752) and CO2 (0.764) dominate with strong correlations 

and Component 2 has Temperature (T, 0.653) and RSP (0.657) are associated with this 

component. 

Seasonal variations proved that variable correlations and their contributions to 

components change between the SWM and NEM seasons, reflecting seasonal 

influences on environmental conditions. Study area variability proved thar different 

study areas exhibit unique patterns of variable clustering into components, indicating 

spatial variability in environmental dynamics. Strong Loadings consists of Temperature, 

RH, and CO2 frequently contribute to the first component, highlighting their 

fundamental influence on environmental variability. Rotation iterations showed the 

number of iterations (3 or 5) reflects the complexity of the data and convergence 

process. 

Table 4.12 Rotated Component Matrix 

SK TANJUNG GELAM (S1) b 

 SWM  NEM 

 Component  Component 

1 2 3 1 2 3 

T -.840   .841   

RH .822   -.625   

AM .362   .553   

CO2 .610   -.702   

CO  .775   .514  

HCHO  .642   .874  

RSP  .680    .831 

TMG (S2) b 

 SWM NEM 

 Component Component 
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 1 2 3 1 2 3 

T -.891     .682 

RH .776     .843 

AM .684     .733 

CO2 -.762     .660 

HCHO  .603   .769  

RSP   .878 .585   

MSET (S3) a 

 SWM NEM 

 Component Component 

 1 2 3 1 2 3 

T .979   -.916   

RH -.974   .893   

AM .884   -.771   

CO2 .845   .666   

HCHO  .862   .648  

TVOC  .831     

RSP   -.643  .987  

RAIA HOTEL (S4)a 

 SWM`  NEM   

 1 2  1 2  

T  .571  0.653   

RH  .762  0.752   

AM  .562  0.698   

RSP .705    0.657  

CO2  -.803  0.764   

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 

b. Rotation converged in 5 iterations. 

4.1.4 Prediction of Indoor Air Quality and Sick Building Syndrome 

 

This study used inferential statistics to analyse the normality of the data. 

Assuming a 95% confidence level, if p < 0.05, the null hypothesis (Ho) is rejected, and 

it is concluded that the distribution is not normal. The normality test was performed by 

applying the Kolmogorov-Smirnov method. Equation 4.1 showed that the hypothesis 

was defined to determine the normality of the data set and considered as an overview 

of the variation in air pollutant concentration. This result should be verified and 

investigated further using statistical analysis of inferential statistics widely used in air 

pollution studies, such as Analysis of Variance (ANOVA). ANOVA was conducted to 

determine whether a statistically significant difference exists in the air pollutant 

concentration among the stations. The one-way ANOVA was anticipated, in which air 

pollutants were compared with a single factor (Station). 
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𝐻𝑜: 𝐷𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

𝐻1: 𝐷𝑎𝑡𝑎 𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

(4.1) 

 

 

The results revealed that the p-value was 0.000 (p < 0.05) as presented in Table 

4.13. Therefore, it rejects Ho. Thus, it rejects Ho. Therefore, the data was not normally 

distributed, and the results are the same for SBSS results in Table 4.14. In various areas 

of empirical studies, researchers are often interested in testing the homogeneity of 

distributions across different samples.  The normality test was performed by applying 

the Kolmogorov-Smirnov method. This test was used to determine whether two 

distributions differ or whether an underlying probability distribution differs from a 

hypothesised distribution. It is used when we have two samples from two populations 

that can be different. Thus, the data proved that it was not normally distributed. 

 

Table 4.13  Tests of normality for physical, chemical and ventilation performance 

indicators 

 Kolmogorov-Smirnov 

S1 Statistic df Sig. 

Standardised Residual for T .251 720 .000 

Standardized Residual for RH .340 720 .000 

Standardized Residual for AM .484 720 0.000 

Standardized Residual for CO2 .138 720 .000 

Standardized Residual for CO .273 720 .000 

Standardized Residual for HCHO .226 720 .000 

Standardized Residual for RSP .253 720 .000     
S2    
Standardized Residual for T .448 595 0.000 

Standardized Residual for RH .289 595 .000 

Standardized Residual for AM .437 595 0.000 

Standardized Residual for CO2 .052 595 .001 

Standardized Residual for HCHO .268 595 .000 

Standardized Residual for RSP .109 595 .000 

S3    
Standardized Residual for T .083 392 .000 

Standardized Residual for RH .061 392 .001 

Standardized Residual for AM .184 392 .000 

Standardized Residual for CO2 .306 392 .000 

Standardized Residual for TVOC .495 392 .000 

Standardized Residual for HCHO .306 392 .000 

Standardized Residual for RSP .471 392 .000     
S4    
Standardized Residual for T .083 157 .011 

Standardized Residual for RH .117 157 .000 

Standardized Residual for AM .138 157 .000 

Standardized Residual for CO2 .346 157 .000 

Standardized Residual for RSP .128 157 .000 
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Table 4.14 Tests of normality for Sick Building Syndrome (SBS) symptoms 

  Kolmogorov-Smirnova 

Statistic df Sig. 

Standardized Residual for Headache .387 22 .000 

Standardized Residual for Feeling heavy-headed .227 22 .004 

Standardized Residual for Fatigue lethargy .318 22 .000 

Standardized Residual for Drowsiness .349 22 .000 

Standardized Residual for Dizziness .452 22 .000 

Standardized Residual for Nausea and vomiting .437 22 .000 

Standardized Residual for Cough .318 22 .000 

Standardized Residual for Hoarse, dry throat .280 22 .000 

Standardized Residual for Skin rash, itchiness .283 22 .000 

Standardized Residual for Irritation of the eye .232 22 .003  
S2    
Standardized Residual for Headache .338 66 .000 

Standardized Residual for Feeling heavy-headed .270 66 .000 

Standardized Residual for Fatigue lethargy .244 66 .000 

Standardized Residual for Drowsiness .327 66 .000 

Standardized Residual for Dizziness .267 66 .000 

Standardized Residual for Nausea and vomiting .511 66 .000 

Standardized Residual for Cough .211 66 .000 

Standardized Residual for Irritated, stuffy nose .271 66 .000 

Standardized Residual for Hoarse, dry throat .181 66 .000 

Standardized Residual for Skin rash, itchiness .288 66 .000 

Standardized Residual for Irritation of the eye .307 66 .000     
S3    
Standardized Residual for Headache .357 32 .000 

Standardized Residual for Feeling heavy-headed .370 32 .000 

Standardized Residual for Fatigue lethargy .375 32 .000 

Standardized Residual for Drowsiness .402 32 .000 

Standardized Residual for Dizziness .402 32 .000 

Standardized Residual for Nausea and vomiting .370 32 .000 

Standardized Residual for Cough .402 32 .000 

Standardized Residual for Irritated, stuffy nose .331 32 .000 

Standardized Residual for Hoarse, dry throat .240 32 .000 

Standardized Residual for Skin rash, itchiness .302 32 .000 

Standardized Residual for Irritation of the eye .338 32 .000     
S4    

Standardized Residual for Headache .329 36 .000 

Standardized Residual for Feeling heavy-headed .190 36 .002 

Standardized Residual for Fatigue lethargy .266 36 .000 

Standardized Residual for Drowsiness .269 36 .000 

Standardized Residual for Dizziness .358 36 .000 

Standardized Residual for Nausea and vomiting .355 36 .000 

Standardized Residual for Cough .367 36 .000 

Standardized Residual for Irritated, stuffy nose .250 36 .000 

Standardized Residual for Hoarse, dry throat .237 36 .000 

Standardized Residual for Skin rash, itchiness .244 36 .000 

Standardized Residual for Irritation of the eye .173 36 .008 
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The study proceeds with checking the second assumption of ANOVA. The 

hypothesis was defined to test co-variance in the data set. 

 

 

𝐻𝑂: 𝐷𝑎𝑡𝑎 ℎ𝑎𝑠 𝑒𝑞𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

𝐻1: 𝐷𝑎𝑡𝑎 ℎ𝑎𝑠 𝑛𝑜 𝑒𝑞𝑢𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 

 

(4.2) 

 

The co-variance was conducted by applying Levene’s Test. The results revealed 

that the p-value was 0.000 (<0.005) (Table 4.15) at specific parameters. Therefore, Ho 

is rejected for physical, chemical, and performance indicators. Both normality and co-

variance tests revealed that this dataset fails to meet parametric characteristics, and non-

parametric tests are needed to determine the statistically significant difference in air 

pollutants. However, the results were inversely for building syndrome (SBS) symptoms 

(Table 4.16), meaning the co-variances are insignificant at each SBS symptoms =. 

Kruskal Wallis test was often used for the non-parametric test. Kruskal–Wallis test is a 

non-parametric statistical test that evaluates whether two or more samples are drawn 

from the same distribution. 

 

Table 4.15  Levene’s test of equality of error variances for physical, chemical and 

ventilation performance indicators 

S1 F df1 df2 Sig. 

T 202.697 1 645 .000 

RH 10.440 1 645 .001 

AM 3.689 1 645 .055 

CO2 12.583 1 645 .000 

CO 120.554 1 645 .000 

HCHO 341.897 1 645 .000 

RSP 17.205 1 645 .000 

S2 F df1 df2 Sig. 

T 1.430 1 720 .032 

RH 1.971 1 720 .006 

AM 2.529 1 720 .112 

CO2 .928 1 720 .336 

HCHO 81.042 1 720 .000 

RSP 5.240 1 720 .022 

S3 F df1 df2 Sig. 

T 2.330 1 540 .128 

RH 5.726 1 540 .017 

AM .026 1 540 .008 

CO2 1.510 1 540 .220 

TVOC 302.768 1 540 .000 

HCHO 47.741 1 540 .000 
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RSP .120 1 540 .030      
S4 F df1 df2 Sig. 

T 1.659 1 960 0.002 

RH 0.597 1 960 0.041 

AM 0.806 1 960 0.001 

CO2 0.068 1 960 0.094 

RSP 0.713 1 960 0.054 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups. 

a Design: Intercept + MONSOON  
 

 

Table 4.16  Levene’s test of equality of error variances for Sick Building Syndrome 

Symptoms (SBSS) 

S1 F df1 df2 Sig. 

Headache 0.000 1 20 0.010 

Feeling heavy headed 0.000 1 20 1.000 

Fatigue lethargy 0.000 1 20 1.000 

Drowsiness 0.000 1 20 0.024 

Dizziness 0.000 1 20 1.000 

Nausea vomiting 0.000 1 20 1.000 

Cough 0.000 1 20 1.000 

Irritated stuffy nose  1 20 0.034 

Hoarse dry throat 0.000 1 20 1.000 

Skin rash itchiness 0.000 1 20 1.000 

Irritation of the eye 0.000 1 20 1.000 

S2 F df1 df2 Sig. 

Headache 0.000 1 64 1.000 

Feeling heavy headed 0.000 1 64 1.000 

Fatigue lethargy 0.000 1 64 1.000 

Drowsiness .002 1 64 .968 

Dizziness 0.000 1 64 1.000 

Nausea vomiting 0.000 1 64 1.000 

Cough .281 1 64 .598 

Irritated stuffy nose .438 1 64 .010 

Hoarse dry throat .039 1 64 .845 

Skin rash itchiness 0.000 1 64 1.000 

Irritation of the eye 0.000 1 64 0.021 

S3 F df1 df2 Sig. 

Headache 0.000 1 30 1.000 

Feeling heavy headed 0.000 1 30 1.000 

Fatigue lethargy 0.000 1 30 1.000 

Drowsiness 0.000 1 30 0005 

Dizziness 0.000 1 30 0.025 

Nausea vomiting 0.000 1 30 1.000 

Cough 0.000 1 30 0.032 

Irritated stuffy nose 0.000 1 30 1.000 

Hoarse dry throat 0.000 1 30 1.000 

Skin rash itchiness 0.000 1 30 1.000 

Irritation of the eye 0.000  1 30 1.000 

S4 F df1 df2 Sig. 

Headache .089 1 34 .767 

Feeling heavy headed .002 1 34 .966 
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Fatigue lethargy 1.735 1 34 .197 

Drowsiness 4.389 1 34 .044 

Dizziness 3.415 1 34 .073 

Nausea vomiting 18.350 1 34 .000 

Cough 0.000 1 34 1.000 

Irritated stuffy nose 2.176 1 34 .049 

Hoarse dry throat 2.569 1 34 .018 

Skin rash itchiness .425 1 34 .519 

Irritation of the eye .246 1 34 .623 

Tests the null hypothesis that the error variance of the dependent variable is equal across 

groups. 

a. Design: Intercept + Monsoon 

 

 

Like ANOVA, the Kruskal-Wallis test compares two or more samples, focusing 

on cases with three or more samples. The Ho of the Kruskal Wallis was different from 

those of ANOVA. For ANOVA, the Ho was all the means of the populations from which 

the samples are drawn are the same; the alternative hypothesis (H1) implies that at least 

two of these means are different from each other). The hypothesis was defined as in 

equation 4.3.  

 

Ho: µs1 = µs2= µs3= µs4  (no mean difference for the 4 sites) 

H1: µs1≠ µs2 ≠ µs3 ≠ µs4  

(4.3) 

 

 

Table 4.17 shows that the Kruskal Wallis Test displayed a p-value with a 

statistically significant difference, less than 0.005 (p<0.05). Thus, Ho is rejected. This 

value showed that air pollutant concentration has a statistically significant difference. 

Further analysis was performed to simultaneously compare air pollutant concentration 

between each site [N=645 (S1); N=720 (S2); N=540 (S3); N=960 (S4) (one station; 

each parameter); N all station; all parameters = 19560].
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Table 4.17 Kruskal Wallis Test 

S1 T RH AM CO2 CO TVOC HCHO RSP 

Chi-Square 204.336 67.415 61.103 126.975 17.425 - 249.897 59.704 

df 1 1 1 1 1 - 1 1 

Asymp. Sig. .000 .000 .000 .000 .000 - .000 .000 

S2 T RH AM CO2 CO TVOC HCHO RSP 

Chi-Square 226.804 3.211 8.672 39.345 - - 3.223 63.998 

df 1 1 1 1 - - 1 1 

Asymp. Sig. .000 .073 .003 .000  - - .073 .000 

S3 T RH AM CO2 CO TVOC HCHO RSP 

Chi-Square 9.777 1.752 4.686 46.958 163.953 345.744 4.266 .765 

df 1 1 1 1 1 1 1 1 

Asymp. Sig. .002 .186 .030 .000 .000 .000 .039 .382 

S4 T RH AM  CO2 CO  TVOC HCHO RSP 

Chi-Square 12.893 .188 .228 17.581 - - 3.336 71.457 

df 1 1 1 1 - - 1 1 

Asymp. Sig. .000 .664 .633 .000 -  - .068 .000          

 

 

There exist statistically significant differences in physical-chemical parameters 

and ventilation performance indicators at all sites. Multiple comparisons were 

conducted to simultaneously examine the physical-chemical parameters and ventilation 

performance indicator concentration at all sites. Tables 4.18 and 4.19 displayed results 

from multiple comparisons of physical and chemical parameters and performance 

ventilation indicators concentration among sites. Multiple comparisons revealed that 

there exist significant differences in temperature concentrations between S1 and S2, S1 

and S3, S1 and 4, S2 and S1, S3 and S1, S3 and S4, S4 and S1, and S4 and S3 (Table 

4.18 (a)). Relative humidity (RH) (Table 4.18 (c)) at each study area also exists 

significantly different between S1 and S2, S1 and S4, S2 and S1, S2 and S4, S3 and S2, 

S3 and S4, S4 and S1, S4 and S2, and S4 and S3. Ventilation performance indicators 

which carbon dioxide (CO2) in each study area also have some significant differences, 

which are shown in Table 4.18 (b), S1 and S2, S1 and S3, S1 and S4, S2 and S1, S2 and 

S3, S2 and S4, S3 and S1, S3 and S2, S3 and S4, S4 and S1, S4 and S2, and S4 and S3. 

This multiple comparison revealed that there exist significant differences for 

formaldehyde (HCHO), Table 4.18 (d) concentrations between S1 and S3, S2 and S3, 

S3 and S1, S3 and S1, S3 and S2, S3 and S4, and S4 and S3. Total volatile organic 

compound (TVOC), Table 4.18 (e) also showed a few significant between S1 and S3 

and S3 and S1, in which both study areas were open ventilation. This might be due to 

the site specification, which in turn resulted in different temperature concentration 

levels which can be caused by geographical area, meteorological factors, traffic-
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generated air pollutants, including physical activities, and different sources of emission 

from different industrial activities that can influence the temperature in the study areas. 

 

Table 4.18 Multiple Comparisons 

a) Dependent Variable:  Temperature 

Tukey HSD     

(I) SITE Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

1    2 20.682* 3.799 0.000 10.915 30.449 

3 14.927* 3.578 0.000 5.730 24.124 

4 26.093* 3.752 0.000 16.448 35.738 

2 1 -20.682* 3.799 0.000 -30.449 -10.9148 

3 -5.755 3.715 0.408 -15.306 3.796 

4 5.412 3.883 0.503 -4.571 15.395 

3 1 -14.927* 3.578 0.000 -24.124 -5.730 

2 5.755 3.715 0.408 -3.796 15.306 

4 11.166* 3.667 0.013 1.740 20.592 

4 1 -26.093* 3.752 0.000 -35.738 -16.448 

2 -5.412 3.883 0.503 -15.395 4.5710 

3 -11.166* 3.667 0.013 -20.592 -1.740 

Based on observed means. 

 The error term is Mean Square (Error) = 4593.398.        
b) Dependent Variable: CO2 

Tukey HSD 

(I) SITE Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

1 2 -147.219* 8.119 0.000 -168.090 -126.348 

3 88.955* 7.645 0.000 69.302 108.607 

4 -172.010* 8.017 0.000 -192.620 -151.400 

2 1 147.219* 8.119 0.000 126.348 168.090 

3 236.174* 7.939 0.000 215.764 256.583 

4 -24.791* 8.298 0.015 -46.124 -3.458 

3 1 -88.955* 7.645 0.000 -108.607 -69.302 

2 -236.174* 7.939 0.000 -256.583 -215.764 

4 -260.965* 7.835 0.000 -281.107 -240.822 

4 1 172.010* 8.017 0.000 151.400 192.620 

2 24.791* 8.299 0.015 3.458 46.124 

3 260.965* 7.835 0.000 240.822 281.107 

Based on observed means. 

 The error term is Mean Square(Error) = 20974.706.        
c) Dependent Variable: RH 

Tukey HSD 

(I) SITE Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

1 2 13.292* 1.567 0.000 9.265 17.320 

3 2.257 1.475 0.420 -1.536 6.049 

4 7.519* 1.547 0.000 3.542 11.497 

2 1 -13.293* 1.567 0.000 -17.320 -9.264 

3 -11.036* 1.532 0.000 -14.975 -7.09 

4 -5.773* 1.601 0.002 -9.889 -1.656 

3 1 -2.257 1.475 0.420 -6.049 1.5362 

2 11.036* 1.532 0.000 7.097 14.975 
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4 5.263* 1.512 0.003 1.3756 9.150 

4 1 -7.519* 1.547 0.000 -11.497 -3.542 

2 5.773* 1.602 0.002 1.656 9.889 

3 -5.263* 1.512 0.003 -9.150 -1.376 

Based on observed means. 

 The error term is Mean Square(Error) = 781.238.        
d) Dependent Variable: Formaldehyde 

Tukey HSD 

(I) SITE Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

1 2 -0.002 .002 .790 -0.007 0.003 

3 -0.016* .002 .000 -0.021 -0.011 

4 0.001 .003 .994 -0.007 0.009 

2 1 0.002 .002 .790 -0.003 0.007 

3 -0.014* .002 .000 -0.019 -0.009 

4 0.003 .003 .832 -0.005 0.011 

3 1 0.016* .002 .000 0.011 0.021 

2 0.014* .002 .000 0.009 0.019 

4 0.017* .003 .000 0.008 0.025 

4 1 -0.001 .003 .994 -0.009 0.007 

2 -0.003 .003 .832 -0.011 0.005 

3 -0.017* .003 .000 -0.025 -0.008 

 

Based on observed means. 

 The error term is Mean Square(Error) = .001.        
e) Dependent Variable:  TVOC 

Tukey HSD 

(I) SITE Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

1 3 -1.238* 0.134 .000 -1.552 -.9242 

4 0.041 1.144 .999 -2.644 2.726 

3 1 1.238* .1338 .000 0.924 1.552 

4 1.279 1.145 .504 -1.408 3.967 

4 1 -.0413 1.144 .999 -2.726 2.644 

3 -1.279 1.145 .504 -3.967 1.408 

 

Based on observed means. 

 The error term is Mean Square(Error) = 5.207. 

*. The mean difference is significant at the 0.05 level. 

 

 

Table 4.19 Summarisation of multiple comparisons 

 Site  P-value Conclusion 

Temp     

1 versus 2 0.000* Significantly different 

1 versus 3 0.000* Significantly different 

1 versus 4 0.000* Significantly different 

2 versus 3 0.000* Significantly different 

2 versus 4 0.000* Significantly different 

3 versus 4 0.013* Significantly different 

RH     

1 versus 2 0.000* Significantly different 

1  versus 3 0.000* Significantly different 
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1 versus 4 0.000* Significantly different 

2 versus 3 0.002* Significantly different 

2 versus 4 0.000* Significantly different 

3 versus 4 0.003* Significantly different 

CO2     

1 versus 2 0.000* Significantly different 

1 versus 3 0.000* Significantly different 

1 versus 4 0.000* Significantly different 

2 versus 3 0.000* Significantly different 

4 versus 2 0.015* Significantly different 

4 versus 3 0.000* Significantly different 

HCHO     

1 versus 3 0.000* Significantly different 

2 versus 3 0.000* Significantly different 

2 versus 1 0.000* Significantly different 

TVOC     

1 versus 3 0.000* Significantly different 

3 versus 1 0.000* Significantly different 

Statistical significance: *p<0.05   

4.1.5 Model Development 

Table 4.20 shows a resume of the statistical model results performance for two 

models (SWM and NEM) for each dependent variable in S1. The first column of Table 

4.20 presents the statistics test most often used in generalized linear models and 

represents measures of dispersion (generalized and corrected), which permit testing the 

quality of models. Values from Table 4.20 confirm that model NEM (headache, feeling 

heavy-headed, fatigue or lethargy, dizziness and skin rashness) has the best performance 

results, as shown by the statistical tests. These statistical tests are obtained using all the 

deviations between the estimated and recorded (residuals) for each observation. 

Considering the Akaike Information Criterion, the objective is to minimize AIC. Model 

NEM (headache, feeling heavy-headed, fatigue or lethargy, dizziness and skin rashness) 

has the lowest AIC of the two models, which means that the evidence for model NEM 

(headache, feeling heavy-headed, fatigue or lethargy, dizziness and skin rashness) is the 

best due to NEM having lowest AIC value than SWM. When comparing the quantile of 

a chi-square distribution with n-p degrees of freedom (n-number of observations, p-

number of estimated parameters), it is possible to measure the suitability of models. 

Results of deviance show that the two are suitable. The SWM model (drowsiness, 

cough, hoarse and dry throat and eye irritation) is considered the best, and each model 

has a more significant explanation of the dependent variable using some explanatory 
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variables than any other model without explanatory variables. Table 4.21 shows the 

likelihood ratio chi-square test, which compares each model with the null model.  

 

Table 4.20 Goodness of Fita (S1) 

 SWM NEM 

 Value df Value/df Value df Value/df 

Headache       

Deviance .478 6 .080 .098 6 .016 

Scaled Deviance 11.079 6  11.016 6  

Log Likelihood -6.140   -2.578   

Akaike's Information Criterion (AIC) 24.281   6.843   

Finite Sample Corrected AIC (AICC) 45.281   27.843   

       

Feeling Heavy Headache       

Deviance 1.115 6 .186 .875 5 .175 

Scaled Deviance 11.183 6  11.144 5  

Log Likelihood -9.874   -8.521   

Akaike's Information Criterion (AIC) 31.748   31.042   

Finite Sample Corrected AIC (AICC) 52.748   48.375   

       

Fatigue Or Lethargy       

Deviance 1.063 7 .152 .371 5 .074 

Scaled Deviance 11.174 7  11.062 5  

Log Likelihood -9.893   -4.049   

Akaike's Information Criterion (AIC) 29.785   22.098   

Finite Sample Corrected AIC (AICC) 41.785   39.431   

       

Drowsiness       

Deviance .613 7 .088 .583 5 .117 

Scaled Deviance 11.101 7  11.096 5  

Log Likelihood -7.925   -7.649   

Akaike's Information Criterion (AIC) 25.850   29.298   

Finite Sample Corrected AIC (AICC) 37.850   66.632   

       

Dizziness       

Deviance .524 7 .075 .004 6 .001 

Scaled Deviance 11.087 7  11.001 6  

Log Likelihood -.989   -.2600   

Akaike's Information Criterion (AIC) 11.977   -40.001   

Finite Sample Corrected AIC (AICC) 23.977   -19.001   

       

Nausea and vomiting       

Deviance .223 6 .037 .073 5 .015 

Scaled Deviance 11.037 6  11.012 5  

Log Likelihood 4.363   1.759   

Akaike's Information Criterion (AIC) 20.726   10.481   

Finite Sample Corrected AIC (AICC) 47.726   42.814   

       

Cough       

Deviance .396 7 .057 .642 8 .080 

Scaled Deviance 11.066 7  11.106 8  

Log Likelihood -4.411   -7.082   

Akaike's Information Criterion (AIC) 18.821   22.164   

Finite Sample Corrected AIC (AICC) 20.821   28.831   

       

Hoarse Or Dry Throat       
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Deviance 1.308 7 .187 1.150 7 .164 

Scaled Deviance 11.214 7  11.188 7  

Log Likelihood -10.738   -11.458   

Akaike's Information Criterion (AIC) 31.476   32.916   

Finite Sample Corrected AIC (AICC) 43.476   44.916   

       

Skin Rash or Itchiness       

Deviance 1.477 7 .211 1.199 7 .171 

Scaled Deviance 11.241 7  11.196 7  

Log Likelihood -12.954   -11.785   

Akaike's Information Criterion (AIC) 35.908   33.569   

Finite Sample Corrected AIC (AICC) 47.908   45.569   

       

Irritation of Eye       

Deviance 1.596 6 .266 1.454 7 .208 

Scaled Deviance 11.259 6  11.237 7  

Log Likelihood -11.766   -12.290   

Akaike's Information Criterion (AIC) 33.533   36.580   

Finite Sample Corrected AIC (AICC) 45.533   57.580   

       

       

 

 

Model SWM (drowsiness, cough, hoarse or dry throat) has the lowest AIC, 

which means that evidence for the model SWM (drowsiness, cough, hoarse or dry 

throat) is the best. Regardless of the model, SWM (drowsiness, cough, hoarse or dry 

throat and irritation of eyes) is considered the best; each model, individually, has a more 

significant explanation of the dependent variable using some of the explanatory than 

any other model without explanatory variables. Table 4.21 shows the likelihood ratio 

chi-square test, which compares each model with the null model. Regardless of model 

SWM (drowsiness, cough, hoarse or dry throat) is considered the best due to the highest 

value compared to model NEM (drowsiness, cough, hoarse or dry throat), each model 

individually has a more significant explanation of the dependent variable using some of 

the explanatory than any other model without explanatory variables. 

Table 4.21Omnibus Testa (S1) 

 Likelihood Ratio Chi-

Square 

df Sig. 

Headache   

SWM 22.328 6 .009 

NEM 24.890 6 .000 

Feeling Heavy Headache   

SWM 4.904 4 .007 

NEM 8.609 5 .001 

Fatigue Or Lethargy   

SWM 0.888 3 .038 

NEM 0.975 5 .028 
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Drowsiness    

SWM 5.869 3 .027 

NEM 4.421 5 .040 

Dizziness    

SWM 8.716 3 .033 

NEM 9.694 4 .000 

Nausea and vomiting   

SWM 16.363 4 .003 

NEM 25.608 5 .000 

Cough    

SWM 16.851 3 .008 

NEM 11.509 2 .039 

Hoarse Or Dry Throat   

SWM 2.086 3 .014 

NEM 1.525 3 .016 

Skin Rash or Itchiness   

SWM 2.395 3 .041 

NEM 10.734 3 .034 

Irritation of Eye    

SWM 1.925 4 .044 

NEM 2.972 3 .036 

 

Table 4.22 shows the equation of S1 to determine the influence of IAQ towards 

SBSS. Two models for each symptom consist of SWM and NEM. Headache was 

decreased by 0.207 units when temperature variables went up by one unit, 0.026 unit in 

Headache decreasing one unit of RH, 0.099 unit for Headache caused the decrease in 

one unit of air movement and, increasing 0.02-unit Headache when CO2 increase by 

one unit in exponential term which showed equation (4.4) for model SWM.  

Equation (4.5) showed that feeling heavy-headed increased by 0.071 units when 

RH increased by one unit. Feeling heavy-headed was decreased by 0.585 units when 

one unit of AM. Increasing the 0.001 unit of feeling heavy-headed when CO2 increases 

by one unit and increasing the 0.01 unit of feeling heavy-headed caused an increase in 

one unit of formaldehyde in exponential terms, shown in the SWM model in exponential 

terms. 

Decreasing 0.012 unit of fatigue or lethargy caused by increasing one unit of 

RH, increasing 0.803 unit feeling heavy headed when increasing one unit of AM, and 

increasing one unit of 0.001 fatigue or lethargy caused by increasing one unit of CO2 in 

exponential term which showed in equation (4.6) 
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Drowsiness was decreased by 0.394 units when air movement (AM) variables went up 

by one unit, 0.002 unit in Drowsiness decreasing one unit of CO2, and 0.124 unit for 

Headache caused the decrease in one unit of temperature (T), which showed equation 

(4.7) in the exponential term.  

Equation (4.8), decreasing 0.283-unit Dizziness increased by one unit of T, 

decrease 0.225 unit of Dizziness increase one unit of AM and increase one unit of CO. 

Equation (4.9), increase 0.006 unit of nausea or vomiting caused by decreasing one unit 

of CO2, increase 0.027 unit of nausea or and vomiting due to decrease one unit of CO, 

increase 0.139 unit of nausea or and vomiting increase one unit of T and increase 0.064 

unit of nausea or vomit by increase one unit of RH in exponential term. 

Equation (4.10) shows an increase of 0.240 units and 0.004 units of cough 

caused by the rise of one unit of T and CO2 and an increase of 0.055 units of cough 

caused by the rise of one unit of CO in exponential terms.  

Equation (4.11) shows an increase of 0.202 units of hoarse or dry throat due to 

the rise of one unit of T and a decrease of 0.035 units and 0.047 units of hoarse or dry 

throat by decreasing T and CO2 exponentially.  

Equation (4.12) shows an increase of 0.069 units and 0.010 units of skin rash 

and itchiness due to increased T and CO and a decrease of 0.288 units of skin rash and 

itchiness caused by increased one unit of AM in the exponential term.  

Equations (4.13), 0.222-, 0.295- and 0.001-unit irritation of the eye decrease one 

unit of T, HCHO and CO2 and increase 0.034-unit eye irritation caused by an increase 

of one unit of CO in the exponential term.  

Equation (4.14), Headache increases by 0.208 units, 0.006 units and 0.706 units 

due to the rise of one unit of T, CO2 and RSP, a decrease of 0.603 units of headache 

increase of one unit of AM in the exponential term. 
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Equation (4.15), Feeling heavy-headed increases by 0.223 units and 0.055 units 

when there is an increase of one unit of T and HCHO, decreases by 0.025-unit, 0.990 

unit and 0.007 unit of feeling heavy-headed when there is an increase one unit of T, AM 

and CO2 in the exponential term. 

Equation (4.16), Fatigue and lethargy increase by 0.113 units, 0.426 units and 

0.812 units when increasing one unit of T, AM and HCHO, decrease by 0.032-unit, 

0.005 unit when increasing one unit of RH, and CO2 in the exponential term.  

Equation (4.17), Drowsiness increases by 0.025 units and 0.023 units when one 

unit of T and RH decreases by 0.580 units and 0.048 units when one unit of AM and 

HCHO in the exponential term. 

Equation (4.18), Dizziness increases 0.135-unit, 0.009 unit and 6.252e-0.005 

unit when one unit of T, RH and CO2 decreases 0.489 unit increases one unit of AM in 

exponential term. 

Equation (4.19) m Nausea or vomiting increases 0.202 units when going up one 

unit of RH, decreases 0.050 unit,0.615-unit, 0.033 unit, and 0.342 unit can increase one 

unit of T, CO, HCHO and RSP in the exponential term.  

Equation (4.20) Cough increases by 0.078 units and 5.842 units when increasing 

one unit of CO and AM exponentially. 

Equation (4.21) Hoarse or dry throat increases by 0.211 units and 0.034 units 

when one unit of T and RH decreases by 0.0.56 units and 0.182 units when increasing 

one unit of AM and TVOC in exponential terms. 

Equation (4.22) Skin rash and itchiness increase by 0.19 units and 0.119 units 

when one unit of AM and T increase, decrease 0.922 units of skin rash and itchiness 

increase by one unit of RSP in the exponential term.  
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Equation (4.23), Irritation of the eye increases by 0.903 units and 0.045 units 

when one unit of AM and RH increases by 0.659 units when increasing one unit of RSP 

in exponential terms.

Table 4.22 Equation of SK Tanjung Gelam (S1) 

SOUTHWEST MONSOON 

 
 

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 7.958 − 0.207𝑇 − 0.026𝑅𝐻 − 0.099𝐴𝑀 + 0.02𝐶𝑂2 

 

(4.4) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑
= 0.071 𝑅𝐻 − 0.585𝐴𝑀 + 0.001𝐶𝑂2 + 0.01 𝐻𝐶𝐻𝑂   

 

(4.5) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑜𝑟 𝐿𝑒𝑡ℎ𝑒𝑟𝑔𝑦 = 1.217 − 0.012 𝑅𝐻 + 0.803𝐴𝑀 + 0.001𝐶𝑂2 

 

(4.6) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 5.213 − 0.394𝐴𝑀 − 0.002𝐶𝑂2 − 0.124 𝑇 

 

(4.7) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 7.892 − 0.283𝑇 − 0.225𝐴𝑀 + 0.066𝐶𝑂 

 

(4.8) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑣𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 0.139𝑇 − 0.006𝐶𝑂2 − 0.027 𝐶𝑂 + 0.064𝑅𝐻 − 5.752 

 

(4.9) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 8.955 − 0.240𝑇 − 0.004𝐶𝑂2 + 0.055𝐶𝑂 

 

(4.10) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝑑𝑟𝑦 𝑡ℎ𝑟𝑜𝑎𝑡 = 1.887 − 0.035𝑇 − 0.000472𝐶𝑂2 + 0.202𝑅𝑆𝑃 

 

(4.11) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑟𝑎𝑠ℎ 𝑜𝑟 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠 = 0.069𝑇 − 0.288𝐴𝑀 + 0.010𝐶𝑂 − 1.051  
 

(4.12) 

𝐼𝑛 𝐼𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒 = 7.379 − 0.222𝑇 − 0.295𝐻𝐶𝐻𝑂 + 0.034𝐶𝑂 − 0.001𝐶𝑂2 

 

(4.13) 

NORTHEAST MONSOON 

 

 

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 0.208𝑇 − 0.603𝐴𝑀 + 0.006𝐶𝑂 2 + 0.706 𝑅𝑆𝑃 − 2.274 

 

(4.14) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 ℎ𝑒𝑎𝑣𝑦 ℎ𝑒𝑎𝑑𝑒𝑑
= 0.223𝑇 − 0.025𝑅𝐻 − 0.990𝐴𝑀 + 0.055𝐻𝐶𝐻𝑂 − 0.007𝐶𝑂2

− 2.155 
 

(4.15) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑜𝑟 𝑙𝑒𝑡ℎ𝑎𝑟𝑔𝑦
= 0.221 + 0.113𝑇 − 0.032𝑅𝐻 + 0.426𝐴𝑀 + 0.812𝐻𝐶𝐻𝑂
− 0.005𝐶𝑂2 

(4.16) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.025𝑇 + 0.023𝑅𝐻 − 0.580𝐴𝑀 − 0.048𝐻𝐶𝐻𝑂 − 1.610 
 

(4.17) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 0.135𝑇 + 0.009𝑅𝐻 − 0.489𝐴𝑀 + (6.252 × 10−5)𝐶𝑂2 
 

(4.18) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑣𝑜𝑚𝑖𝑡𝑖𝑛𝑔
= 0.202𝑅𝐻 − 0.050𝑇 − 0.615𝐶𝑂 − 0.033𝐻𝐶𝐻𝑂 − 0.342𝑅𝑆𝑃
− 8.509 

 

(4.19) 
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𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 0.078𝐶𝑂 + 5.842𝐴𝑀 − 0.190 
 

(4.20) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝑑𝑟𝑦 𝑡ℎ𝑟𝑜𝑎𝑡
= 1.523 + 0.211𝑇 − 0.056𝐴𝑀 + 0.034𝑅𝐻 − 0.182𝑇𝑉𝑂𝐶 

 

(4.21) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑟𝑎𝑠ℎ 𝑜𝑟 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠 = 0.191𝐴𝑀 + 0.119𝑇 − 0.922𝑅𝑆𝑃 − 2.781 
 

(4.22) 

𝐼𝑛 𝐼𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒 = 0.903𝐴𝑀 − 0.659𝑅𝑆𝑃 + 0.045𝑅𝐻 − 2.633 
 

(4.23) 

 

 

Table 4.23 shows the two models for S2. Model NEM (headache, fatigue or 

lethargy, drowsiness, dizziness, hoarse or dry throat, skin rash or itchiness and eye 

irritation) has the lowest AIC. The value of AIC was 68.957 for NEM compared to the 

AIC value at SWM, which was 72.506 for headache, as shown in Table 4.23. This 

showed that the NEM AIC value for headache is smaller than SWM. The same can be 

concluded when analysing AICC (Akaike Information Criterion corrected by 

minimising the number of model parameters). When comparing the quantile of a chi-

square distribution with n-p degrees of freedom (n-number of observations, p-number 

of estimated parameters), it is possible to measure the suitability of models. Results of 

deviance show that the two are suitable. Regardless of the model, SWM (feeling heavy-

headed, nausea or vomiting, and cough) is considered the best; each model, individually, 

has a more significant explanation of the dependent variable using some of the 

explanatory than any other model without explanatory variables. Table 4.24 shows the 

likelihood ratio chi-square test, which compares each model with the null model. 

Regardless of model NEM (headache, fatigue or lethargy, drowsiness, dizziness, hoarse 

or dry throat, skin rash or itchiness and eye irritation) is considered the best due to the 

highest value compared to model SWM (feeling heavy-headed, nausea or vomiting, and 

cough), each model individually, has a more significant explanation of the dependent 

variable using some of the explanatory than any other model without explanatory 

variables. 

 

Table 4.23 Goodness of Fit  (S2) 

 SWM  NEM 

 Value df Value/df  Value df Value/df 

Headache        

Deviance 3.544 27 .131  3.004 26 .116 

Scaled Deviance 33.580 27   33.493 26  
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Log Likelihood -29.253    -26.479   

Akaike's Information Criterion (AIC) 72.506    68.957   

Finite Sample Corrected AIC (AICC) 76.986    74.957   

        

Feeling Heavy Headache        

Deviance 4.862 29 .168  4.462 26 .172 

Scaled Deviance 33.790 29   33.726 26  

Log Likelihood -39.326    -37.874   

Akaike's Information Criterion (AIC) 88.653    91.749   

Finite Sample Corrected AIC (AICC) 90.875    97.749   

        

Fatigue Or Lethargy        

Deviance 4.094 27 .152  3.425 27 .127 

Scaled Deviance 33.668 27   33.561 27  

Log Likelihood -33.705    -30.706   

Akaike's Information Criterion (AIC) 81.410    75.412   

Finite Sample Corrected AIC (AICC) 85.890    79.892   

        

Drowsiness        

Deviance 3.627 27 .134  3.135 27 .116 

Scaled Deviance 33.593 27   33.514 27  

Log Likelihood -29.641    -25.693   

Akaike's Information Criterion (AIC) 73.281    65.386   

Finite Sample Corrected AIC (AICC) 77.761    69.866   

        

Dizziness        

Deviance 2.704 27 .100  3.784 28 .135 

Scaled Deviance 33.444 27   33.618 28  

Log Likelihood -28.537    -34.174   

Akaike's Information Criterion (AIC) 71.073    80.349   

Finite Sample Corrected AIC (AICC) 75.553    83.579   

        

Nausea and vomiting        

Deviance 1.656 27 .061  1.694 28 .060 

Scaled Deviance 33.274 27   33.280 28  

Log Likelihood -17.001    -17.375   

Akaike's Information Criterion (AIC) 48.002    46.750   

Finite Sample Corrected AIC (AICC) 52.482    49.980   

        

Cough        

Deviance 2.231 28 .080  2.965 27 .110 

Scaled Deviance 33.368 28   33.487 27  

Log Likelihood -30.531    -30.775   

Akaike's Information Criterion (AIC) 73.061    75.551   

Finite Sample Corrected AIC (AICC) 76.292    80.031   

        

Hoarse Or Dry Throat        

Deviance 5.168 28 .185  4.583 27 .170 

Scaled Deviance 33.838 28   33.746 27  

Log Likelihood -37.349    -32.311   

Akaike's Information Criterion (AIC) 86.697    78.622   

Finite Sample Corrected AIC (AICC) 89.928    83.102   

        

Skin Rash or Itchiness        

Deviance 3.649 28 .130  3.061 28 .109 

Scaled Deviance 33.597 28   33.502 28  

Log Likelihood -31.651    -28.705   

Akaike's Information Criterion (AIC) 75.303    69.410   

Finite Sample Corrected AIC (AICC) 78.533    72.641   
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Irritation of Eye        

Deviance 3.476 27 .129  2.966 28 .106 

Scaled Deviance 33.569 27   33.487 28  

Log Likelihood -30.431    -27.772   

Akaike's Information Criterion (AIC) 74.862    67.545   

Finite Sample Corrected AIC (AICC) 79.342    70.775   

        

        

 The Omnibus test was conducted in Table 4.24. An omnibus test is a 

comprehensive test employed to ascertain whether there are any overall effects or 

differences in a model or set of variables. It is used as an initial screening instrument to 

evaluate a general hypothesis regarding a collection of variables. The results of an 

omnibus test frequently indicate a significant effect, but they do not provide specific 

information regarding its location. The simplest way to understand the omnibus test is 

to determine whether there are any significant differences or relationships in a dataset. 

Due to the data collected having two different datasets, which are for SWM and NEM, 

the likelihood ratio chi-squared was calculated and used in the context of model fitting, 

such as in regression models or structural equation modelling, to compare nested 

models. 

Model SWM (feeling heavy-headed, dizziness, nausea or vomiting and 

coughing) has the lowest significance in Table 4.24, which shows the best significance 

when the likelihood ratio chi-square value is higher. The present symptoms of NEM 

include headache, fatigue or lethargy, drowsiness, hoarse or dry throat, skin rash or 

itchiness, and eye irritation.  

Table 4.24 Omnibus Testa (S2) 

 Likelihood Ratio Chi-

Square 

df Sig. 

Headache   

SWM 1.630 5 .045 

NEM 7.179 6 .030 

Feeling Heavy Headache   

SWM 7.971 3 .008 

NEM 3.875 6 .046 

Fatigue Or Lethargy   

SWM 11.253 5 .047 

NEM 15.256 5 .038 

Drowsiness    
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SWM 3.258 5 .026 

NEM 9.854 5 .017 

Dizziness    

SWM 13.903 5 .016 

NEM 2.628 4 .022 

Nausea and vomiting   

SWM 1.492 5 .014 

NEM .744 4 .046 

Cough    

SWM 6.893 5 .029 

NEM 3.729 4 .044 

Hoarse Or Dry Throat   

SWM 4.165 5 .026 

NEM 9.234 4 .022 

Skin Rash or Itchiness   

SWM 3.321 4 .056 

NEM 9.214 4 .046 

Irritation of Eye    

SWM 3.266 5 .050 

NEM 8.584 4 .012 

 

Table 4.25 shows the equation of S1 to determine the influence of IAQ towards 

SBS symptoms. Two models for each symptom consist of SWM and NEM. Equation 

(4.24) -(4.33) showed the equation for the southwest monsoon, and Equation (4.34) -

(4.43) showed the equation for the northeast monsoon. Headache increased by 0.169 

units and 0.067 units when one unit of AM and RH went up one unit, decreased by 0.18 

units, 0.339 units and 0.162 units when one unit of T, CO2 and HCHO increased as 

shown in Equation (4.24). 

Equation (4.25), Feeling heavy-headed increases by 0.2 units when one unit of 

AM, decreases by 0.554 units and 0.208 units when increasing one unit of T and CO2. 

Equation (4.26), Fatigue and lethargy increase by 0.346-unit, 0.059 unit and 

0.008 units when increasing one unit of T, AM, and RH decrease by 0.476 unit, and 

0.934 unit increase by one unit of CO2 and RSP in the exponential term. 

Equation (4.27), Drowsiness increases by 0.109 units, 0.744 units, and 0.085 

units when one unit of AM, CO2, and RH decreases by 0.233 units of drowsiness when 

increasing one unit of T in the exponential term. 
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Equation (4.28), Dizziness increases by 0.396 units, 0.354 units and 0.003 units 

when one unit of AM, RH and CO2 increases. Decrease 0.537 units and 0.795 units of 

dizziness when increasing one unit of T and HCHO variables in the exponential term. 

Equation (4.29) Nausea or vomiting increases by 0.168 units when one unit of 

CO increases and decreases by 0.237 units. 0.077 unit and 0.107 unit when increasing 

one unit of T, RH and HCHO in the exponential terms.  

Equation (4.30), Cough increases by 0.655 units when one unit of RH increases, 

decreases 0.043 units, 0.101 units,0.462 units and 0.511 units when one unit of T, AM, 

CO2and RSP increases exponentially. 

Equation (4.31), Hoarse or dry throat increases by 0.403 units, 0.293 units, and 

1.272 units when one unit of AM, RH and CO2 increases, decreases 0.221 units of the 

hoarse or dry throat when increasing one unit of T in the exponential terms. 

Equation (4.32), Skin rashness and itchiness increase by 1.158-unit, 0.461 units, 

0.061 units and 0.458 units when one unit goes up for T, AM, HCHO and RSP, decrease 

by 0.147 unit of skin rashness and itchiness when one unit of RH decrease in exponential 

term. 

In equation (4.33), eye irritation increases by 0.012 units, 0.394 units and 0.199 

units when one unit of T, RH and AM increases and decreases by 0.013 unit of eye 

irritation when one unit of CO2 increases exponentially. 

Equation (4.34), Headache increases by 0.706 units when one unit of AM and 

CO2 increase, decreases by 0.086 units, 0.174 units and 0.202 units when one unit 

increases T, HCHO and RSP in exponential terms. 

Equation (4.35), Feeling heavy-headed increases 0.241-unit, 0.584-unit, 0.313 

unit and 0.061 unit when one unit of RH, AM, CO2 and RSP increase, decreases 0.403 

unit of feeling headed increases one unit of T and HCHO in exponential term. 
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Equation (4.36): Fatigue and lethargy increase 0.402 units, 0.118 units, and 

0.704 when one unit of RH, AM, and CO2 is increased, and decrease 0.587 units and 

0.013 units when one unit of T and RSP is increased in the exponential term. 

Equation (4.37), Drowsiness increases by 0.193-unit, 0.031 unit and 0.115 units 

when increasing one unit of T, AM, and CO2 decreases by 0.083 unit and 0.128 unit of 

drowsiness when increasing one unit of RH and RSP in the exponential term. 

Equation (4.38): Dizziness increases by 0.091 units and 0.006 units when one 

unit of T and RH is increased and decreases by 0.034 units and 0.373 units when one 

unit of CO2 and RSP is increased in the exponential term. 

Equation (4.39): Nausea and vomiting increase by 0.028 units, 0.117 units, and 

0.014 units when one unit of T, RH, and CO2 increases and decrease by 0.090 units 

when one unit of RSP is increased in the exponential term. 

Equation (4.40): Cough increases by 0.293 units, 0.193 units, and 0.008 units 

when one unit of T, RH, and RSP is increased and decreases by 0.101 units when one 

unit of CO2 is increased in the exponential term. 

Equation (4.41), Hoarse or dry throat increases by 0.262 units and 0.257 units 

when increasing one unit of RH and CO2, decreases by 0.257 units and 0.570 unit of 

the hoarse or dry throat when increasing one unit of T and RSP in the exponential term. 

Equation (4.42), Skin rashness and itchiness increase by 0.635-unit, 0.770 units 

and 0.287 units when one unit of RH, CO2 and RSP increases, decrease by 0.013 unit 

of skin rashness and itchiness when one unit of T in exponential term. 

Equation (4.43), Irritation of the eye increases by 0.124-unit, 0.428 unit and 

0.157 unit when one unit increases T, RH And RSP variables, decreases 0.441-unit eye 

irritation when one unit of CO2 increases exponentially. 
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Table 4.25 Equation of TMG Mart (S2) 

SOUTHWEST MONSOON 

 

 

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 0.876 − 0.169𝑅𝐻 + 0.067𝐴𝑀 − 0.339𝐶𝑂2 − 0.162𝐻𝐶𝐻𝑂 (4.24) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑 = 1.139 − 0.554𝑇 + 0.2𝐴𝑀 − 0.208𝐶𝑂2 (4.25) 

𝑡𝑤𝑜𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑜𝑟 𝑙𝑒𝑡ℎ𝑒𝑟𝑔𝑦
= 1.082 + 0.346𝑇 + 0.059𝐴𝑀 − 0.476𝐶𝑂2 − 0.934𝑅𝑆𝑃
+ 0.008𝑅𝐻 

(4.26) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.002 − 0.233𝑇 + 0.109𝐴𝑀 + 0.744𝐶𝑂2 + 0.085𝑅𝐻
+ 0.463𝐻𝐶𝐻𝑂 

(4.27) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 1.045 − 0.537𝑇 + 0.396𝐴𝑀 + 0.354𝑅𝐻 + 0.003𝐶𝑂2

− 0.795𝐻𝐶𝐻𝑂 

(4.28) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑣𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 0.723 − 0.237𝑇 − 0.077𝑅𝐻 − 0.041𝐴𝑀 + 0.168𝐶𝑂2

− 0.107𝐻𝐶𝐻𝑂 

(4.29) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 1.120 − 0.043𝑇 + 0.655𝑅𝐻 − 0.101𝐴𝑀 − 0.462𝐶𝑂2 − 0.511𝑅𝑆𝑃 (4.30) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝑑𝑟𝑦 𝑡ℎ𝑟𝑜𝑎𝑡
= 0.403𝐴𝑀 + 0.293𝑅𝐻 + 1.272𝐶𝑂2 + 0.452𝐻𝐶𝐻𝑂 − 0.221𝑇
− 0.446 

(4.31) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑟𝑎𝑠ℎ 𝑎𝑛𝑑 𝐼𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠
= 0.049 + 1.158𝑇 − 0.147𝑅𝐻 + 0.461𝐴𝑀 + 0.061𝐻𝐶𝐻𝑂
+ 0.458 𝑅𝑆𝑃 

(4.32) 

𝐼𝑛 𝐼𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒
= 0.012𝑇 + 0.394𝑅𝐻 + 0.129𝐴𝑀 + 0.199𝑅𝑆𝑃 + 0.013𝐶𝑂2 

− 0.217 

(4.33) 

  

NORTHEAST MONSOON 

 

 

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 0.654 − 0.086𝑇 − 0.261𝑅𝐻 + 0.706𝐴𝑀 + 0.002𝐶𝑂2

− 0.174𝐻𝐶𝐻𝑃 − 0.202𝑅𝑆𝑃 

(4.34) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑
= 0.550 − 0.403𝑇 + 0.241𝑅𝐻 + 0.584𝐴𝑀 + 0.313 𝐶𝑂2

− 0.053𝐻𝐶𝐻𝑂 + 0.061𝑅𝑆𝑃 

(4.35) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑜𝑟 𝑙𝑒𝑡ℎ𝑒𝑟𝑔𝑦
= 0.381 − 0.587𝑇 + 0.402𝑅𝐻 + 0.118𝐴𝑀 + 0.704𝐶𝑂2

− 0.013𝑅𝑆𝑃 

(4.36) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.505 + 0.193𝑇 − 0.083𝑅𝐻 + 0.031𝐴𝑀 + 0.115𝐶𝑂2

− 0.128𝑅𝑆𝑃 

(4.37) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 0.828 + 0.919𝑇 + 0.006𝑅𝐻 − 0.034𝐶𝑂2 − 0.373𝑅𝑆𝑃 (4.38) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑣𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 0.571 + 0.028𝑇 + 0.117𝑅𝐻 + 0.014𝐶𝑂2 − 0.090𝑅𝑆𝑃 

(4.39) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 0.698 + 0.293𝑇 + 0.193𝑅𝐻 − 0.101𝐶𝑂2 − 0.008𝑅𝑆𝑃 (4.40) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝑑𝑟𝑦 𝑡ℎ𝑟𝑜𝑎𝑡
= 0.639 + 0.262𝑅𝐻 + 0.257𝐶𝑂2 + 0.452𝐻𝐶𝐻𝑂 − 0.257𝑇
− 0.570𝑅𝑆𝑃 

(4.41) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑟𝑎𝑠ℎ𝑒𝑠 𝑎𝑛𝑑 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠
= 0.635𝑅𝐻 + 0.770𝐶𝑂2 + 0.287𝑅𝑆𝑃 − 0.013𝑇 − 0.135 

(4.42) 

𝐼𝑛 𝐼𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒 = 0.62 + 0.124𝑇 + 0.428𝑅𝐻 − 0.441𝐶𝑂2 − 0.157𝑅𝑆𝑃 (4.43) 

  

 

Table 4.26 shows a resume of the statistical model results performance for two 

models (SWM and NEM) for each dependent variable in S1. The first column of Table 
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4.26 presents the statistics tests most often used in generalized linear models and 

represent measures of dispersion (generalized and corrected), which permit testing the 

quality of models. Values from Table 4.26 confirm that model NEM, especially 

headache (22.904), fatigue or lethargy (27.048), and cough (26.643), has the lowest 

value, as shown by the statistical tests compared to SWM, which is headache (29.929), 

fatigue or lethargy (48.382) and cough (27.861) for AIC value. These statistical tests are 

obtained using all the deviations between the estimated and recorded (residuals) for 

each observation. Considering the Akaike Information Criterion, the objective is to 

minimise AIC. Model SWM such as feeling heavy-headed (-9.615), drowsiness 

(26.926), dizziness (23.084), nausea or vomiting (26.983), hoarse or dry throat (-

16.331), skin rashness(34.382) and irritation of eye (28.631) has the lowest AIC of the 

two models, which means that the evidence for model NEM for feeling heavy-headed 

(-5.019), drowsiness (28.143), dizziness (32.389), nausea or vomiting (30.568), hoarse 

or dry throat (-15.205), skin rashness(41.362) and irritation of eye (34.952) is the best 

due to SWM has lowest AIC value than NEM. When comparing the quantile of a chi-

square distribution with n-p degrees of freedom (n-number of observations, p-number 

of estimated parameters), it is possible to measure the suitability of models. Results of 

deviance show that the two are suitable.  

 

Table 4.26 Goodness of Fit  (S3) 

 SWM NEM 

 Value df Value/df Value df Value/df 

Headache       

Deviance 0.643 10 0.064 .367 9 .041 

Scaled Deviance 16.106 10  16.061 9  

Log Likelihood -7.965   -3.452   

Akaike's Information Criterion (AIC) 29.929   22.904   

Finite Sample Corrected AIC (AICC) 43.929   43.475   

       

Feeling Heavy Headache       

Deviance 1.408 10 .141 0.798 9 0.089 

Scaled Deviance 16.231 10  16.132 9  

Log Likelihood -9.615   -5.019   

Akaike's Information Criterion (AIC) 33.230   26.037   

Finite Sample Corrected AIC (AICC) 47.230   46.609   

       

Fatigue Or Lethargy       

Deviance .891 10 .089 0.499 9 0.055 

Scaled Deviance 16.147 10  16.083 9  

Log Likelihood 34.382   -5.524   

Akaike's Information Criterion (AIC) 48.382   27.048   

Finite Sample Corrected AIC (AICC) 39.790   47.620   

       

Drowsiness       
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Deviance 1.090 9 .121 1.330 10 .133 

Scaled Deviance 16.180 9  16.219 10  

Log Likelihood -5.463   -7.072   

Akaike's Information Criterion (AIC) 26.926   28.143   

Finite Sample Corrected AIC (AICC) 47.497   42.143   

       

Dizziness       

Deviance .973 10 .097 1.727 10 .173 

Scaled Deviance 16.160 10  16.283 10  

Log Likelihood -4.542   -9.195   

Akaike's Information Criterion (AIC) 23.084   32.389   

Finite Sample Corrected AIC (AICC) 37.084   46.389   

       

Nausea and vomiting       

Deviance 1.387 10 .139 1.195 10 .119 

Scaled Deviance 16.228 10  16.197 10  

Log Likelihood -2.983   -8.284   

Akaike's Information Criterion (AIC) 26.983   30.568   

Finite Sample Corrected AIC (AICC) 28.391   44.568   

       

Cough       

Deviance 1.478 11 .134 1.212 10 .121 

Scaled Deviance 16.243 11  16.199 10  

Log Likelihood -7.931   -6.321   

Akaike's Information Criterion (AIC) 27.861   26.643   

Finite Sample Corrected AIC (AICC) 37.194   30.643   

       

Hoarse Or Dry Throat       

Deviance 1.846 11 .168 1.608 9 .179 

Scaled Deviance 16.302 11  16.263 9  

Log Likelihood -16.331   -15.205   

Akaike's Information Criterion (AIC) 44.662   46.409   

Finite Sample Corrected AIC (AICC) 53.996   66.981   

       

Skin Rash or Itchiness       

Deviance 1.153 10 .115 1.567 9 .174 

Scaled Deviance 16.190 10  16.257 9  

Log Likelihood -10.191   -12.681   

Akaike's Information Criterion (AIC) 34.382   41.362   

Finite Sample Corrected AIC (AICC) 48.382   61.933   

       

Irritation of Eye       

Deviance 1.155 10 .115 1.508 9 .168 

Scaled Deviance 16.190 10  16.247 9  

Log Likelihood -7.315   -9.476   

Akaike's Information Criterion (AIC) 28.631   34.952   

Finite Sample Corrected AIC (AICC) 42.631   55.524   

       

       

 The Omnibus test was conducted in Table 4.27. An omnibus test is a 

comprehensive test employed to ascertain whether there are any overall effects or 

differences in a model or set of variables. It is used as an initial screening instrument to 

evaluate a general hypothesis regarding a collection of variables. The results of an 

omnibus test frequently indicate a significant effect, but they do not provide specific 
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information regarding its location. The simplest way to understand the omnibus test is 

to determine whether there are any significant differences or relationships in a dataset. 

Due to the data collected having two different datasets, which are for SWM and NEM, 

the likelihood ratio chi-squared was calculated and used in the context of model fitting, 

such as in regression models or structural equation modelling, to compare nested 

models. 

Model SWM such as dizziness (p=0.039), nausea or vomiting (p=0.010), hoarse 

or dry throat (p=0.021), skin rashness and itchiness (p=0.010) and irritation of the eye 

(p=0.015) has the lowest significance in Table 4.27, which shows the best significance 

when the likelihood ratio chi-square value is higher compared to NEM significant value 

for dizziness (p=0.043), nausea or vomiting (p=0.040), hoarse or dry throat (p=0.024), 

skin rashness and itchiness (p=0.058) and irritation of eye (p=0.026). The present 

symptoms of NEM include headache, feeling heavy-headed, fatigue or lethargy, 

drowsiness, and cough, which has the lowest significant value compared to the SWM 

model.  

Table 4.27 Omnibus Test (S3) 

 Likelihood Ratio Chi-

Square 

df Sig. 

Headache   

SWM 11.672 5 .040 

NEM 20.697 6 .002 

Feeling Heavy Headache   

SWM 4.034 5 .045 

NEM 13.227 6 .040 

Fatigue Or Lethargy   

SWM 4.130 5 .531 

NEM 13.463 6 0.036 

Drowsiness    

SWM 5.567 5 .051 

NEM 8.784 6 .018 

Dizziness    

SWM 10.625 5 .039 

NEM 1.321 5 .043 

Nausea and vomiting   

SWM 7.281 5 .010 

NEM 6.696 5 .044 

Cough    

SWM 3.849 4 .027 

NEM 7.067 5 .016 

Hoarse Or Dry Throat   

SWM 15.722 4 .021 

NEM 7.975 6 .024 
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Skin Rash or Itchiness   

SWM 10.208 5 .010 

NEM 5.228 6 .058 

Irritation of Eye    

SWM 7.954 5 .015 

NEM 3.633 6 .026 

Table 4.22 showed equation of southwest monsoon and northeast monsoon at 

Mset Inflatable Composit Corporation Sdn. Bhd. (S3). Equation (4.44) – (4.53) was 

southwest monsoon and Equation (4.54)-(4.63) was northeast monsoon. Equation 

(4.44), Headache was increased by 0.504 unit when T variables go up by one unit, 

0.422-unit, 0.134-unit, 0.815 unit and 0.113 unit in increasing one unit of RH, CO2, 

TVOC and HCHO for headache in exponential term. 

Equation (4.45), Feeling heavy headed increase 0.047-unit, 0.343 unit and 

0.063, increase one unit of CO2, TVOC and HCHO. Decrease 0.510 unit, and 0.836 unit 

of feeling heavy headed, when increase one unit of T and RH in exponential term. 

Equation (4.46), Fatigue and lethargy increase 0.088 unit and 0.458 unit when 

increase one unit of T and RH. Increasing 0.96-unit, 0.114 unit and 0.327 unit of fatigue 

and lethargy, when increase one unit of CO2, TVOC and HCHO in exponential term. 

Equation (4.47), Drowsiness increase 0.192-unit, 0.196 unit and 0.329 unit when 

CO2, CO and TVOC variables increase one unit, decrease 0.048 unit, 0.596 and 0.652 

unit of drowsiness when increase one unit of T, RH, and HCHO in exponential term. 

Equation (4.48), Dizziness increase 0.013 unit and 0.282 unit, when one unit of 

CO2 and TVOC increase, decrease 0.662-unit, 1.254 unit and 0.576 unit of dizziness 

increase one unit of T, RH and HCHO in exponential term. 

Equation (4.49), Nausea or vomiting increases by 0.316 units and 0.448 units 

when one unit of CO2 and HCHO increase, decreases by 0.848-unit, 0.398 unit, and 

0.487 unit of nausea or vomiting when one unit of T, RH and TVOC in an exponential 

term. 
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In equation (4.50), cough increases by 0.353 units, 0.293 units and 0.495 units 

when one unit of TVOC, HCHO and RSP increase decreases by 0.222 units of cough 

when one unit of T increases exponentially. 

Equation (4.51), Hoarse and dry throat increase by 0.338 units and 0.401 units 

when one unit of T and TVOC increase, decrease by 0.939 unit and 0.084 units of hoarse 

and dry throat, when increasing one unit of HCHO and RSP in an exponential term. 

Equation (4.52), Skin rashness and itchiness increased 0.680-unit, 0.172-unit, 

0.171 unit and 0.649 unit when one unit of HCHO, RSP and AM increase, decrease 

0.732 unit of skin rashness caused an increase of one unit of TVOC in an exponential 

term. 

Equation (4.53), Irritation of the eye increased by 0.818 units and 0.329 units, 

when one unit of T and TVOC increased, a decrease of 0.135-unit, 0.419 unit and 0.023-

unit irritation of the eye caused an increase of one unit of HCHO, RSP and AM in an 

exponential term. 

Equation (4.54), Headache increases by 0.244-unit, 1.134 unit and 0.423unit 

when one unit of T, RH and CO2 increases, decrease by 0.307 unit of headache when 

one unit of TVOC increases, increase by 0.037 unit of headache when one unit of RSP 

increase in exponential term. 

Equation (4.55), Feeling heavy-headed increases by 0.664 units and 0.686 units 

when one unit of RH and HCHO decreases by 0.312-unit, 0.099 unit,0.529 unit and 

0.277 units when one unit of T, CO2, TVOC and RSP in an exponential term. 

Equation (4.56), Fatigue or lethargy increase1.766-unit 0.048 unit,0.153-unit, 

0.180 unit and 0.126 unit when one unit of RH, CO2, TVOC, HCHO and RSP in the 

exponential term. 
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Equation of (4.57), Drowsiness increases by 1.32-unit, 0.269 unit and 0.629 

units when one unit of RH, CO2 and HCHO increases, decreases by 0.131 unit, and 

0.380 unit of drowsiness when one one-unit TVOC and RSP in an exponential term. 

Equation (4.58), Dizziness increases by 0.822 units when one unit of RH 

increases, decreases by 0.175 units, 0.118 units and 0.061 units of dizziness when one 

unit of TVOC, HCHO and RSP increases in the exponential term. 

Equation (4.59), Nausea or vomiting increased by 0.943-unit, 0.183 unit and 

0.266 units when increasing one unit of RH, TVOC and RSP, a decrease of 00.108 unit 

of nausea or vomiting caused an increase of one unit of HCHO in the exponential term.  

Equation (4.60), Cough increases by 0.006 units, 0.805 units and 0.475 units 

when one unit of AM, HCHO and RSP decreases by 1.345 units and 0.252 units of 

cough when increasing one unit of T and RH exponentially. 

Equation (4.61), Hoarse and dry throat increase 0.666-unit, 1.114 unit and 0.396 

unit when one unit of T, RH and TVOC decreases 0.406 unit and 0.182 unit of hoarse 

or dry throat when one unit of HCHO and RSP increase in exponential terms. 

Equation (4.62), Skin rash or itchiness increases by 1.548-unit, 1.930-unit, 0.439 

units when one unit of T, RH, and AM increases, decreases 0.180 unit of skin rashness 

or itchiness when increasing one unit of TVOC, skin rashness and itchiness increase 

0.017 unit, and 0.135 unit when one unit of HCHO and RSP increase in an exponential 

term. 

Equation (4.63), Irritation of the eye increases by 1.429-unit, 1.517 unit,0.161 

unit and 0.007 unit when one unit of T, RH, TVOC and AM increase, decreases 0.299 

unit and 0.033-unit irritation of eyes, increase one unit of HCHO and RSP in exponential 

term. 
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Table 4.28 Equation of Mset Inflatable Composit Corporation Sdn. Bhd. (S3) 

SOUTHWEST MONSOON  

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 0.019 + 0.504𝑇 + 0.422𝑅𝐻 + 0.134𝐶𝑂2 + 0.815𝑇𝑉𝑂𝐶 + 0.113𝐻𝐶𝐻𝑂 (4.44) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑
= 1.018 − 0.510𝑇 − 0.836𝑅𝐻 + 0.047𝐶𝑂2 + 0.343𝑇𝑉𝑂𝐶
+ 0.063𝐻𝐶𝐻𝑂 

(4.45) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑎𝑛𝑑 𝑙𝑒𝑡ℎ𝑒𝑟𝑔𝑦
= 0.312 + 0.088𝑇 + 0.458𝑅𝐻 + 0.96𝐶𝑂2 + 0.114𝑇𝑉𝑂𝐶
+ 0.327𝐻𝐶𝐻𝑂 

(4.46) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.6 − 0.048𝑇 − 0.596𝑅𝐻 + 0.192𝐶𝑂2 + 0.192𝐶𝑂 + 0.329𝑇𝑉𝑂𝐶
− 0.652𝐻𝐶𝐻𝑂 

(4.47) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 1.278 − 0.662𝑇 − 1.254𝑅𝐻 + 0.013𝐶𝑂2 + 0.282𝑇𝑉𝑂𝐶 − 0.576𝐻𝐶𝐻𝑂 (4.48) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑉𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 0.997 − 0.848𝑇 − 0.398𝑅𝐻 + 0.316𝐶𝑂2 − 0.487𝑇𝑉𝑂𝐶
+ 0.448𝐻𝐶𝐻𝑂 

(4.49) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 0.437 − 0.222𝑇 + 0.401𝑇𝑉𝑂𝐶 − 0.939𝐻𝐶𝐻𝑂 − 0.084𝑅𝑆𝑃 (4.40) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝐷𝑟𝑦 𝑇ℎ𝑟𝑜𝑎𝑡 = 0.638 + 0.338𝑇 + 0.401𝑇𝑉𝑂𝐶 − 0.939𝐻𝐶𝐻𝑂 − 0.084𝑅𝑆𝑃 (4.51) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑅𝑎𝑠ℎ𝑒𝑠𝑠 𝑜𝑟 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠
= 0.680𝑇 − 0.732𝑇𝑉𝑂𝐶 + 0.172𝐻𝐶𝐻𝑂 + 0.171𝑅𝑆𝑃 + 0.649𝐴𝑀
− 0.191 

(4.52) 

𝐼𝑛 𝑖𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒
= 0.012 + 0.818𝑇 + 0.329𝑇𝑉𝑂𝐶 − 0.135𝐻𝐶𝐻𝑂 − 0.419𝑅𝑆𝑃
− 0.023𝐴𝑀 

(4.53) 

  

NORTHEAST MONSOON  

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 0.224𝑇 + 1.1348𝑅𝐻 + 0.423𝐶𝑂2 − 0.30𝑇𝑉𝑂𝐶 + 0.483𝐻𝐶𝐻𝑂
+ 0.037𝑅𝑆𝑃 − 0.512 

(4.54) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑
= 0.234 − 0.312𝑇 + 0.664𝑅𝐻 − 0.099𝐶𝑂2 − 0.529𝑇𝑉𝑂𝐶
+ 0.686𝐻𝐶𝐻𝑂 − 0.277𝑅𝑆𝑃 

(4.55) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑎𝑛𝑑 𝑙𝑒𝑡ℎ𝑒𝑟𝑔𝑦
= 0.683 + 1.766𝑅𝐻 + 0.048𝐶𝑂2 + 0.153𝑇𝑉𝑂 + 0.180𝐻𝐶𝐻𝑂
+ 0.216𝑅𝑆𝑃 

(4.56) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.532𝑇 + 1.32𝑅𝐻 + 0.269𝐶𝑂2 − 0.1131𝑇𝑉𝑂𝐶 + 0.629𝐻𝐶𝐻𝑂
− 0.380𝑅𝑆𝑃 − 0.987 

(4.57) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 0.903𝑇 + 0.822𝑅𝐻 − 0.175𝑇𝑉𝑂𝐶 − 0.118𝐻𝐶𝐻𝑂 − 0.061𝑅𝑆𝑃 − 0.475 (4.58) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑉𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 1.671𝑇 + 1.943𝑅𝐻 + 0.183𝑇𝑉𝑂𝐶 − 0.108𝐻𝐶𝐻𝑂 + −0.266𝑅𝑆𝑃
− 1.810 

(4.59) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 0.551 − 1.345𝑅𝐻 + 0.006𝐴𝑀 + 0.805𝐻𝐶𝐻𝑂 + 0.475𝑅𝑆𝑃 (4.60) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝐷𝑟𝑦 𝑇ℎ𝑟𝑜𝑎𝑡
= 0.666𝑇 + 1.114𝑅𝐻 + 0.369𝑇𝑉𝑂𝐶 − 0.406𝐻𝐶𝐻𝑂 − 0.182𝑅𝑆𝑃
+ 0.310𝐴𝑀 

(4.61) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑅𝑎𝑠ℎ𝑒𝑠𝑠 𝑜𝑟 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠
= 1.548𝑇 + 1.930𝑅𝐻 + 0.369𝑇𝑉𝑂𝐶 − 0.406𝐻𝐶𝐻𝑂 − 0.182𝑅𝑆𝑃
+ 0.318𝐴𝑀 

(4.62) 

𝐼𝑛 𝑖𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒 = 1.429𝑇 + 1.517𝑅𝐻 + 0.161𝑇𝑉𝑂𝐶 − 0.229𝐻𝐶𝐻𝑂
= 0.033𝑅𝑆𝑃 + 0.007𝐴𝑀 − 1.281 

(4.63) 

 

Table 4.29 shows a resume of the statistical model results performance for two 

models (SWM and NEM) for each dependent variable in S1. The first column of Table 

4.29 presents the statistics test most often used in GLM and represents measures of 

dispersion that permit testing model quality. Values from Table 4.29 confirm that model 

NEM, especially headache (39.345), fatigue or lethargy (39.096), drowsiness (24.595), 
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dizziness (33.530), nausea or vomiting (15.518), cough (31.488), hoarse or dry throat 

(29.929) and irritation of the eye (49.851) has the lowest value, as shown by the 

statistical tests compared to SWM which is especially headache (40.301), fatigue or 

lethargy (40.452), drowsiness (36.139), dizziness (36.001), nausea or vomiting 

(35.642), cough (34.557), hoarse or dry throat (38.536) and irritation of the eye (51.117) 

for AIC value. These statistical tests are obtained using all the deviations between the 

estimated and recorded (residuals) for each observation. Considering the Akaike 

Information Criterion, the objective is to minimise AIC. Model SWM, such as feeling 

heavy-headed (47.921) and skin rashness (44.493), has the lowest AIC compared to 

NEM with feeling heavy-headed (49.995) and skin rashness (46.234). This showed that 

the best SWM model was for feeling heavy-headed and skin rash due to having the 

lowest AIC value compared to NEM. When comparing the quantile of a chi-square 

distribution with n-p degrees of freedom (n-number of observations, p-number of 

estimated parameters), it is possible to measure the suitability of models. Results of 

deviance show that the two are suitable.  

 

Table 4.29 Goodness of Fit (S4) 

 SWM NEM 

 Value df Value/df Value df Value/df 

Headache       

Deviance .971 12 .081 1.039 12 .087 

Scaled Deviance 18.160 12  18.172 12  

Log Likelihood -13.151   -12.673   

Akaike's Information Criterion (AIC) 40.301   39.345   

Finite Sample Corrected AIC (AICC) 51.501   50.545   

       

Feeling Heavy Headache       

Deviance 1.523 12 .127 2.338 12 .195 

Scaled Deviance 18.250 12  18.381 12  

Log Likelihood -16.960   -17.998   

Akaike's Information Criterion (AIC) 47.921   49.995   

Finite Sample Corrected AIC (AICC) 59.121   61.195   

       

Fatigue Or Lethargy       

Deviance 1.766 12 .147 1.625 14 .116 

Scaled Deviance 18.289 12  18.267 14  

Log Likelihood -13.226   -14.548   

Akaike's Information Criterion (AIC) 40.452   39.096   

Finite Sample Corrected AIC (AICC) 51.652   44.096   

       

Drowsiness       

Deviance 1.524 12 .127 1.537 13 .118 

Scaled Deviance 18.250 12  18.252 13  

Log Likelihood -11.070   -6.298   

Akaike's Information Criterion (AIC) 36.139   24.595   
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Finite Sample Corrected AIC (AICC) 47.339   32.232   

       

Dizziness       

Deviance 1.299 12 .108 1.590 13 .122 

Scaled Deviance 18.214 12  18.261 13  

Log Likelihood -11.000   -10.765   

Akaike's Information Criterion (AIC) 36.001   33.530   

Finite Sample Corrected AIC (AICC) 47.201   41.167   

       

Nausea and vomiting       

Deviance 1.483 12 .124 .372 13 .029 

Scaled Deviance 18.244 12  18.062 13  

Log Likelihood -10.821   -1.759   

Akaike's Information Criterion (AIC) 35.642   15.518   

Finite Sample Corrected AIC (AICC) 46.842   23.155   

       

Cough       

Deviance 1.755 12 .146 1.655 13 .127 

Scaled Deviance 18.288 12  18.272 13  

Log Likelihood -10.278   -9.744   

Akaike's Information Criterion (AIC) 34.557   31.488   

Finite Sample Corrected AIC (AICC) 45.757   39.124   

       

Hoarse Or Dry Throat       

Deviance 1.266 12 .105 1.070 12 .089 

Scaled Deviance 18.208 12  18.176 12  

Log Likelihood -12.268   -7.964   

Akaike's Information Criterion (AIC) 38.536   29.929   

Finite Sample Corrected AIC (AICC) 49.736   41.129   

       

Skin Rash or Itchiness       

Deviance 1.288 13 .099 1.388 12 .116 

Scaled Deviance 18.212 13  18.228 12  

Log Likelihood -16.247   -16.117   

Akaike's Information Criterion (AIC) 44.493   46.234   

Finite Sample Corrected AIC (AICC) 52.130   57.434   

       

Irritation of Eye       

Deviance 1.735 12 .145 2.394 12 .199 

Scaled Deviance 18.284 12  18.390 12  

Log Likelihood -18.559   -17.925   

Akaike's Information Criterion (AIC) 51.117   49.851   

Finite Sample Corrected AIC (AICC) 62.317   61.051   

       

       

 In Table 4.30, the Omnibus test was run. An omnibus test is a comprehensive 

test used to determine whether there are any overarching effects or differences in a 

model or set of variables. It is an initial screening instrument to assess a general 

hypothesis concerning variables. The results of an omnibus test often suggest a 

substantial effect; however, they do not offer precise information regarding its location. 

The most straightforward method of comprehending the omnibus test is to ascertain 

whether there are any significant relationships or differences in a dataset. The likelihood 
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ratio chi-squared was calculated and employed in the context of model fitting, such as 

in regression models or structural equation modelling, to compare nested models, as the 

data collected consisted of two distinct datasets: the southwest monsoon (SWM) and 

the northeast monsoon (NEM). 

Model SWM such as feeling heavy-headed (p=0.07), skin rashness and itchiness 

(p=0.019) and irritation of the eye (p=0.043) has the lowest significance in Table 4.30, 

which shows the best significance when the likelihood ratio chi-square value is higher 

compared to NEM significant value for feeling heavy headed (2.007) skin rashness and 

itchiness (13.699) and irritation of the eye (5.638). The present symptoms of NEM 

include headache, fatigue or lethargy, drowsiness, nausea or vomiting, cough, and 

hoarse and dry throat, which has the lowest significant value compared to the SWM 

model.  

Table 4.30 Omnibus Testa (S4) 

 Likelihood Ratio Chi-Square df Sig. 

Headache   

SWM 6.378 5 .019 

NEM 12.676 5 .000 

Feeling Heavy Headache   

SWM 2.007 5 .007 

NEM 2.013 5 .847 

Fatigue Or Lethargy   

SWM 7.791 5 .068 

NEM 12.522 3 .047 

Drowsiness    

SWM 4.224 5 .018 

NEM 11.610 4 .007 

Dizziness    

SWM 3.201 5 .049 

NEM 4.585 4 .033 

Nausea and vomiting   

SWM 4.722 5 .045 

NEM 11.795 4 .019 

Cough    

SWM 3.702 5 .033 

NEM 4.772 4 .012 

Hoarse Or Dry Throat   

SWM 18.284 5 .030 

NEM 27.082 5 .015 

Skin Rash or Itchiness   

SWM 13.699 5 .019 

NEM 6.456 4 .048 

Irritation of Eye    

SWM 5.638 5 .043 

NEM .448 5 .094 
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 Table 4.31 shows the southwest and northeast monsoon equation at Raia Hotel 

& Convention Centre Terengganu (S4). Equation (4.64) Headache was increased by 

0.187 unit when T variables go up by one unit, 0.428 unit in decreasing one unit of RH, 

0.235 unit for the decreasing in one unit of AM, 0.449 unit when CO2 decreased by one 

unit, and 0.303 unit decreased in one unit of RSP in exponential term. 

Equation (4.65), Feeling heavy headed was increased by 0.006 when T variables 

go up by one unit, 0.381 unit of RH in decreasing one unit of feeling heavy headed, 

increased 0.070 unit of feeling heavy headed caused AM to go up one unit, decreasing 

0.421 unit and 0.397 unit of feeling heavy headed, increased one unit of CO2 and RSP 

in exponential term. 

Equation (4.66), Fatigue or lethargy increased by 0.263 units when RSP 

variables went up one unit, 0.102 unit,0.461-unit,0.475unit and 0.825 unit of fatigue 

and lethargy increased when one unit of T, RH, AM, and CO2 in an exponential term. 

Equation (4.67), Drowsiness increased by 0.141 unit when T variables went up 

one unit, 0.014 unit and 0.236 unit of drowsiness increased when one unit of AM and 

CO2 increased, decreasing 0.596 unit and 0.350 unit of drowsiness increased when one 

unit of RH and RSP decreased in exponential term. 

Equation (4.68), Dizziness increases by 0.015 units and 0.162 units when one 

unit of RH and AM increases one unit, decreases by 0.510unit, 0.122unit and 0.286 unit 

of dizziness when increasing one unit of T, CO2 and RSP in an exponential term. 

Equation (4.69), Nausea or vomiting increases by 0.111 units when one unit of 

T increases, decreases by 0.308 units of nausea or vomiting when one unit of T, 

decreases by 0.483 units, 0.410 units and 0044 units of nausea or vomiting when 

increasing one unit of AM, CO2, and RSP in exponential term. 

Equation (4.70): Cough increased by 0.253 units and 0.254 units when one unit 

of T and CO2 increased, decrease by 0.189 unit and 0.361 unit of cough when increase 
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of one unit of RH and RSP, increase of 0.058 unit of cough when one unit of AM 

increase in the exponential term. 

Equation (4.71), Hoarse or dry throat increased by 1.189 units and 0.574 units 

when RH and RSP increased one unit, decreased by 0.229-unit, 0.40 unit, and 0.482 

unit of hoarse or dry throat when one unit of T, AM, and CO2 increase in exponential 

terms in exponential term. 

Equation (4.72), skin rash and itchiness increase by 0.037 units and 0.018 units 

when one unit of RH and AM increase, decrease by 0.547-unit, 0.015 unit and 0.388 

unit of skin rash and itchiness when increasing one unit of T, CO2 and RSP in 

exponential term. 

Equation (4.73), eye irritation increases by 0.725 units and 0.199 units when one 

unit of RH and AM decreases by 0.433 units, 0.361 units and 0.872 units of eye irritation 

when one unit of T, CO2 and RSP is in exponential terms. 

Table 4.31 shows the equation of the northeast monsoon at Raia Hotel & 

Convention Centre Terengganu (S4). Equation (4.74), Headache increases by 0.377 

units, 0.266 units, 0.451 units and 0.076 units when T, RH, CO2 and RSP increase one 

unit, decreases by 0.073 units of headache when increasing one unit of AM 

exponentially. 

Equation (4.75), Feeling heavy-headed increases by 0.378-unit, 0.394 unit and 

0.272 units, when increasing one unit of T, CO2 and RSP, decreases by 0.147 unit and 

0.378 unit of feeling heavy headed when one unit of AM and RH increase in exponential 

term. 

Equation (4.76), Fatigue and lethargy increase by 0.259 units when one unit of 

T increases, 0.730 units of fatigue and lethargy increase when one unit of AM increases 

and increase by 0.308 unit of fatigue and lethargy when one unit of CO2 in an 

exponential term. 
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Equation (4.77), Drowsiness increases by 0.370 units and 0.086 units when one 

unit of T. RSP decreases drowsiness by 0.070 units and 0.074 units when increasing one 

unit of AM and RH in an exponential term. 

Equation (4.78), Dizziness increases by 0.067 units when one unit of T decreases 

by 0.610 units, 0.253 units and 0.673 units when increasing one unit of AM, RSP and 

CO2 exponentially. 

Equation (4.79), Nausea or vomiting increase by 0.892 units and 0.146 units 

when one unit of T and CO2 increase, decreases by 0.165 units and 0.303 units of nausea 

or vomiting when one unit of AM  and RSP in exponential term in an exponential term. 

Equation (4.80), Cough increases by 1.004 units and 0.911 units when one unit 

of RH and CO2 decreases by 0.062 units and 0.026 unit of cough increases exponentially 

by one unit of T and AM. 

Equation (4.81), Hoarse and dry throat increase by 0.953 units when one unit of 

T increases, decrease by 0.367-unit, 0.285-unit, 0.012 unit and 0.284 unit of the hoarse 

and dry throat when one unit of AM, CO2, RH and RSP in exponential term. 

Equation (4.82), Skin rashness and itchiness increase by 1.084 units and 0.225 

units when increasing one unit of T and AM and decrease by 0.226 units and 1.458 units 

when increasing one unit of CO2 and RH in an exponential term.  

Equation (4.83), Irritation of the eyes increases by 0.169 unit, 0.261 unit and 

0.032 unit when one unit of T, AM and CO2 decreases by 0.023 unit when increasing 

one unit of RH in an exponential term. 
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Table 4.31 Equation of Raia Hotel and Convention Centre (S4) 

SOUTHWEST MONSOON  

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 1.355 + 0.187𝑇 − 0.428𝑅𝐻 − 0.235𝐴𝑀 − 0.449𝐶𝑂2 − 0.303𝑅𝑆𝑃 (4.64) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑
= 1.245 − 0.006𝑇 − 0.381𝑅𝐻 + 0.070𝐴𝑀 − 0.421𝐶𝑂2 − 0.397𝑅𝑆𝑃 

(4.65) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑎𝑛𝑑 𝑙𝑒𝑡ℎ𝑒𝑟𝑔𝑦
= 1.242 + 0.102𝑇 − 0.461𝑅𝐻 − 0.475𝐴𝑀 − 0.825𝐶𝑂2 + 0.263𝑅𝑆𝑃 

(4.66) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.847 + 0.141𝑇 − 0.596𝑅𝐻 + 0.014𝐴𝑀 + 0.236𝐶𝑂2 − 0.350𝑅𝑆𝑃 (4.67) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 0.869 − 0.510𝑇 + 0.015𝑅𝐻 + 0.162𝐴𝑀 − 0.122𝐶𝑂2 − 0.286𝑅𝑆𝑃 (4.68) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑉𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 0.890 − 0.308𝑇 + 0.111𝑅𝐻 − 0.483𝐴𝑀 − 0.410𝐶𝑂2 − 0.044𝑅𝑆𝑃 

(4.69) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 0.422 + 0.253𝑇 − 0.189𝑅𝐻 + 0.058𝐴𝑀 + 0.058𝐴𝑀 + 0.254𝐶𝑂2

− 0.361𝑅𝑆𝑃 

(4.70) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝐷𝑟𝑦 𝑇ℎ𝑟𝑜𝑎𝑡
= 1.189𝑅𝐻 − 0.229𝑇 − 0.408𝐴𝑀 − 0.482𝐶𝑂2 + 0.574𝑅𝑆𝑃 − 0.121 

(4.71) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑅𝑎𝑠ℎ𝑒𝑠𝑠 𝑜𝑟 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠
= 1.179 − 0.547𝑇 + 0.037𝑅𝐻 + 0.018𝐴𝑀 − 0.015𝐶𝑂2 − 0.388𝑅𝑆𝑃 

(4.72) 

𝐼𝑛 𝑖𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒
= 1.785 − 0.433𝑇 + 0.725𝑅𝐻 + 0.199𝐴𝑀 − 0.361𝐶𝑂2 − 0.872𝑅𝑆𝑃 

(4.73) 

  

NORTHEAST MONSOON  

𝐼𝑛 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 0.305 + 0.377𝑇 − 0.073𝐴𝑀 + 0.266𝑅𝐻 + 0.451𝐶𝑂2 + 0.076𝑅𝑆𝑃 (4.74) 

𝐼𝑛 𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑
= 0.589 + 0.378𝑇 − 0.147𝐴𝑀 − 0.378𝑅𝐻 + 0.394𝐶𝑂2 + 0.272𝑅𝑆𝑃 

(4.75) 

𝐼𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑎𝑛𝑑 𝑙𝑒𝑡ℎ𝑒𝑟𝑔𝑦 = 0.005 + 0.259𝑇 + 0.703𝐴𝑀 + 0.308𝐶𝑂2 (4.76) 

𝐼𝑛 𝐷𝑟𝑜𝑤𝑠𝑖𝑛𝑒𝑠𝑠 = 0.266 + 0.370𝑇 − 0.070𝐴𝑀 − 0.074𝑅𝐻 + 0.086𝑅𝑆𝑃 (4.77) 

𝐼𝑛 𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠 = 1.002 + 0.067𝑇 − 0.610𝐴𝑀 − 0.253𝑅𝑆𝑃 − 0.673𝐶𝑂2 (4.78) 

𝐼𝑛 𝑁𝑎𝑢𝑠𝑒𝑎 𝑜𝑟 𝑉𝑜𝑚𝑖𝑡𝑡𝑖𝑛𝑔
= 0.459 + 0.953𝑇 − 0.367𝐴𝑀 − 0.285𝐶𝑂2 − 0.012𝑅𝐻 − 0.284𝑅𝑆𝑃 

(4.79) 

𝐼𝑛 𝐶𝑜𝑢𝑔ℎ = 0911𝑅𝐻 − 0.062𝑇 − 0.026𝐴𝑀 + 1.004𝐶𝑂2 − 0.417 (4.80) 

𝐼𝑛 𝐻𝑜𝑎𝑟𝑠𝑒 𝑜𝑟 𝐷𝑟𝑦 𝑇ℎ𝑟𝑜𝑎𝑡
= 0.666𝑇 + 1.114𝑅𝐻 + 0.369𝑇𝑉𝑂𝐶 − 0.406𝐻𝐶𝐻𝑂 − 0.182𝑅𝑆𝑃
+ 0.310𝐴𝑀 

(4.81) 

𝐼𝑛 𝑆𝑘𝑖𝑛 𝑅𝑎𝑠ℎ𝑒𝑠𝑠 𝑜𝑟 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠 = 0.861 + 1.084𝑇 + 0.255𝐴𝑀 − 0.226𝐶𝑂2 − 1.458𝑅𝐻 (4.82) 

𝐼𝑛 𝑖𝑟𝑟𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑦𝑒 = 0.591 + 0.169𝑇 + 0.261𝐴𝑀 + 0.032 + 0.032𝐶𝑂2 − 0.023𝑅𝐻
= 0.121𝑅𝑆𝑃 

(4.83) 

 

The forecasted SBS symptoms (dependent variables) concentrations for the 

model derived at all sites were plotted in Table 4.32 against observed values to 

determine a good fit of the models for both SWM and NEM at each study area. The 

regression lines also show a 95% confidence interval. Table 4.32 presents the R² values, 

a statistical measure used to evaluate the accuracy of the forecasted SBSS in relation to 

the observed SBS symptoms data. The R² values provide insight into how well the 

forecasted model aligns with actual conditions across various study areas, with higher 

values indicating a better fit between the forecasted and observed data. Most of the 

points fall within a 95% confidence interval range. The R2 for headache validation was 

0.8225 during SWM and 0.9597 for NEM at S1, same with others study areas which 

consist of S2, S3, and S4 for northeast monsoon (NEM) has the highest value of R2 than 
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SWM model for headache symptoms. Sekolah Kebangsaan Tanjung Gelam (S1) has the 

highest value of R2 during NEM with 0.9597 and the lowest value of headache model 

located at Raia Hotel & Convention Centre Terengganu (S4) during the SWM 

(R2=0.5485). 

Feeling heavy is one of the indicators contained in SBSS; the study showed that 

R2 for all study areas or sites was between 0.5801 (S1)—0.7397(S4) for SWM and 

0.5815 (S1)—0.7930(S3) for NEM. Each site's lowest values for both monsoons for 

feeling heavy-headed symptoms in Table 4.32 were S1 (R2=0.5801, SWM), S2 

(R2=0.6407, NEM), S3 (R2=0.7129, SWM), and S4 (R2=0.6820, NEM).  

Fatigue and lethargy were the subsequent symptoms experienced by the workers 

in all study areas during SWM and NEW. In comparison to NEM (R2=0.6035), SWM 

(R2 =0.7937) exhibited a higher R2 value for fatigue and discomfort (S1). R2=0.5918 is 

the value of NEM for S2, which is greater than the value of SWM (R2=0.5252). S3 

demonstrated that the NEM (R2=0.8119) model had a more excellent value than the 

SWM (R2=0.7263) model. Lastly, the S4 model was more valuable during the NEM 

(R2=8675) period than the SWM (R2=0.6823) period.  

The questionnaire included a query regarding drowsiness, which was a 

significant SBS symptoms. The value of S1 is lesser in NEM (R2=4014) than in SWM 

(R2=0.7797). Table 4.32 demonstrated that S2 exhibits a higher value during NEM 

(R2=0.6590) than SWM (R2=5644). S3 is significantly higher during SWM (R2=0.8752) 

than during NEM (R2=0.5766). According to S4, the R2 value for NEM was 0.7673, 

higher than that of SWM (0.5192). 

The R2 value during NEM was superior to that of SWM, as evidenced by the 

dizziness in S1. Specifically, for SWM, the R2 was 0.9949, while for NEM, it was 

0.5834. The R2 value of S2 is 0.6159 (SWM), which is higher than the R2 value of 

0.5380 (NEM). S3 exhibits a lower value during NEM (R2=0.5766) than SWM 

(R2=6159). Compared to SWM (R2=0.7400), S4 exhibits a higher R2 value during NEM 

(R2=0.8792). 
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The R2 value for nausea and vomiting at S1 is higher during SWM at 0.9070 

than in NEM at 0.7704. S2 exhibits a higher R2 during NEM (0.800) than SWM 

(0.6478). Then, S3 has a lower R2 value during NEM (0.7310) than SWM (0.8476). S4 

was higher during NEM (0.8447) than SWM (0.6293). 

The next subject is cough, and S1 demonstrated that SWM (R2= 0.8180) has a 

higher R2 value than NEM (R2= 0.5465). S2 exhibited a poorer R2 value (0.6144) during 

NEM than SWM (0.6490).  The R2 value was significantly higher during the northeast 

monsoon (R2=8970) than during the southeast monsoon (R2=0.5957), as demonstrated 

by S3. S4 exhibits a high value of 0.8071 during NEM, in contrast to SWM R2 of 0.5279.  

The R2 value for hoarse and dry throat is higher during SWM (0.8182) than 

during NEM (0.7751). S2 has the most significant value during NEM with R2=0.5850 

and SWM with R2=0.5543. The S3 value was significantly higher during SWM (0.8476) 

than the R2 value of the NEM (0.800). Finally, S4 exhibits a lower R2 value during 

SWM (0.6664) than NEM, which has R2=0.53539.  

The R2 value for skin rashness or itchiness is most significant during NEM, with 

an R2 of 0.9288, compared to SWM, which has an R2 =0.9240 at S1. Similarly, the R2 

value for S2 is highest during NEM compared to SWM. The R2 value of S3 during SWM 

is 0.8760, significantly higher than that of NEM, which is 0.7041. Similarly, S4 has the 

most outstanding R2 value during SWM, which is higher than that of NEM.  

The R2 value of SWM (0.9355) is the highest compared to NEM (0.9016) for 

eye irritation. Conversely, S2 has a high R2 value with NEM (R2=0.5457) and SWM 

(R2=0.5383). S3 demonstrated that the R2 value was maximum during SWM 

(R2=0.8271) compared to NEM (R2=0.6724). The final site, S4, demonstrated that the 

R2 value was equally high for both monsoonal seasons (R2=0.5284). 
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Table 4.32 Comparative R² Values of Forecasted SBS symptoms Versus Observed 

SBS symptoms Across All Study Areas 

Symptoms Site SWM NEM 

Headache S1 0.8225 0.9597 

S2 0.6284 0.6969 

S3 0.6755 0.7129 

S4 0.5485 0.6404 

Feeling heavy headache S1 0.5801 0.5815 

S2 0.7177 0.6407 

S3 0.7129 0.7930 

S4 0.7397 0.6820 

Fatigue or lethargy S1 0.7937 0.6035 

S2 0.5252 0.5918 

S3 0.7263 0.8119 

S4 0.6829 0.8675 

Drowsiness S1 0.7797 0.4014 

S2 0.5644 0.6590 

S3 0.8752 0.5766 

S4 0.5192 0.7673 

Dizziness S1 0.5834 0.9949 

 S2 0.6159 0.5380 

S3 0.8257 0.5766 

S4 0.7400 0.8792 

Nausea and vomiting S1 0.7704 0.9070 

S2 0.6478 0.800 

S3 0.8476 0.7310 

S4 0.6293 0.8447 

Cough S1 0.8180 0.5465 

S2 0.6490 0.6144 

S3 0.5957 0.8970 

S4 0.5209 0.8071 

Hoarse and dry throat S1 0.8182 0.7751 

S2 0.5543 0.6420 

S3 0.8476 0.800 

S4 0.6664 0.8389 

Skin rash or itchiness S1 0.9240 0.9288 

S2 0.5472 0.5850 

S3 0.8760 0.7041 

S4 0.6277 0.5108 

Irritation of eye S1 0.9355 0.9016 

S2 0.5383 0.5457 

S3 0.8271 0.6724 

S4 0.5284 0.5284 
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4.1.6 Model Validation 

4.2 Discussion 

The discussion of each objective in the completion of this chapter is illustrated 

in this section. Section 4.2.1 discussed sick building syndrome (SBS) symptoms and 

compliance with indoor air pollutants (IAP) with the standard in each study area, 

representing the sub-dominant economy in Terengganu. The discussion of 

computational fluid dynamics simulation for all study areas is illustrated in Section 

4.2.2, while the discussion of the principal component analysis (PCA) is presented in 

Section 4.2.3. Finally, a gamma model was employed to construct and validate a 

generalized linear model (GLM) for each study area with distinct monsoonal seasons. 

4.2.1 A discussion regarding the symptoms of Sick Building Syndrome (SBS) 

symptoms and the corresponding compliance for indoor air quality (IAQ) 

 

Pat 3-month symptoms 

Past 3-month symptoms consist of draught, room temperature too high, varying 

room temperature, room temperature too low, stuffy bad air, dry air, unpleasant odour, 

passive smoking, dust, and dirt. Most workers agreed that they faced drought for the 

past three months with the answer “Yes, sometimes”. The sensitivity to draught is 

increased in vented areas due to higher air velocity and turbulence, which are influenced 

by several factors (Vardoulakis et al., 2020). This increased sensitivity is particularly 

noticeable around the head region. In addition, the impression of draughts is affected 

by the air temperature, as lower temperatures increase the chances of experiencing 

discomfort (Markov et al., 2020). Efficient control of ventilation systems and external 

factors is essential for maintaining a balance between interior air quality and thermal 

comfort while reducing the discomfort caused by draughts (Maung et al., 2022). The 

perception of air movement and draughts in indoor situations is affected by various 
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factors, including air velocity, temperature, turbulence, and individual thermal sensation 

(Mutlu, 2020). Periodic changes in air movement can improve thermal comfort without 

creating a draught, whereas elevated temperatures typically increase the tolerance for 

air circulation (Bhattacharya et al., 2020). Human activity and the rate at which air 

changes also significantly impact the formation of interior airflow patterns and air 

quality (Gao et al., 2020). Gaining knowledge of these factors can assist in maximising 

interior environments for enhanced comfort and air quality (Wang & Norback, 2021). 

Room temperature too high is a considerable proportion of individuals 

experiencing room temperatures as too high, a perception that is frequently linked to 

elevated absolute air humidity and fluctuating room temperatures (Zuo et al., 2020). 

Higher indoor temperatures, particularly over 30°C, in conjunction with elevated 

humidity levels, result in heightened physiological strain and discomfort, hence 

reducing the acceptability of indoor air quality (Wang & Norbäck, 2021). 45.0% of the 

participants perceived too high room temperature, which can indicate a poor thermal 

environment (Wang & Norback, 2021). A previous study found that 45.5% of the 

residents in S1 agreed that the temperature in their workplace, namely the teacher's 

room, was too hot. Among the teachers, 45.5% answered "Yes, sometimes" during the 

study for both monsoonal variations, whereas 88.9% answered the same during SWM 

and 66.7% during NEM at S3. 

Varying room temperature in conjunction with elevated humidity (70%) has a 

substantial impact on physiological strain (such as increased heart rate and respiration 

rate) and discomfort, resulting in a decline in perceived air quality and an increase in 

symptoms of SBS symptoms (Capua et al., 2023; Tsoulou et al., 2021). Peak cognitive 

and occupational performance is attained within the temperature range of 22°C to 24°C. 

Varying room temperatures may reduce performance and heighten health hazards, such 

as dry eyes and respiratory symptoms (Mansouri et al., 2022; Chang et al., 2015). 

Occupants in all study areas mostly agreed that they face varying room temperatures, 

and only a few workers disagreed for both monsoonal areas at all parameters, as shown 

in Table 4.2 
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The study revealed that the room temperature in the study areas, namely TMG 

Mart (S2) and Raia Hotel Convention Centre Terengganu (S4), was often temperature 

too low at a particular time. The occupants of these workplaces agreed that the 

temperature was sometimes too low, with 66.7% (SWM) and 60.6% (NEM) of S2 

occupants and 33.3% (SWM) and 66.7% (NEM) of S4 occupants answering "Yes, 

sometimes". Additionally, 66.7% of S4 occupants answered "Yes, often" when asked if 

the temperature was too low, as shown in Table 4.2. Low room temperatures can 

substantially impact indoor air quality by influencing thermal comfort, health, and 

overall environmental quality (Wilby et al., 2021; Wolkoff, 2018). The ideal indoor 

temperatures for comfort and performance often range from 22°C to 24°C (Nagy et al., 

2022). Low temperatures, frequently combined with reduced humidity, can increase 

health risks and discomfort (Liu et al., 2022). Adequate air movement and adequate 

building insulation are crucial in reducing these adverse impacts and ensuring a stable 

and healthful interior atmosphere (Wilby et al., 2021). 

Prolonged exposure to insufficient indoor air quality, characterised by stuffy bad 

air, can result in many health issues, including illness, increased absenteeism, reduced 

focus, fatigue, drowsiness, and undesirable symptoms such as respiratory problems or 

headaches (Mansor et al., 2024; Vornanen-Winqvist et al., 2020). It can also contribute 

to impaired performance in daily activities (Lolliet et al., 2022; Wen et al., 2019). The 

findings of this study revealed that a significant majority of workers at S1 experienced 

poor air quality, with 90.9% reporting stuffy air during the southwest monsoon (SWM) 

and 81.8% reporting the same during the northeast monsoon (NEM). In addition to the 

63.6% occurrence during SWM and 51.5% during NEM for S2, there was a 75% 

occurrence during SWM and 62.5% during NEM for S3. Furthermore, in the 

last study area, S4, 61.1% agreed that individuals experienced stuffy and poor air 

quality, with a frequency of "Yes, sometimes" occurring approximately 2-3 times per 

week.  

Dry air is one of the past 3-month symptoms asked in the questionnaire. 

Moisture recovery systems in residential ventilation significantly decrease the number 

of hours of dry air compared to heat recovery systems, improving indoor air humidity 

and health (Kremer et al., 2021). The presence of dry air within a structure can be 
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attributed to various reasons, all of which can contribute to a decrease in interior 

humidity. These factors include the heating system (Awada et al., 2022; Demanega et 

al., 2021), air conditioning (Kumar et al., 2023; Nezis et al., 2019), ventilation (Tran et 

al., 2020), outdoor climate (Asumadu-Sakyi et al., 2019), building material (Sarkar, 

2019), dehumidifier (Awada et al., 2021; Park et al., 2019), and seasonal variations 

(Mansouri et al., 2022; Kuang, 2020). One way to combat dry air should consider 

employing a humidifier to introduce moisture, enhance airflow, or ensure the 

appropriate functioning of heating and cooling systems (Byber et al., 2021; Chang et 

al., 2015). Perceived "dry air" in indoor environments is caused by low indoor air 

humidity, indoor air pollutants, dry eyes and throat, and nasal diseases, with potential 

links to dry eyes, throat, and respiratory issues (Zainordin et al., 2022; Wolkoff, 2018). 

The questionnaire enquired about an unpleasant odour; most workers reported 

not experiencing it as a symptom over the last three months. Specifically, 45.5% of 

NEM and SWM workers at S1 disagreed, while 6.1% of SWM workers and 12.1% of 

NEM workers disagreed at S2. Additionally, 38.9% of workers reported experiencing 

the stench during both monsoon seasons at S4, while no workers answered "No, never" 

at S3. Enhancing the intensity of ventilation in indoor environments has been found to 

increase the perceived air quality and decrease the intensity of odours. This 

improvement in air quality and reduced odours contribute to the comfort and health of 

the individuals occupying the building (Chattopadyay & Shaw, 2021; Kraus & 

Senitkova, 2019). Displacement of ventilation systems in buildings has the potential to 

enhance air quality. However, it is essential to note that the downward airflow along 

walls may increase the concentration of contaminants in the occupied area, as Choi et 

al. (2020) highlighted. This statement explains why workers at that site never 

experience unpleasant odours. The building has big windows and doors that allow for 

proper ventilation (Chuang et al., 2023). A blower is installed within the structure to 

enhance the ventilation system further. 

According to Kuga et al. (2020), smoking in enclosed areas may worsen indoor 

air quality and pose health concerns to occupants. Research conducted by Khoa et al. 

(2023) has proven that the aerosols inhaled by secondary smokers or passive smokers 

are a secondary source of emissions in indoor environments. Passive smokers can be 
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exposed to these aerosols through both respiratory and cutaneous pathways, which can 

lead to symptoms such as drowsiness and a dry, hoarse throat. The study found that 

passive smoking is positively correlated with hoarse dry throat symptoms during NEM 

(r=0.591, p<0.01) and SWM (r=0.581, p<0.05). Additionally, passive smoking is 

significantly associated with drowsiness during NEM at S2 (r=0.452, P<0.01) and 

during SWM (r=0.552, p<0.01), which is shown in additional analysis in Appendix B. 

Over the previous three months, the most recent symptoms experienced were 

related to dust and dirt. These factors can be attributed to open windows and doors, 

unclean air filters, and routine daily activities. Irrespective of the underlying reason, the 

presence of airborne dust indoors can lead to significant health problems. Individuals 

with allergies and asthma are more likely to be conscious that dust significantly 

negatively influences respiratory health (Nazzal et al., 2023; Ezhumalai et al., 2021). 

Indoor particulate matter (PM) or respirable suspended particulate (RSP) can have 

severe health effects and is a potential health hazard due to people spending most of 

their time indoors (Zhang et al., 2021; Maskova et al., 2020). Indoor air pollution, 

particularly RSP, is associated with reduced lung function, oxygen saturation, childhood 

asthma, and chronic obstructive pulmonary disease (COPD) symptoms towards 

occupants (Maung et al., 2022). Indoor concentrations of RSP are higher than outdoors, 

increasing during working hours, and are associated with health effects like eye 

irritation, dry throat, runny nose, sneezing, cough, tiredness, irritability, headache, 

dizziness, and skin irritation (Nezis et al., 2019). According to the results, most workers 

acknowledged being exposed to dust and filth (Table 4.2). The percentage of occurrence 

during the Southwest Monsoon (SWM) and Northeast Monsoon (NEM) at S1 is 81.8%. 

During both monsoonal seasons at S2, the percentage is 75.8%.  In S3, the percentages 

are 12.5% during SWM and 6.25% during NEM; in S4, the percentages are 16.7% 

during SWM and 27.8% during NEM. The answer to "Do these events occur?" is "Yes, 

sometimes." Only S4 workers have a significantly high percentage, 77.8%, who 

disagree with the statement that they encountered dust and dirt during SWM. 

Additionally, 55.6% of S4 workers responded with "No, never" when asked about this 

issue. 
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Present symptoms 

The initial present symptom was headache. The majority of the workers in the 

study area, who represent sub-dominant economies or sub-sectors of education, 

wholesale and trade, manufacturing, and hospitality, reported experiencing headaches 

on a "Yes, sometimes" or "Yes, often" basis more than 50% workers (refer to Table 4.3). 

Elevated concentrations of respirable suspended particulate (RSP) or particulate matter 

(PM2.5 and PM10) in workplace settings are linked to a range of health issues, such as 

headaches (Nezis et al., 2019). Indoor levels of RSP frequently surpass the guidelines 

set by the World Health Organization (WHO), particularly in buildings that rely on 

classic ventilation, such as fans and blowers (Felgueiras et al., 2022; Kapalo et al., 

2020). This remark aligns with the findings of the survey, which indicate that the most 

significant percentages of workers who answered "Yes, sometimes" were from the 

teachers' room at Selolah Kebangsaan Tanjung Gelam (S1) (72.7%, SWM; 72.7%, 

NEM) and Mset Inflatable Composit Corporation Sdn. Bhd (S3) (68.8%, SWM; 87.5%, 

NEM), both of which have classic ventilation compared to S2 and S4 which used air-

conditioning. Excessive levels of indoor pollutants in workplaces are linked to 

heightened health symptoms, such as headaches, exhaustion, and dermatological 

problems (Sakellaris et al., 2020). 

The second symptom that has been assessed is experiencing a sensation of 

heaviness in the head or feeling heavy-headed. Indoor air pollution significantly 

contributes to chronic diseases and poses a substantial health risk for residents (Mentese 

et al., 2020). An initial symptom experienced was a sensation of heaviness in the head, 

which can be attributed to elevated levels of indoor air pollutants within buildings. 

These higher pollutant levels are linked to sick building syndrome symptoms, whereas 

lower levels are connected with improved respiratory health within buildings 

(Campagna & Desai, 2019). Prolonged exposure to poor indoor air quality can result in 

several health issues, including illness, absenteeism, reduced focus, fatigue, drowsiness, 

respiratory problems, mental sluggishness, and lower activity performance (Mansor et 

al., 2024; Dang et al., 2022). The findings of this study were supported by most workers 

who reported feeling heavy-headed. This was indicated by their "Yes, sometimes" 

responses across all study areas, as shown in Table 4.3. 
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The workers experienced indications of fatigue and lethargy. Further 

investigation is required to tackle work-induced exhaustion in high-risk worker groups, 

considering various risk categories and poor indoor air quality (Cunningham et al., 

2022). Mainka et al. (2019) state that increasing ventilation during working hours can 

reduce CO2 concentration by 55-64% without compromising thermal comfort or 

causing weariness or lethargy among occupants. This finding is significant because 

most individuals in the study region reported experiencing exhaustion or lethargy. 

Specifically, 63.6% of teachers in the teachers' room reported feeling this way during 

the monsoon season in S1, while 48.5% reported the same in S2 (Table 4.3).  At S4, the 

percentages were 66.7% for SWM and 50% for NEM. These respondents indicated that 

they sometimes felt fatigue or lethargy. Fatigue can arise from a mix of reasons, 

including medical diseases, illnesses, bad lifestyle choices, employment issues, poor 

indoor air quality, bereavement, and stress (Goudarzi et al., 2024; Xiao et al., 2021; 

Settimo et al., 2020; Sadick et al., 2020). According to Tran et al. (2020), it is necessary 

to have appropriate work balances and comfortable working environments in order to 

prevent these symptoms. 

Dizziness and drowsiness are frequently confused by many individuals due to 

their similar tone, leading them to believe that they are synonymous mistakenly. In 

short, dizziness refers to the sensations of syncope, unbalance, and a swirling feeling, 

while sleepiness is a condition that includes excessive and uncontrollable sleep (Salju 

et al., 2023; Aziz et al., 2023). Elevated levels of carbon dioxide (CO2) and air 

pollutants, such as total volatile organic compounds (TVOC) and formaldehyde 

(HCHO), in the workplace are known to be contributing factors to drowsiness (Choi et 

al., 2020; Awada et al., 2021). Office plants have the potential to decrease CO2 levels 

and potentially mitigate CO2-related health issues, such as drowsiness and increased 

systolic blood pressure (Chuang et al., 2023; Vardoulakis et al., 2020). Additionally, 

regulating air conditioning and lighting settings can enhance the productivity of office 

workers by 8.3% while maintaining comfort and reducing tiredness and headaches 

(Byber et al., 2021; Kogo et al., 2019). A prior study examines the sources of indoor air 

pollution and suggests novel architectural approaches to mitigate indoor air pollution. 

This study aims to tackle the increasing problem of sick building syndrome in 

residential and occupational settings, particularly symptoms such as headaches, fatigue, 
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dizziness, drowsiness, coughing, and eye irritation (Lanzoni, 2023; Adiningsih & 

Hairuddin, 2021). 

Individuals residing or working in buildings with inadequate indoor air quality 

may experience various symptoms, including headaches, eye irritation, fatigue, dry 

throat, sinus congestion, dizziness, and nausea. These symptoms can be caused by 

various illnesses, making the diagnosis of sick-building syndrome challenging (Tanir & 

Mete, 2022). Chemical pollutants (gas and vapour), emissions stemming from the 

products used in the building (like floor or wall covering, office equipment, furniture, 

insecticide, cleaning products), accidental spillage of chemicals and products used for 

construction purposes, adhesives, paints and combustion products such as carbon 

monoxide, formaldehyde, and nitrogen dioxide are included in this group and can cause 

nausea or vomiting if exceed the limit (Guagliardi et al., 2022; Salari et al., 2023; 

Samudro et al., 2022; Babaoglu et al., 2020). Some of the most harmful chemicals that 

are contained inside the buildings are CO, formaldehyde (HCHO) and total volatile 

organic compound (TVOC) (Samudro et al., 2022). These types of pollutants are 

odourless, colourless gases and block the movement of oxygen in the body (Szabados 

et al., 2022). It can have many effects depending on how much is breathed in (Salari et 

al., 2023). It can affect coordination, worsen heart conditions, and cause extreme 

tiredness, headache, confusion, nausea, and dizziness (Tsantaki et al., 2022). 

A previous study revealed that the prevalence of dermal SBS among workers 

was relatively lower than in this study in different types of buildings, ranging from 

11.9% to 15.9%, for dermal symptoms, compared to this study, which ranges from 

9.1%-55.6% during SWM and 9.1%-55.6% for NEM at study area (Dhungana & 

Chalise., 2020). Dermal SBSS consists of scaling and itching besides skin rash and 

itchiness (Geng et al., 2023; Surawattanasakul et al., 2022). Other studies found a 

greater prevalence of weekly dermal (8.1% to 70.5%) in workplace building (Quoc et 

al., 2020; Chang et al., 2015). The high prevalence of SBS symptoms among workers 

in workplace settings could be influenced by multiple factors, including individual 

characteristics, working conditions, and building factors, especially indoor air quality. 
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Currently, most workers, ranging from 70 to 90%, are employed in industrial 

and indoor settings (Wang et al., 2022Quoc et al., 2022). Indoor air quality significantly 

impacts workers' health, especially sick building syndrome (SBS) symptoms 

(Dhungana & Chalise, 2020). Sick Building Syndrome (SBS) symptoms has emerged 

as a significant issue in public health and occupational settings because a majority of 

office workers spend around 90% of their working hours in indoor environments 

(Tsantaki et al., 2022). The United States Environmental Protection Agency (U.S. EPA) 

coined the term Sick Building Syndrome (SBS) to refer to a medical condition where 

individuals in buildings exhibit unexplained symptoms or feelings of illness (Szabados 

et al., 2022; Jeong et al., 2021; Edimansyah., 2009). Sick Building Syndrome (SBS) 

symptoms is a collection of general symptoms such as headache, fatigue, and irritation 

of the upper respiratory tract, nose, throat, eyes, hands, and facial skin (Szalanski et al., 

2023; Cunningham et al., 2022). The condition's intensity increases as the duration of 

individuals' stay in a building increases, and it improves or disappears when people exit 

the building (Ahmad et al., 2023; Surawattanasakul et al., 2022). SBS might appear in 

several work environments, including office buildings, factories, or other work 

structures (Dahari et al., 2020; Choi et al., 2020). Based on a report from the World 

Health Organisation (WHO), Sick Building Syndrome (SBS) has the potential to impact 

almost 30% of employees in newly constructed and refurbished buildings globally 

(Awada et al., 2021; Cotta et al., 2020). This can lead to substantial decreases in 

productivity, higher rates of employee absence, and more significant turnover among 

occupants, which are the factors that contribute to the risk of Sick Building Syndrome 

(SBS) (Anake & Nnamani., 2023; Azuma et al., 2018). These factors include personal 

characteristics and working conditions, such as work-related stress, psychosocial issues, 

and allergy disorders (Maung et al., 2022). Building-related factors also affect SBS (Lu 

et al., 2018). Various building-related factors, such as insufficient HVAC systems, 

humidity, noise, indoor air pollutants (IAP) like particulate matter (PM), volatile organic 

compounds (VOCs), carbon monoxide (CO), formaldehyde, and carbon dioxide (CO2), 

can all contribute to Sick Building Syndrome (SBS) (Tarragona et al., 2024; Azuma et 

al., 2018). While the causes of SBS may stem from multiple sources in this intricate 

setting, most of the risk factors are associated with indoor air quality (IAQ) (Salari et 

al., 2023; Maung et al., 2022; Choi et al., 2020). 
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Trend of indoor air quality 

This finding is consistent with the other studies from the tropical climate zones, 

including Malaysia (Fan & Ding, 2022; Lim et al., 2015) and Taiwan (Chang et al., 

2015) which the finding of this study showed that there is the improvement of SBSS 

during the wet season (NEM) rather than dry monsoon (SWM) (Table 4.3) with the  RH 

for each study area with range 72.92%-90.68% (S1), 57.77%-82.29% (S2), 68.25%-

89.57% (S3), 69.15-71.2% (S4) for SWM and  76.13-86.04% (S1), 61.52-66.47% (S2), 

67.37%-89.95% (S3), 67.19-71.6% (S4) for NEM and temperature at all sectors was in 

between 24⁰C-32⁰C.  As recommended by ICOP IAQ 2010, indoor RH should be not 

lower than 40% and not more than 70%, and the acceptable ranges vary between 30% 

and 80% according to the IAQ standards in other East and Southeast Asian countries 

(Niza et al., 2023; Zhu et al., 2021; Wahab et al., 2015). Maintaining an indoor 

temperature between the range of 22-24°C and relative humidity of 40-60% is essential 

for ensuring adequate indoor air quality (IAQ) and minimising health issues such as 

headaches (Zhu et al., 2024; Wolkoff et al., 2021). Extreme high or low temperatures 

can impair work performance and elevate the likelihood of experiencing headaches and 

hoarse, dry throat (Tainio et al., 2021; Selinheimo et al., 2019). Raising the humidity 

level from 50% to 70% at temperatures of 26 and 30°C does not have a notable impact 

on physiological reactions, thermal comfort, perceived air quality, or symptoms of Sick 

Building Syndrome (SBS) (Chuang et al., 2023). However, at 37°C, individuals 

experience increased heat sensation and discomfort and find it more challenging to 

accept the indoor air quality (Niza et al., 2023). Optimal indoor humidity between 40% 

and 60%, combined with optimal room temperature, can improve health and work 

performance and reduce the risk of infection in office-like environments. However, high 

relative humidity of more than 80% can cause fatigue or lethargy among occupants 

besides increasing room temperature, especially in Asia with hot-humid climates (Byber 

et al., 2021; Wolkoff et al., 2021). Increasing relative humidity from 50% to 70% at 26 

and 30°C did not significantly affect physiological responses (Szałański et al., 2023). 

However, at 37°C and humidity, more than 80% of occupants felt hotter and more 

uncomfortable, making indoor air quality more difficult to accept (Zuo et al., 2020). 

This situation showed that S1 and S3 have higher temperatures and relative humidity 

than S2 and S4. S1 and S3 had open ventilation, which used a fan and blower and open 
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windows and door, while S2 and S4 had closed ventilation, which used centralised air 

conditioning. Open ventilation helps maintain a consistent temperature throughout your 

building and is mainly influenced by ambient air (Ahlawat et al., 2020; Zhang et al., 

2021). Close vents in certain rooms those areas can become significantly hotter or 

colder than the rest of the building. This can create discomfort and lead to mould growth 

due to the lack of proper ventilation (Demanega et al., 2021).  

Many sources can cause formaldehyde (HCHO) inside the building. HCHO is 

found in three sub-economies: education (S1), wholesale and trade (S2), and boat-

making manufacturing (S3). HCHO concentration for S1 is between 0.03-0.04 ppm for 

SWM and 0.018-0.020 ppm for NEM. The present HCHO comes from cabinetry and 

shelving made from pressed wood products that can emit formaldehyde (Fang et al., 

2022). This type of cabinet and shelve consists of the teacher's room. Paints, varnishes, 

and sealants use formaldehyde as a preservative, which can release the compound as it 

dries (Zin et al., 2023; Zhang et al., 2021). During SWM, painting activities are 

conducted during sampling hours, which caused the measurement of HCHO to 

fluctuate. The concentration of HCHO at S2 is almost the same for both monsoonal 

seasons, consisting of 0.02-0.04 ppm during SWM and 0.02-0.03 ppm during NEM. 

HCHO concentration at S2 is contributed by cleaning products due to the reading of 

HCHO sparks when the cleaning activities were conducted around S2. Cleaning 

products and air fresheners may contain formaldehyde or formaldehyde-releasing 

agents (Huang et al., 2020). S3 has HCHO fluctuation that started to spark when the 

workers at boat-making manufacturing started to combine the fibre and use glue, 

ranging from 0.010-0.014 ppm during SWM and 0.019-0.052 ppm during NEM. Many 

boat builders use composite materials containing formaldehyde-based resins, such as 

phenolic or urea-formaldehyde (Rajan & Rainosalo., 2023). These resins can release 

formaldehyde during and after the curing process, and certain adhesives and sealants 

used in boat construction and repair can contain formaldehyde or formaldehyde-

releasing compounds (Nuryawan et al., 2020). More orders for new boats and 

maintenance were conducted during NEM rather than SWM, which the director 

manager and workers in S3 have informed us. 
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Total volatile organic compounds (TVOC) were observed primarily in S3. The 

concentration of TVOC ranged from 0 to 6.5 parts per million (ppm) during the 

Southwest Monsoon (SWM) and from 0 to 0.19 ppm during the Northeast Monsoon 

(NEM). TVOCs, or Total Volatile Organic Compounds, are a significant problem in the 

boat manufacturing sector because of the potential release of these compounds into the 

air through different materials and procedures. TVOCs can be found in boat production 

because many boat-builders use polyester and epoxy resins. These resins can potentially 

release TVOCs during curing (Yang et al., 2022). Gel coatings, which create a smooth 

and durable surface, can also include VOCs or Volatile Organic Compounds (Sersic, 

2023; Mosallaei et al., 2021). While not as prevalent, certain paints and varnishes may 

include formaldehyde or preservatives that release formaldehyde. In addition, several 

cleaning agents utilised during the boat manufacturing procedure may contain 

formaldehyde or compounds that release formaldehyde (Zin et al., 2023; Sapuan et al., 

2022). Specific forms of insulation often employed in boats, such as fibreglass batt or 

foam board containing binders with formaldehyde, have the potential to emit 

formaldehyde gradually (Wang et al., 2024). 

Particulate matter or respirable suspended particles were quantified for all areas 

under study. The concentration of S1 is 0.038-0.050 mg/m3 for SWM and 0.025-0.035 

mg/m+ for NEM. The particle levels were elevated between 0830 and 0930 hours due 

to increased activity and movement within the teacher's room as the teachers prepared 

for instruction. S2 placed the RSP measurement within the range of 0.021-0.030 mg/m3 

for SWM and 0.014-0.027 mg/m3 for NEM. On the other hand, S3 positioned it within 

0.04-0.134 mg/m3 for SWM and 0.05-0.32 mg/m3 for NEM. The most recent 

measurement for RSP at S4 ranged from 0.021 to 0.035 mg/m3 using the SWM method 

and from 0.026 to 0.037 mg/m3 using the NEM method. Resuspended particulate matter 

(RSP) originating from several sources, such as flooring, furniture, and carpets, can 

increase the levels of particulate matter (Alkaabi et al., 2023). Additionally, dust and 

debris can accumulate in ventilation and air conditioning (HVAC) systems and circulate 

throughout the facility (Long et al., 2023). This remark applies to all sites except 

housekeeping, where RSP can accumulate in the research area. When sanding and 

grinding composite materials such as fibreglass and carbon fibre, RSP can be released 

into the air. This can also occur when spray painting (Maung et al., 2022). If the 
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appropriate equipment or processes are not employed, the coatings have the potential to 

emit delicate particulate matter (Patel et al., 2020). Boat interiors or construction using 

wood components can generate dust when cut, shaped, or finished (Zhang et al., 2022). 

Manipulating foam materials for insulation or flotation can generate tiny particles, and 

cleaning procedures can cause dust to become airborne from surfaces or equipment 

(Krebs et al., 2021). This statement supports a higher concentration level in the RSP at 

S3 compared to other study areas. 

Higher exposure to CO2 in office spaces or workplaces is moderately associated 

with some sick building syndrome symptoms, such as dry throat, tiredness, and 

dizziness, and lowering indoor CO2 levels below 700 ppm can help reduce the risk of 

sick building syndrome among office workers, increase employee performance, 

productivity, and overall health (Niza et al., 2023). Higher CO2 concentrations are 

associated with increased perceived stuffy odour and skin SBS symptoms, while higher 

relative humidity reduces mucosal and skin SBS symptoms, but this benefit weakens 

with high CO2 concentrations (Hou et al., 2021). All CO2 concentrations in the study 

area were under limit, and the highest CO2 concentration was at S4 during SWM with 

674.22 ppm. A CO2 concentration of 400-1,000 ppm in indoor settings is considered 

acceptable (Taheri & Razban, 2021). This range is commonly used as a guideline for 

maintaining good indoor air quality in homes, offices, and public spaces. CO2 is often 

measured in indoor environments to indicate quickly if additional ventilation is required 

(De Oliveira et al., 2019; Dai et al., 2018). This study showed that ventilation was 

sufficient for the number of building workers. Increasing the number of occupants 

significantly impacts CO2 production inside the buildings, requiring minimum outdoor 

ventilation rates to maintain good indoor air quality (Yalcin et al., 2018), and this proves 

why S1 and S3 have lower CO2 concentration due to their open ventilation rather than 

S2 and S4. 

I/O ratio 

The infiltration capacity for gaseous chemicals and smaller particles determines 

the I/O ratio, with higher values indicating more significant infiltration. Meteorology 

and turbulence are essential factors influencing indoor pollution conditions, as Alonso-
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Blanco et al. (2023) stated. The indoor-outdoor ratio quantifies the difference between 

the concentration of a substance indoors and its corresponding concentration outdoors 

(Jeong et al., 2021). I/O ratios of 1.2 or higher suggest that the concentration of indoor 

pollutants is higher than that of outside pollutants, and this difference can be attributable 

to sources within the indoor environment (Maskova et al., 2020; Oh et al., 2019). I/O 

ratios ranging from 0.8 to 1.2 suggest that the indoor concentration is comparable to the 

outdoor concentration. On the other hand, I/O ratios of 0.8 or lower show that the indoor 

concentration is lower than the outdoor concentration, indicating the potential influence 

of environmental factors (Alonso-Blanco et al., 2023). The I/O ratio varies based on 

pollutants, with higher infiltration capacity for gaseous compounds and smaller 

particles, and meteorology and turbulence play key roles in influencing indoor pollution 

conditions (Alonso-Blanco et al., 2023). The indoor-outdoor ratio assesses the disparity 

between the indoor concentration and the corresponding outdoor levels (Jeong et al., 

2021). The I/O ratios of 1.2 or greater indicate that the indoor concentration exceeds 

that of the outdoors and may be attributed to indoor sources (Maskova et al., 2020; Oh 

et al., 2019). I/O ratios of 0.8-1.2 indicate that the indoor concentration is equivalent to 

that of the outdoors, and I/O ratios of 0.8 or less indicate that the indoor concentration 

is less than that of the outdoors, illustrating the possibility of outdoor influence (Alonso-

Blanco et al., 2023; Alvino et al., 2018). 

The I/O ratio suggested that indoor and outdoor air infiltration was comparable, 

except TVOC, which originated from indoor sources. The sources mentioned in the 

study conducted by Hu and Zhao (2020) encompassed resin, paint, paint thinner, and 

aldehydes, all of which were utilised in the manufacturing process of boats (Altendorf 

et al., 2023). The input/output (I/O) ratios for S3 were 1.48 (NEM) and 1.52 (SWM), 

indicating that indoor sources in the research region are responsible for these values. 

According to Krebs et al. (2021), if outdoor RSP concentrations increase by 

10%, interior concentrations often increase by an average of 4.2-6.1% within 5 hours. 

The extent of this increase is affected by factors such as the age of the building and the 

prevailing climate conditions. Outdoor elements substantially impact indoor exposure 

to respirable suspended particles (RSP), and indoor air quality is also influenced by the 

chemical components present in HVAC systems (Xu et al., 2020). The sources of RSP 
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can originate from within the building. In this study, only the boat-making 

manufacturing sector (S3) in the sub-sector of manufacturing has an input-output ratio 

of more than 1.2 during both monsoonal seasons, precisely 1.38 during the SWM and 

1.43 during the NEM. Sanding and grinding composite materials such as fibreglass and 

carbon fibre can release fine dust particles into the air (Yan et al., 2022; Shrestha et al., 

2019). These particles can significantly source respirable suspended particles (RSP) 

inside buildings. 

Throughout all monsoons, the level of carbon dioxide (CO2) indoors was the 

same as the level outside, with an indoor-to-outdoor (I/O) ratio ranging from 0.92 to 

1.14 for both monsoon variations in all research areas. (Zhu et al., 2021). Individuals 

consistently release carbon dioxide through exhalation. Increased occupancy in space 

leads to elevated levels of carbon dioxide (CO2), especially in regions with inadequate 

ventilation and insufficient air circulation inside the building (Paleologos et al., 2021). 

Engaging in intense physical activity inside a limited area, such as exercising or 

breathing heavily, can elevate the concentration of carbon dioxide (CO2) and establish 

it as the primary source of CO2 within the structure (Angelova et al., 2021). Insufficient 

ventilation can lead to carbon dioxide (CO2) accumulation, mainly when there is 

restricted air exchange with the outside (Hattori et al., 2022; Birmili et al., 2021 ). 

4.2.2 Simulation of Computational Fluid Dynamics 

In the simulation you describe, several key observations can be made about the 

airflow and ventilation dynamics within the study area building, including fresh air 

distribution, velocity changes, velocity and pressure gradients, and turbulence (Bhatti 

et al., 2020; Barbosa & Brum, 2018). The introduction of fresh air through the inlet 

causes it to circulate and mix with the air already present in the room, which includes 

air exhaled by the occupants (Fernandez et al., 2023; Pei & Rim, 2021). This circulation 

is depicted by vectors indicating airflow velocity and direction, showing how the fresh 

air spreads throughout the room. The velocity decreases as the airflow moves from the 

inlet towards the outlet. This is a common phenomenon in ventilation systems where 
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the airflow slows down due to various factors such as friction with surfaces, changes in 

direction, or mixing with other air masses (Marashian et al., 2023).  

At a cut plane near the ventilation fan, there are noticeable gradients in both 

velocity and pressure. This suggests that the airflow experiences significant changes in 

speed and pressure as it passes through this area, likely due to the influence of the fan, 

which creates a high-pressure zone and accelerates the airflow (Goodarzi et al., 2023). 

The contour map of turbulent kinetic energy at this cut plane reveals high turbulence 

near mechanical ventilation. Turbulent kinetic energy measures the turbulence intensity 

in the airflow (Filho et al., 2021). High turbulence near the fan indicates that the air is 

mixing vigorously, typical around mechanical ventilation systems, as they introduce and 

disperse air rapidly (Capua et al., 2023; Kochkov et al., 2019). In summary, the 

simulation shows how fresh air is distributed and mixed within the room, how the 

airflow velocity changes as it moves through the room, and how the mechanical 

ventilation system generates turbulence (Bousiotis et al., 2023; Canha et al., 2021). The 

observed pressure, velocity gradients, and high turbulence near the fan indicate the 

complex dynamics in ensuring adequate ventilation in varying conditions. 

Both monsoons, which include SWM and NEM, suggest that the simulation 

accounts for different seasonal or weather conditions affecting the room's ventilation. 

The high turbulence observed for both monsoon conditions implies that the mechanical 

ventilation system is dealing with significant variability in airflow due to external 

factors like wind or temperature changes. The simulation accuracy for SWM was 91.9% 

for S1, 77.75% for S2, 88.06% for S3, and 89% for S4. The simulation accuracy for 

NEM was 89.57% for S1, 70.64% for S2, 86.62% for S3, and 91.17% for S4. Validate 

the model by comparing its results with experimental data or analytical solutions and 

choose relevant benchmarks for the specific problem (Nakora et al., 2020). Refine the 

model for RSP parameters, air movement and boundary conditions based on comparison 

results to improve accuracy (Fermo et al., 2021). Use error percentages and 

convergence criteria to assess how well your model fits the experimental data based on 

the nature of data in the study area (Bousiotis et al., 2023). 
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4.2.3 Principal Component Analysis (PCA) as source apportionment 

The data set must have an acceptability or adequacy score of more than 0.5 to 

proceed with Principal Component Analysis (PCA) (Greenacre et al., 2022). The KMO 

results indicate that the data meets this requirement. Bartlett's test yielded a statistically 

significant p-value of less than 0.05 (p-value < 0.05), precisely 0.00 (Beattie et al., 2021; 

Kherif & Latypova, 2020). Both tests demonstrated that all data sets met the Principal 

Component Analysis (PCA) criteria. The KMO and Bartlett's Test values are provided 

for all sites. The KMO and Bartlett's Test values meet the requirement for Principal 

Component Analysis (PCA), as shown in Table 4.6. The KMO Test yielded a range of 

0.440 to 0.702, indicating that all sites demonstrated sufficient data adequacy. Results 

from source apportionment analysis consist of 3 principal components (PCs) consisting 

of physical condition and inadequate ventilation, physical activities, and chemical 

exposure for all study areas. 

Physical condition and inadequate ventilation 

Indoor air temperature (T) and relative humidity (RH) are crucial for 

maintaining good indoor air quality (IAQ). Managing indoor conditions is especially 

important in Terengganu, where outdoor air is cold (NEM) and dry (SWM). Indoor 

humidity is often higher than outdoor levels due to moisture sources inside buildings. 

This can increase moisture loads on building materials. Adequate ventilation removes 

excess humidity and temperature and maintains good IAQ. Municipal buildings with 

higher occupancy need more ventilation than fewer occupant buildings to manage CO_, 

incredibly open ventilation (S1, S3), and closed ventilation (S2, S4). Managing indoor 

temperature and humidity effectively is essential for comfort, health, and building 

integrity, especially in the variables in SWM and NEM. 

The assessment of indoor air quality (IAQ) often relies on measuring the 

concentration of CO2 inside the space. The current concentration of CO2 in the ambient 

air ranges from 300 to 700 parts per million (ppm), as reported by Branco et al. (2019), 

Telejko and Zender-Swiercz (2016), and Sireesha (2017). The content of carbon dioxide 

(CO2) inside the room grew due to the presence of occupants and gas equipment, which 
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are familiar sources of CO2. The amount of carbon dioxide (CO2) produced by people 

inside a structure is influenced by their physical activities, the effectiveness of the 

building's ventilation system, their health condition, food, and other factors (Subri et 

al., 2024; Mainka et al., 2018; Telekjo & Zender-Swiercz, 2016). The concentrations of 

CO2 were naturally in direct proportion to the number of occupants. Insufficient supply 

of air movement can result in stagnant CO2 concentration within the building (Zender 

et al., 2019). This aligns with the results presented in Table 4.12. The principal 

components analysis (PCA) revealed a strong correlation between air movement and 

CO2 concentrations across the study area, indicating a significant link between these 

variables. The relationship between CO2 and AM is observed in the principal 

components PC-1 during the monsoonal season at S1, with a contribution of 31.389%. 

In addition, PC-1 during the Southwest Monsoon (SWM) at S2 has a contribution of 

22.635%, PC-3 during the Northeast Monsoon (NEM) at S2 has a contribution of 

19.071%, PC-1 for both SWM (37.790%) and NEM (42.583%) at S3, and PC-2 

(23.231%) for SWM and PC-1 (28.523%) for NEM at S4 (Table 4.8-4.12). 

Physical activities- Respirable particulates 

Depending on where the respirable particulate, also known as respirable 

suspended particulate (RSP), comes from, indoor particle pollution is divided into 

primary and secondary RSP. Primary indoor pollutants are produced directly by home 

interior activities like sanding, housekeeping, faxing, photocopying machines, smoking 

tobacco, cleaning, and other indoor tasks based on the building activities (Sani et al., 

2021). Pollutants seep into the building from the outside world, and particles produced 

by chemical interactions between indoor and outdoor sources are examples of secondary 

RSP (Zhang et al., 2021). Additionally, human activity in the rooms or spaces may cause 

dust resuspension or RSP, especially for S2 and S3 for both the monsoonal season and 

S1 (NEM). PC-3 (NEM) S1; PC-3(SWM), PC-1(NEM) for S2; PC-3 (SWM) for S3; 

PC-2 (NEM), PC-1(SWM) S4. RSP is emitted from paints, cleaning agents, and air 

fresheners, and VOCs can interact with other substances to form fine particles. Specific 

chemical reactions within the indoor environment can produce secondary particulate 

matter. These events result in PCs forming in RSP and other chemicals such as PC-1 

(SWM) in S4, PC-2 (NEM) in S3, and PC-2 in S1 during SWM. The contribution of 
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these chemicals is 31.415% (Table 4.11), 65.453% (Table 4.10), and 17.873% (Table 

4.8), respectively. 

Chemical exposures 

The chemical exposure was classified based on various chemical pollutants in 

all research sites, including HCHO, TVOC, CO, and RSP. TVOC stands for total 

volatile organic compound concentration in the air. Formaldehyde is a distinct VOC 

with its characteristics and health hazards (Suwanaruang, 2023; Susanto et al., 2021). 

Simultaneously monitoring both factors can offer a holistic perspective on indoor air 

quality and the possible dangers it poses to health (Huang et al., 2020). Indoor 

formaldehyde (HCHO) can originate from wood furniture that contains adhesives with 

formaldehyde. Additionally, it can be produced within buildings through chemical 

reactions and combustion processes (Shrestha et al., 2019; Chen et al., 2018; 

Salthammer, 2019). Enhancing airflow and decreasing the number of people in recently 

built university dorms can enhance the quality of the air inside, thus supporting the 

health and well-being of the occupants. The citation is from Sarna et al in 2022. Carbon 

monoxide (CO) is an invisible and scentless gas that can pose a risk when it builds 

indoors (Saini et al., 2020). Carbon monoxide is generated through the incomplete 

burning of fuels that contain carbon. Common indoor sources of carbon monoxide 

include fuel-burning equipment like gas stoves and ovens. If these items are not 

correctly adjusted or are malfunctioning, they can release carbon monoxide (Jung et al., 

2023; Kakoulli et al., 2022). The presence of carbon monoxide (CO) was detected only 

at S1. This was caused by the residents cooking within the instructors' quarters, 

contributing to the CO levels. The indoor air quality in buildings in Seoul, Korea, 

typically exhibits elevated levels of pollutants due to several chemical processes and 

insufficient ventilation. Buildings located near roadways experience even greater levels 

of pollutants due to the dispersion of these substances (Altendorf et al., 2023; Kakoulli 

et al., 2018; Yang et al., 2015). This demonstrates that various actions conducted within 

the structures might produce chemical exposure within the structures. The findings of 

this study are consistent with the results of a previous study. Each pollutant (HCHO, 

TVOC, CO, and RSP) was grouped into the same categories called PCs. For example, 

PC-2 was associated with S1 during SWM (17.873%) and NEM (18.919%), PC-2 was 
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associated with SWM (22.635%) and NEM (19.866%) at S2, and PC-2 was associated 

with both monsoons at S3, with percentages of 24.169% (SWM) and 22.870% (NEM). 

PC-2 has a share of 23.231% in the SWM category and 24.642% in the NEM category 

for S4. 

4.2.4 Prediction of Indoor Air Quality and Sick Building Syndrome 

The study used various statistical methods to analyse the data, revealing that it 

did not follow a normal distribution. Initially, the Kolmogorov-Smirnov test confirmed 

this non-normality with a p-value less than 0.05, leading to the rejection of the null 

hypothesis of normality (Rodriguez, 2020; Jain & Mandowara, 2019). Consequently, an 

ANOVA was performed to investigate differences in air pollutant levels across stations, 

showing significant differences with a p-value of 0.000. Given the non-parametric 

nature of the data, the Kruskal-Wallis test was employed as an alternative to ANOVA 

(Kiurski et al., 2019). This test assessed differences across multiple samples under the 

null hypothesis of homogeneity with stochastic heterogeneity (Rayner & Livingston, 

2020). For model selection, the Akaike Information Criterion (AIC) was used to 

evaluate the relative quality of different models, with lower AIC values indicating better 

models (Anuar et al., 2021; Duris, & Tirpáková, 2020). An omnibus test was conducted 

to determine any overarching effects in the data (Yan et al., 2022; Tozzi et al., 2020; 

Portet, 2020). In contrast, the likelihood ratio chi-squared test was used to compare 

nested models across two distinct datasets: the southwest monsoon (SWM) and the 

northeast monsoon (NEM). 

GLM model with Gamma distribution showed that SBSS is related to indoor air 

quality. Each symptom contributes to physical and chemical performance indicators 

based on ventilation performances in the study area and activities conducted inside the 

building. The fluctuation of temperature and relative humidity in each research area and 

the chemical exposures resulting from the activities undertaken within the study area 

are the reasons for this phenomenon. The three critical parameters for assessing good 

indoor air quality (IAQ) are air movement (m/s), indoor relative humidity (%), and 

indoor air temperature (°C). These factors evaluate people's comfort level within a 
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building (Ma et al., 2021). A further critical issue is the level of airtightness in the 

building envelope. The optimal temperature indoors ranges from 20 to 22 °C (Kakoulli 

et al., 2022; Elshawi et al., 2019). Temperatures ranging from 23 to 26 °C are often 

considered comfortable in hot weather (Ma et al., 2021). However, most study sites 

were consistently above this threshold throughout the SWM period. An optimal indoor 

climate is characterised by a temperature ranging from 18 to 24 °C (Wei et al., 2022; 

Wang & Norbäck, 2021). Extreme temperature fluctuations can pose a risk to human 

well-being and result in headaches (Qabbal et al., 2022). Extreme temperatures and 

improper humidity levels can contribute to an environment where SBS symptoms are 

more likely to occur (Sani et al., 2021). Factors such as poor ventilation, inadequate 

temperature and humidity control, and indoor pollutants can all affect occupants' health 

and comfort. SBSS that occur due to poor indoor quality due to temperature and relative 

humidity are headache, feeling heavy-headed, fatigue or lethargy, drowsiness, 

dizziness, nausea or vomiting, cough, hoarse or dry throat, skin rashness and irritation 

of the eye (Ma et al., 2021; Samsuddin et al., 2018). 

TVOCs have irritant properties and can adversely affect respiratory health, 

leading to symptoms such as headaches, dizziness, weariness, eye irritation, hoarseness 

or dryness of the throat, and skin rashes (Borowski et al., 2022). Formaldehyde (HCHO) 

is classified as a volatile organic compound (VOC) and is recognized for its irritating 

solid properties. Prolonged or chronic exposure to formaldehyde can result in symptoms 

such as headaches, dizziness, nausea or vomiting, exhaustion, and irritation of the eyes, 

skin, and respiratory system (Reda et al., 2022). (Yang et al., 2023). The occupant is 

the primary contributor to indoor air pollution through inhaling pollutants emitted by 

the occupant (Tran et al., 2019; Scibor et al., 2019; Samsuddin et al., 2018). HCHO is 

generated through natural processes, although its global yearly production already 

surpasses 20 million (Heim et al., 2017). Formaldehyde (HCHO) significantly 

contributes to indoor and outdoor air pollution. Outdoor sources of formaldehyde 

(HCHO) can originate from the atmospheric interaction of volatile organic compounds 

(VOCs), the biosphere, fuel combustion, biomass burning, and transportation (Cong et 

al., 2019; Liu et al., 2019; Salthammer, 2019). Indoor formaldehyde (HCHO) can be 

present in wood furniture constructed using formaldehyde adhesives. Formaldehyde can 

also be produced within buildings through chemical reactions and combustion 
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processes. Research has indicated that outdoor formaldehyde (HCHO) significantly 

contributes to indoor pollution (Concilio et al., 2024; Chen et al., 2018; Salthammer, 

2019). Outdoor formaldehyde (HCHO) is a contributor to indoor pollution, along with 

other sources within buildings. This is mainly caused by releasing pollutants from 

powerful emission sources (Liu et al., 2019; Chen et al., 2018). 

Numerous investigations revealed a correlation between human dry eye, 

headache, feeling heavy-headed, dizziness, nausea, and cough due to indoor 

contaminants, especially CO2 (Yang et al., 2023; Conceicao et al.,2018). Furthermore, 

toxicological studies demonstrated that the primary pathogenic mechanisms behind 

ocular surface illnesses include oxidative damage, disruption of tight junctions, and 

chronic inflammation brought on by indoor pollution. CO2 concentration in indoor air 

pollution was high, caused by accumulation from indoor sources such as formaldehyde 

and other volatile compounds. These compounds lead to several health effects and 

symptoms on occupants, common headaches, loss of concentration, absenteeism, and 

fatigue (Fu et al., 2022; Chen et al., 2018). Besides that, low IAQ can increase the risk 

of people who have breathing problems, such as asthma sufferers or those with 

undeveloped immune systems, which mostly occurs among workers (Gialelis et al., 

2023; Piscitelli  et al., 2022; Branco, 2018). CO2 concentration inside the room is widely 

used as one of the criteria for assessing indoor air quality (IAQ). Contents of CO2 in 

atmospheric air currently range from 300- 700 ppm (Branco et al., 2019; Telekjo and 

Zender-Swiercz., 2016; Sireesha., 2017). The concentration of CO2 increased inside the 

room with living organisms and gas equipment as typical sources. The level of CO2 

released by building occupants depends on the physical activities of the occupants, 

health conditions, diet, etc. (Mainka et al., 2018; Telekjo and Zender-Swiercz., 2016). 

Concentrations of CO2 naturally were directly proportional to the number of occupants, 

and the make-up air supply was too low, depending on its concentration in the outdoor 

air (Laurent et al., 2021; Zender et al., 2019). The concentration of CO2 caused this in 

the exhaled air of people, and the allowable indoor CO2 concentration was 1000ppm for 

current IAQ standards (Mainka et al., 2018; Qiu et al., 2019; Telejko et al., 2016). 

1000ppm usually defined as maximum concentration of CO2 in case of mechanical 

ventilation controlled by CO2 sensors (Zender-Swiercz and Telekjo., 2019; Ferdyn-

Grygierek et al., 2019). Higher exposure to CO2 and total VOCs in office spaces is 
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moderately associated with some symptoms of sick building syndrome, such as dry 

throat, tiredness, and dizziness, and lowering indoor CO2 levels below 700 ppm can 

help reduce the risk of sick building syndrome among office workers (Niza et al., 2023; 

Latif et al., 2018; Morawska et al., 2017). 

It is commonly recognized that indoor RSP levels are significantly influenced 

by ambient (outdoor). The chemical makeup and disease burden of indoor RSP are 

significantly influenced by several other factors, such as indoor types of homes, offices, 

and commercial spaces; ventilation arrangements (naturally provided by windows or 

mechanical ventilation); occupancy rate and time; endotoxin levels; and geographic 

location (Braun et al., 2019). Microfibers released by weathering over time significantly 

negatively impact human lungs when inhaled and cause the formation of RSP (Drago 

et al., 2018).  RSP sources are caused by human habits, including opening windows 

often and engaging in other dust-producing indoor activities (Alvino et al., 2018).  

Human walking is a significant contributing component to indoor resuspension because 

it exposes human soles to the air while they are moving and can cause many SBSS such 

as headache, drowsiness, dizziness, fatigue of lethargy, skin rashness and irritation of 

eyes (Piscitelli et al., 2022; Zhang et al., 2021). Variations in temperature between 

indoor and outdoor spaces also alter natural ventilation by causing air to move, affecting 

the concentration of RSP indoors (Qiu et al., 2019). The rate at which RSP reduced as 

relative humidity increased (Ji et al., 2021). The higher the air exchange rate, RSP 

concentration inside was generally lower (Shaw et al., 2024). Seasonality is one crucial 

component affecting indoor RSP distribution (Chattopadhyay & Shaw., 2021; Jain & 

Mandowara, 2019). The concentration of RSP inside is influenced by building type and 

season. Compared to the NEM, SWM RSP concentration was noticeably greater (Han 

et al., 2015). According to epidemiological data from industrialized and developing 

countries ' areas, compared to wet and dry seasons (Li et al., 2024), there is a sharp 

increase in airborne RSP throughout the SWM (wet) and NEM (dry). There are 

monsoonal variations in the RSP distribution due to meteorological parameters such as 

wind speed, precipitation, soil and air temperature, and soil and atmospheric humidity 

(Kumar et al., 2023; Islam et al., 2021).  
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The optimal model for a gamma distribution is chosen by evaluating the 

accuracy of parameter estimates, conducting goodness-of-fit tests, and considering 

model selection criteria such as AIC (Khalid & Sarwat, 2021). Visual inspections 

conducted through plots and robustness tests serve to verify that the gamma distribution 

accurately represents the data. In addition, performance indicators, comprising error and 

accuracy measures, were utilized to identify the most suitable model, and the findings 

were consistent with the AIC value (Usman et al., 2022). The characteristics of the data, 

such as its distribution shape, sample size, presence of outliers, and quality, can all 

impact the fit and accuracy of the gamma distribution model (Jimenez et al., 2021; Han 

et al., 2015). Thorough evaluation of these parameters and the meticulous selection and 

validation procedures guarantee that the gamma distribution model is the most accurate 

representation of the data (Gurmach et al., 2022). Choosing the most suitable SBSS 

model between SWM and NEM is crucial based on this method. The fitted model for 

SWM consists of feeling heavy- headache (S1, S4), fatigue and lethargy (S1), 

drowsiness (S1, S3), dizziness (S2, S3), nausea and vomiting (S3), cough (S1, S2), 

hoarse or dry throat (S1, S3), skin rashness and itchiness (S3, S4), irritation of eye (S1, 

S3). 

The study highlights the performance of the Gamma Model in forecasting Sick 

Building Syndrome (SBS) symptoms during two different monsoon periods: the 

Northeast Monsoon (NEM) and the Southwest Monsoon (SWM). The analysis shows 

that the Gamma Model, particularly during NEM, demonstrated superior predictive 

capabilities compared to the SWM model for most symptoms related to SBSS. The 

performance indicators used in the study, including RMSE, MAE, NAE (error 

measures) and R², IA (accuracy measures), all point to the NEM model being more 

effective in reducing errors and improving accuracy. The low error rates in RMSE, 

MAE, and NAE during NEM, combined with higher R² and IA values, demonstrate the 

ability of the model to closely predict the observed outcomes (Correndo et al., 2021). 

For example, Site 1 for headache showed an RMSE of 2.201 and R² of 0.742, which are 

significantly better than the SWM model. Similarly, for other symptoms like dizziness 

and nausea, NEM outperformed SWM with considerably lower errors and higher 

accuracy rates. In specific cases, the error reduction was remarkable, particularly for 

dizziness and skin rash, where NEM reduced errors by 15.49% and 57.70%, 

respectively (S1). The accuracy improvement was also significant, with dizziness 
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improving by 86.70% and skin rash by 86.45%. These metrics indicate the robustness 

of the NEM model in forecasting SBS symptoms under varying indoor environmental 

conditions, influenced by air pollutants and other factors during the NEM. 

The study also proved the importance of variable selection and model screening 

before applying the Gamma Model (Dunder et al., 2018). The approach of using 

screening methods and selecting relevant variables enhanced the predictive 

performance of the NEM model, helping it deal with multivariate data sets and 

correlated variables more effectively. By addressing collinearity and improving the 

goodness of fit, the Gamma Model during NEM could capture the relationships between 

indoor air pollutants, ventilation, and SBS symptoms more accurately. However, despite 

its success in reducing multicollinearity and improving the model's fit, the study 

acknowledges that the Gamma Model still has limitations in fully mitigating 

multicollinearity due to the complexity of factors affecting dependant variables such as 

in this study SBS symptoms, such as physical and chemical air pollutants and 

ventilation performance indicators (Nardino et al., 2022). Nevertheless, the NEM model 

was able to provide more degrees of freedom and deliver reliable forecasts. 

In the comparison of the two monsoons, it is evident that the NEM model is 

more successful in predicting symptoms like headache, fatigue, dizziness, nausea, and 

skin rash. The influence of factors like temperature, relative humidity, and air pollutants 

is likely more pronounced during NEM, which could explain the model’s better 

performance during this period. The findings suggest that the environmental conditions 

during NEM have a stronger impact on SBSS, leading to better model accuracy. 

Interestingly, the SWM model was not without merit. For some symptoms like 

drowsiness, cough, and irritation of the eye, the SWM model demonstrated increased 

accuracy, with improvements up to 82.85% for hoarse or dry throat. This suggests that 

while NEM generally performed better, the SWM model is still relevant for specific 

SBS symptoms. 

The study successfully demonstrates that the NEM model is better equipped to 

predict SBS symptoms under the given conditions. By reducing errors and improving 

accuracy, especially for key symptoms like headache, dizziness, and skin rash, the NEM 

model proves to be a more effective forecasting tool for SBS symptoms compared to 

SWM. This highlights the importance of selecting appropriate models based on 
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environmental conditions and the specific variables influencing health outcomes within 

indoor environments. The improved predictive ability of the Gamma Model during 

NEM reinforces the need for detailed variable screening and collinearity management 

in air quality studies, as it enhances the accuracy and reliability of the forecasts. These 

findings can inform future research and interventions aimed at mitigating SBS 

symptoms, particularly in regions affected by varying monsoon season. 

 

The implementation of the Gamma model significantly enhanced its predictive 

ability, particularly during the NEM model, due to its capacity to handle multivariate 

datasets with highly correlated variables (Franklin et al., 2020; Kozama et al., 2018; 

Lengyel et al., 2004). This study employed the Gamma model to forecast daily air 

quality, demonstrating that appropriate imputation techniques can yield robust 

predictive models (Tran et al., 2018; Rashid et al., 2017). The selection of variables in 

the model helped mitigate collinearity issues, reducing the number of predictors and 

enhancing model performance. However, despite these advantages, the Gamma model 

could not entirely eliminate multicollinearity, particularly concerning factors 

influencing Sick Building Syndrome (SBS) symptoms, such as physical and chemical 

air pollutants and ventilation performance indicators (Abdullah et al., 2020; Deng et al., 

2020). Nevertheless, the Gamma model’s ability to address multi-collinearity issues and 

provide more degrees of freedom made it a valuable tool in this context (Tran et al., 

2018). 

This study explored the comparative effectiveness of the NEM and Southwest 

Monsoon (SWM) models in forecasting SBS symptoms influenced by indoor air 

pollutants. It was found that the NEM model generally outperformed the SWM model 

in predicting SBS symptoms due to its superior handling of factors like temperature, 

relative humidity, and air pollutants during the NEM period. The NEM model notably 

reduced the error rates for symptoms such as headaches (34.63%), fatigue or lethargy 

(20.97%), drowsiness (38.75%), nausea or vomiting (4.06%), hoarse or dry throat 

(40.57%), skin rash or itchiness (2.39%), and eye irritation (10.29%). Conversely, the 

SWM model demonstrated better performance in reducing errors for symptoms such as 

feeling heavy-headed (8.78%), dizziness (10.76%), and cough (31.55%). 
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The performance indicators highlighted that the NEM model could significantly 

increase accuracy, with notable improvements such as 47.36% for headaches, 66.72% 

for fatigue or lethargy, 42.07% for drowsiness, 33.29% for nausea or vomiting, 74.47% 

for hoarse or dry throat, 19.97% for eye irritation, and 2.94% for skin rash or itchiness. 

Similarly, the SWM model showed substantial accuracy improvements for symptoms 

like drowsiness (64.20%), cough (58.54%), hoarse or dry throat (82.85%), and eye 

irritation (46.48%). These findings underscore the models' ability to enhance predictive 

accuracy and reduce errors in SBS symptom forecasting. 

The study demonstrated that both the NEM and SWM models contributed to 

improved accuracy in SBS symptom prediction, with each model excelling in different 

symptom categories. Specifically, the Gamma model during the SWM period achieved 

accuracy rates of 42.67% for feeling heavy-headed, 9.55% for dizziness, and 71.97% 

for cough, as detailed in Table 4.34. These results affirm the Gamma model's 

effectiveness in increasing predictive accuracy and reducing errors across various SBS 

symptoms, highlighting its applicability in different monsoonal contexts for IAQ 

forecasting. The comprehensive analysis and comparative results between the NEM and 

SWM models provide valuable insights into optimizing predictive models for better 

management of IAQ-related health outcomes. 
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CHAPTER 5  
 

 

 

 

CONCLUSION AND RECCOMENDATIONS 

5.1 Conclusion 

In conclusion, the study areas' air pollutants and physical parameters fluctuated 

over time. The mean concentration of physical parameters showed incompliances for 

temperature 27.62-30.40C (S1, SWM), 26.84- 29.580C (S1, NEM), 27.62- 29.930C (S2, 

SWM), 25.98- 27.430C (S2, NEM), 27.12-32.910C (S3, SWM), 27.28- 32.40C (S3, 

NEM), 24.20- 25.360C (S4, SWM), and 23.5-24.20C (S4, NEM), while relative 

humidity higher with 72.92-90.68% (S1, SWM), 76.13-86.04% (S1, NEM), 57.77-

82.29% (S2, SWM), 6152-66.47% (S2, NEM), 68.25-89.57% (S3, SWM), 67.37-

89.95% (S3, NEM), 69.15- 71.2% (SWM, S4) and 67.19-71.6% (NEM, S4). The 

relative humidity and temperature trend was inversely proportional in all study areas. 

Most workers attributed their symptoms over the past three months and current 

symptoms to their workstations. Specifically, 90.9% (n=10, S1) and 66.7% (n=22, S2) 

of workers reported symptoms during both the monsoonal season, while 68.75% (n=11, 

SWM, S3) and 44.4% (n=8, SWM) reported symptoms during the SWM season. 

Additionally, 81.25% (n=13, NEM, S3) and 33.3% (n=6, NEM, S4) of workers reported 

symptoms during the Northeast Monsoon season. All of these workers answered "Yes" 

when asked, “This is due to the environment of the workstation?”. Most of the workers 

experience relief from the symptoms “After leaving the workplace” for SK Tanjung 

Gelam (S1), TMG Mart (S2) workers were feeling relief from the symptoms with 

answer “After leave building” with 72.7% (n=24), 27.3% (n=9) answered “After 

building, Mset Inflatable Composit Corporation Sdn. Bhd (S3) showed that most of the 

workers stated that they relief with the answers “After leave workplace” with 50% 

(n=17, SWM, S1), 62.5% (n=62.5%, NEM, S1) and Raia Hotel (S4) workers believed 



210 
 

 
 

that they feel relief when they leave the workplace, the answer “After leave workplace” 

with 55.6% (n=10). The symptoms occur mostly during lunch or evening, and not sure 

of the study areas.   

Spatial data analysis reveals that the airflow velocity direction aligns with the 

room's streamlines. During the investigation, it was observed that the airflow passed 

through the layout of the study area (S1-S4) and traveled towards the outlet, which 

might be windows or doors for open ventilation (S1 & S3) or the outlet of mechanical 

ventilation for closed ventilation. The shape of airflow velocity is at a cut plane near the 

ventilation, which is the air conditioning or fan. Around the mechanical ventilation, 

significant pressure and velocity gradients in the air were noted. The contour of 

turbulent airflow kinetic energy is shown at the cut plane. The vicinity of the mechanical 

ventilation was found to have high turbulent kinetic energy for both monsoons. The 

accuracy of the simulation for SWM at the study area was 91.9% (S1), 77.75% (S2), 

88.06% (S3), and 89% (S4), while for NEM, the accuracy of simulation (R2) was 

89.57% (S1), 70.64% (S2), 86.62% (S3) and 91.17% (S4). 

The PCA analysis revealed that the primary contributors to poor indoor air 

quality (IAQ) were the physical condition of the environment and insufficient 

ventilation. These factors encompass many physical characteristics, such as relative 

humidity, temperature, and air movement, as well as indicators of ventilation 

performance, such as CO2 levels. The second cause of indoor air pollution was chemical 

parameters within the building primarily comes from physical activities. These 

activities directly generate indoor pollutants, such as sanding, housekeeping, faxing, 

photocopying, smoking tobacco, cleaning, and other indoor duties. In addition, human 

activity in the rooms or spaces can lead to the suspension of dust particles or RSP, 

particularly in S2 and S3 during both the monsoonal season and S1 (NEM). PC-3 

(NEM) is used for S1. PC-3 (SWM) and PC-1 (NEM) are used for S2. PC-3 (SWM) is 

used for S3. PC-2 (NEM) and PC-1 (SWM) are used for S4. Chemical exposure was 

identified as the third component based on the presence of different chemical pollutants 

at all research site and for most of the places chemical parameters were categorized as 

PC2, including HCHO, TVOC,  CO, and RSP. The air quality indoors in buildings 

across all sectors of the economy generally shows increased levels of pollutants due to 
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various chemical reactions and inadequate ventilation. Buildings near roadways are 

subject to heightened levels of pollutants due to the dispersion of these substances. Each 

pollutant, including formaldehyde (HCHO), total volatile organic compounds (TVOC), 

carbon monoxide (CO), and respirable suspended particulates (RSP), was classified into 

the same categories referred to as principal components (PCs). PC-2 exhibited 

associations with S1 during SWM (17.873%) and NEM (18.919%). At S2, PC-2 was 

related to SWM (22.635%) and NEM (19.866%). At S3, PC-2 was associated with both 

monsoons, with percentages of 24.169% (SWM) and 22.870% (NEM). PC-2 holds a 

23.231% market share in the SWM category and 24.642% in the NEM category for S4. 

The development of Gamma models revealed the range of R2 between 0.10 

(headache, S3) to 0.964 (irritation of eye, S1) for SWM.  The R2 for SWM ranged from 

0.4014 (drowsiness, S1) to 0.9949 (dizziness, S1), and after validation, the most 

outperforming model was SWM with validation of R2 ranged from 0.329 to 0.495, 

which is higher compared to NEM model 0.002 to 0.295. In general, SWM model is 

able in reducing the error of models by 13.64% (Drowsiness, S1), 12.26% (cough, S1), 

2.53% (Hoarse dry throat, S1), 61.67% (irritation of eye, S1), 8.78%  (Feeling heavy 

headed, S2), 10.76% (Dizziness, S2), 31.55% (Cough, S2), 23.13% (Drowsiness, S3), 

61.85% (Dizziness, S3), 33.38% (Nausea or vomiting, S3), 23.68% (Hoarse or dry 

throat, S3), 21.32% (skin rash or itchiness, S3), 64.62% (Irritation of eyes, S3), 37.65% 

(Feeling heavy headed, S4), 49.02% ( Hoarse or dry throat, 49.02, S4), 27.54% (skin 

rashness and itchiness, S4) and  22.50% (Irritation of eye, S4) which same goes with 

NEM that outperform SWM such as 10.68% (Headache, S1), 2.90% (Feeling heavy 

headed, S1), 6.81% (Fatigue or lethargy, S1), 15.49% (Dizziness, S1), 13.51% (Nausea 

or vomiting, S1), 57.70% (Skin rashness or itchiness, S1), 34.63% (Headache, S2), 

20.97% (fatigue or lethargy, S2), 38.75% (Drowsiness, S2), 4.06% (Nausea or vomiting, 

S2), 40.57% (Hoarse or dry throat, S2), 2.39% (Skin rashness or itchiness, S2), 10.29% 

(Irritation of eyes, S2), 22.76% (Headache, S3), 33.22% (Feeling Heavy Headed, S3), 

27.89% (Fatigue or lethargy, S3), 85.40 (Cough, S3), 33.88% (Headache, S4), 38.02% 

(Fatigue or lethargy, S4), 38.26% (Drowsiness, S4), 36.59% (Dizziness, S4), 22.21% 

(Nausea or vomiting) and 13.85%, (Cough, S4). In conclusion, this study proved that 

the NEM model was the best-fitted model for each site for certain SBS symptoms. The 

most suitable model for a gamma distribution is selected by assessing the accuracy of 
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parameter estimations, performing goodness-of-fit tests, and considering model 

selection criteria such as AIC. Inspections conducted through plots and robustness tests 

confirm the accuracy of the gamma distribution in representing the data. Furthermore, 

performance metrics, including error and accuracy measures, were used to choose the 

most appropriate model, and the results were consistent with the AIC value. 

5.2 Recommendations 

This study specifically examined the economy of the Terengganu subsector, 

focusing on the region's dominant sub-sector and its impact on indoor air quality (IAQ). 

However, future studies could be conducted on a broader scale to enhance or expand 

the current research scope. Expanding the research geographically and across different 

sub-sectors would provide a more comprehensive understanding of IAQ issues. This 

broader approach would involve collecting data from various regions within 

Terengganu and extending the study to other states or countries. Such geographical 

diversity would help capture regional variations in IAQ, offering insights into how 

different environmental and socio-economic conditions influence air quality. 

Sub-sector expansion could also be included in future studies, covering 

industrial, residential, commercial, and institutional sectors. This inclusive approach 

would ensure the model used in the research captures the full spectrum of IAQ issues 

across different environments. By incorporating a wider range of data points, 

researchers could create models that learn from a more diverse and representative 

sample of real-world conditions. This diversity is crucial for developing accurate 

predictive models that can identify patterns, trends, and exceptions, enhancing their 

reliability. Large datasets allow models to detect subtle patterns and correlations that 

might be overlooked in smaller datasets. By understanding these intricate relationships 

between various IAQ parameters and external factors, researchers could develop more 

precise mitigation strategies. 

Regarding data collection for Sick Building Syndrome (SBS) symptoms, this 

study initially used questionnaires requiring respondents to report SBS symptoms over 

three months. This method, however, posed a risk of providing inaccurate predictions 
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due to its reliance on a single time frame. Future research should consider periodic data 

collection from the same respondents to achieve more accurate model predictions. 

Periodic data collection would capture the variability in SBS symptoms, which can 

fluctuate due to changes in environmental conditions, building maintenance, or personal 

health. This approach would allow for longitudinal analyses, tracking symptom 

progression over time and identifying trends or patterns that cross-sectional data might 

not reveal. 

The study also highlighted the use of the Gamma model within the GLM 

framework for modelling continuous, skewed positive-valued data. While the Gamma 

model is useful, it has limitations, such as its inability to handle zero values, sensitivity 

to outliers, issues with overdispersion, and challenges in parameter estimation and 

interpretation. Future studies should address these limitations by considering the data 

characteristics and exploring alternative modelling approaches or robust statistical 

techniques. Enhancing the Gamma Distribution GLM could involve its application to 

more diverse IAQ datasets, including multi-zone buildings and varied categorical 

datasets. Additionally, future research could explore adaptations of the Gamma 

Distribution GLM to handle complexities like time series data and spatial variability, 

improving its predictive performance. 

Lastly, this study recommends several measures to improve indoor air quality 

across all study areas, such as enhanced housekeeping practices, effective source 

control, and optimized ventilation systems. By focusing on these strategies, future 

research can contribute to developing practical solutions for maintaining healthy indoor 

environments, reducing the prevalence of IAQ-related health issues, and improving 

overall well-being in various settings. 

 

Housekeeping practices 

 

Inadequate housekeeping can significantly contribute to indoor air quality (IAQ) 

problems, making it essential to maintain a clean workplace to promote a healthy indoor 

environment. Good housekeeping practices are pivotal in preventing and resolving 

many IAQ issues, as a clean workspace reduces the accumulation of dust, allergens, and 

harmful chemicals. The implementation of the 5S technique such as sorting, setting in 
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order, straightening, simplifying, shining, and systematic cleaning which can 

standardize housekeeping efforts across various workplace sectors, ensuring a 

consistent and effective approach to cleanliness. This method not only improves the 

physical organization of the workplace but also enhances air quality by reducing clutter 

that can harbour dust and pollutants. 

 

Minimizing furnishings such as racks and cabinets, along with properly 

enclosing storage areas for waste, particularly scheduled waste, can further reduce 

chemical exposure and prevent the accumulation of trapped dust. Open storage 

solutions are less effective in containing dust and fumes, whereas closed storage helps 

in maintaining a cleaner environment. Additionally, ensuring that windows are opened 

during working hours in areas with open ventilation can significantly improve natural 

airflow, aiding in the removal of indoor pollutants. In spaces where open ventilation is 

not feasible, installing and optimizing mechanical ventilation and air conditioning 

(MVAC) systems is crucial to maintaining adequate air exchange and filtration. 

 

Switching from conventional detergents to eco-friendly cleaning chemicals can 

also play a significant role in reducing chemical exposure for occupants during 

housekeeping activities. These eco-friendly alternatives are designed to minimize the 

release of volatile organic compounds (VOCs) and other harmful substances into the 

air, thereby enhancing overall IAQ. Moreover, limiting the use of chemicals such as 

resins, adhesives, paints, cleaning agents, and those involved in combustion processes 

like vehicles inside the workplace is vital. By controlling and restricting these 

substances, workplaces can prevent high concentrations of harmful chemicals from 

accumulating in the air. 

 

Adequate ventilation is necessary to dilute any remaining chemical 

concentrations, ensuring that fresh air can circulate, and pollutants are effectively 

dispersed. In addition to these measures, it is essential to minimize workers' direct 

exposure to chemicals by providing appropriate personal protective equipment (PPE), 

such as gloves, masks, and goggles. This protective gear serves as a barrier against 

harmful substances, reducing the risk of health issues related to chemical exposure. 

Regular inspection and timely replacement of PPE ensure its effectiveness and 

reliability in protecting workers. 
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By integrating these strategies can improving housekeeping practices, 

enhancing ventilation, using eco-friendly cleaning products, restricting hazardous 

chemicals, and equipping workers with proper PPE which workplaces can create a safer 

and healthier environment for employees. These efforts not only contribute to better 

IAQ but also promote the overall well-being of the workforce, reducing the incidence 

of work-related health problems and fostering a more productive and pleasant 

workplace. 

 

Source control 

 

 Source control focuses on eliminating individual sources of pollutants or 

reducing their emissions and is generally the most effective strategy for improving IAQ. 

The best prevention method involves avoiding the introduction of unnecessary 

contaminants into the workplace, such as cigarettes and harmful chemicals. When the 

use of certain chemicals is unavoidable, it is crucial to provide adequate ventilation to 

mitigate potential hazards. Source removal involves preventing pollutant sources from 

entering the workplace or minimizing their use. This can include measures like banning 

smoking within the workplace or restricting access to hazardous chemicals unless 

absolutely necessary. 

 

Source substitution is another vital aspect of source control, which involves 

replacing polluting materials with eco-friendly or nontoxic alternatives. For example, 

using low-VOC paints, biodegradable cleaning agents, and safer adhesives can 

significantly reduce the emission of harmful substances into the indoor environment. 

Additionally, reducing the number of workers in each workspace or limiting the 

duration of activities involving chemical use can lower exposure to pollutants and 

indirectly decrease CO2 concentrations. Fewer workers or shorter exposure times mean 

fewer emissions, contributing to improved air quality. 

 

Increasing the rate of ventilation is essential in removing accumulated chemicals 

and CO2 from indoor spaces. Ventilation enhancements such as installing ceiling fans, 

exhaust fans, tornado turbines, or roof ventilators are necessary measures to increase 

the exchange of indoor air with outdoor air. These devices help to expel stale air laden 
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with pollutants and bring in fresh air, diluting the concentration of harmful substances. 

By implementing such ventilation solutions, workplaces can ensure a more consistent 

flow of fresh air, effectively reducing indoor pollutant levels and maintaining healthier 

air quality for occupants. These combined efforts of source control, substitution, and 

enhanced ventilation create a comprehensive strategy to minimize indoor air pollution 

and promote a safer, healthier working environment. 

 

 

Ventilation system 

 In a hot and humid country like Malaysia, consisting of different monsoonal 

variations, such as the southwest monsoon (SWM) and northeast monsoon (NEM), a 

building needs suitable ventilation for workers to work in a thermally comfortable 

environment. Therefore, for existing workplaces, especially in critical areas such as 

industrial and heavy traffic areas, mechanical ventilation, such as air conditioning, must 

be installed to ensure a conducive and comfortable working environment. Good 

maintenance of mechanical ventilation inside the workplace can maintain indoor air 

quality. For the construction of a new factory or workplace, it is recommended that the 

Department of Safety and Health, in collaboration with the Department of Environment, 

provide more detailed guidelines for buffer zones. This is particularly important for 

areas related to chemical exposure, which can lead to environmental pollution. 

Guidelines should include measures for controlling air pollution, such as using air 

pollution control (APC) systems, which must be stricter to manage the dispersion of 

polluted air. 

 The reliance on energy-dependent ventilation or cooling mechanisms for 

achieving good IAQ in the workplace can be extremely costly, as suggested, and may 

still be insufficient. For this reason, any plan to minimize energy consumption needs to 

improve overall IAQ in the workplace. This may consist of simple measures such as 

more strategic urban planning and enforcement of each category that places the gazette 

as an industrial, commercial, residential, or commercial area. Smarter windows design 

and placements that encourage higher air exchange, ventilation, and velocity or use 

alternative building materials that do not trap heat or induced pollutants indoors. 
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 It is very expensive to install and maintain a very good ventilation system and a 

very fine material in a building. Still, it is no waste, and there is nothing wrong with 

doing it, especially with the importance of good indoor air, and it is also worth spending 

with. The health and comfort of the workers are dominant factors that contribute to the 

workers' productivity in the workplace, which in turn affects performance and 

achievement. Furthermore, a reliable indicator of air quality is crucial for ensuring a 

conducive working environment, especially for workers, who are among the country's 

most valuable assets.
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Questionnaire for Building Occupants 

This short questionnaire has been given to you to facilitate the identification of potential sources of indoor air quality (IAQ) 

pollutants and to identify adverse health effects that may be associated with exposure to these pollutants. Your answers will 

remain confidential. Please complete the form as accurately as possible before returning to us. 

 
Date:      

General information      

      

1. Building/Company name :     

2. Department/Division :     

3. Has your Company carried out any assessment related to IAQ?   

  Yes  No  In progress  Not sure 

      

Background factor      

       

1. Sex  Male 2. Age  <25 year   40-55 years 

   Female    25-39 year   >55 0years 

          

3. Do you smoke?  Yes  Sometimes   No 

      

Nature of Occupation      

       

1. Occupation/Position : 

2. How long you have been at your present place of work?  yr(s)  mth(s) 

3. No. of hours spent per day at your main workstation :  hr(s) 

     

Environmental Conditions      

       

1. Type of workstation:  Enclosed room  

   Open concept  

      

2. How is your area air-conditioned?  Central unit 

    Local Unit (Split Unit) 

3. No. of people sharing your workstation:   

       

4. Please indicate if you work with or near the following equipment: 

  Everyday 2-3 times weekly Never   

 a) Typewriter            

 b) Video display 

unit/computer 

           

 c) Photocopier            

 d) Fax machine            

         

5) Have you been bothered during the last three (3) months by any of the following factors at your workstation/workplace? 

  Yes, often (every week) Yes, sometimes No, never  

 a) Draught           

 b) Room temperature too high           

 c)Varying room temperature           

 d)Room temperature too low           

 e) Stuffy “bad” air           

 f) Dry air           

 g) Unpleasant odour           

 h) Passive smoking           

 i) Dust and dirt           
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Symptoms 

Past symptoms 

     

    Yes  No  

 a) Have you ever had asthmatic problems?       

 If yes, during last year?      

       

 b) Have you ever suffered from sinusitis?      

 If yes, during last year?      

       

 c) Have you ever suffered from eczema?       

 If yes, during last year?      

   

 

     

Present Symptoms       

        

1. During the last three (3) months, have you had any of the following symptoms at work (Answer every question even if you have not 

had any symptoms) 

  

     If yes, do you believe 

that is due to your 

work environment? 

  Yes, often (every 

week) 

Yes, sometimes (2-3 

times/week) 

No, never Yes No 

 a) Headache            

 b)Feeling heavy-headed            

 c)Fatigue/ lethargy            

 d)Drowsiness            

 e)Dizziness            

 f)Nausea/vomiting            

 g)Cough            

 h)Irritated, stuffy nose            

 i)Hoarse, dry throat            

 j)Skin rash/ itchiness            

 k)Irritation of the eyes            

 l)Scaling/itching scalp or ears            

      

2. No. of days in the past one (1) month that you had to take off work because of this symptom: 

  day(s) 

 

 

        

3. When do these symptoms occur?    Mornings 

     Afternoons 

     No noticeable trend 

        

4. When do you experience relief from these symptoms?  After I leave my workstation 

    After I leave the building 

    No noticeable trend 

        

5. If female, are you currently pregnant?  Yes 

    No 

    Not sure 
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 Correlation Analysis 

    Present symptoms 

  S1 (SWM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 s
y

m
p

to
m

 

Draught 
         

0.621* 

Room temperature too 

high 

          

Varying room temperature 
          

Room temperature too low 
          

Stuffy bad air 0.671* 
         

Dry air 
     

0.216* 
 

0.930* 
  

Unpleasant odour 
        

0.838** 0.723* 

Passive smoking 
          

Dust and dirt                   0.649* 

           
  

    Present Symptoms 

  S1 (NEM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 s
y

m
p

to
m

 

Draught 
          

Room temperature too 

high 

          

Varying room temperature 
          

Room temperature too low 
          

Stuffy bad air 0.854* 
     

-0.782** 0.641* 
  

Dry air 
 

0.621* 
       

0.647* 

unpleasant odour 
        

0.838** 0.723* 
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Passive smoking 
          

Dust and dirt                   0.649* 

  
  

         

    Present Symptoms 

  S2 (SWM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 s
y

m
p

to
m

 

Draught 
 

0.396* 
        

Room temperature too 

high 

 
0.450** 

        

Varying room temperature 
          

Room temperature too low 
          

Stuffy bad air 
 

0.463** 
        

Dry air 
        

0.742* 
 

Unpleasant odour 
      

0.347* 
   

Passive smoking 
   

-0.552** 
      

Dust and dirt                                 

    Present Symptoms 

  S2 (NEM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 s
y

m
p

to
m

 

Draught   0.408*                 

Room temperature too 

high 

 
0.474** 

        

Varying room temperature 
       

0.351* 
  

Room temperature too low 
  

0.450** 0.418* 
 

0.424* 
    

Stuffy bad air 
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Dry air 0.269* 
       

0.463* 
 

Unpleasant odour 
          

Passive smoking 
   

0.452** 
      

Dust and dirt                      
 

  

          

  
Present symptoms 

  S3 (SWM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 s
y

m
p

to
m

 

Draught 
       

0.545* 
  

Room temperature too 

high 

          

Varying room temperature 
          

Room temperature too low 0.552* 
       

0.585* 0.516* 

Stuffy bad air 
  

0.500* 
       

Dry air 
        

0.371* 
 

Unpleasant odour 
  

0.539* 
     

0.651** 
 

Passive smoking 
          

Dust and dirt                                 

    Present symptoms 

  S3 (NEM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 

sy
m

p
to

m
 Draught 

       
0.545* 

  

Room temperature too 

high 

          

Varying room temperature 
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Room temperature too low 0.552* 
       

0.585* 0.516* 

Stuffy bad air 
  

0.500* 
       

Dry air 
          

Unpleasant odour 
  

0.539* 
     

0.651** 
 

Passive smoking 
          

Dust and dirt                       
 

  

         

    Present symptoms 

  S4 (SWM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-M
o

n
th

 s
y

m
p

to
m

 

Draught 
          

Room temperature too 

high 

          

Varying room temperature 
          

Room temperature too low 
          

Stuffy bad air 
          

Dry air -0.273 
         

Unpleasant odour 
          

Passive smoking 
       

-0.581* 
  

Dust and dirt       -0.559*             
            

    Present symptoms 

  S4 (NEM) Headache Feeling 

heavy 

headed 

Fatigue 

lethargy 

Drowsiness Dizziness Nausea 

vomiting 

Cough Hoarse dry 

throat 

Skin rash 

itchiness 

Irritation 

of the eye 

P
as

t 
3

-

M
o

n
th

 

sy
m

p
to

m
 

Draught                   
 

Room temperature too 

high 

  
0.526* 

 
-0.600** 

    
-0.573* 
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Varying room temperature 
    

0.516* 
     

Room temperature too low 
    

-0.553* 
     

Stuffy bad air 
          

Dry air 
          

Unpleasant odour 
    

-0.645** 
     

Passive smoking 
       

-0.591** 
  

Dust and dirt                 -0.485*   

            
 

 

 

 


