0/0 7868

# 1100084178

Perpustakaan Sultanah Nur Zahirah Universiti Malavsia Terengganu (UMT)



#### 1100084178

Analysis of immune gene expression in infected and vaccinated rainbow trout oncorhynchus mykiss with a focus on cytokines of adaptive immunity / Nor Omaima Harun.

|    | 1100084 | 178 |
|----|---------|-----|
|    |         | -   |
| 14 |         |     |
|    |         |     |
|    |         |     |
|    |         |     |
|    |         |     |
|    |         |     |
|    |         |     |
|    |         |     |
| ·  |         |     |
|    |         |     |
|    |         |     |
| 10 |         |     |
|    |         |     |
|    |         |     |
|    |         |     |

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT



Analysis of immune gene expression in infected and vaccinated rainbow trout *Oncorhynchus mykiss* with a focus on cytokines of adaptive immunity

## NOR OMAIMA HARUN

MSc. (Zoology), University of Aberdeen, Scotland UNITED KINGDOM BSc. (Hons.) Biology, Universiti Putra Malaysia, MALAYSIA



A thesis presented to the School of Biological Sciences for the Degree of Doctor of Philosophy at the University of Aberdeen

**FEBRUARY 2012** 

## This thesis is dedicated to:

Husband, Fazil Harun Kids, Rayyan & Rannia Mum, Hajjah Zaimah Ali & Dad, Harun Mohamad (deceased 4<sup>th</sup> December 2005)

## DECLARATION

I declare that this thesis was composed by myself and that all research presented here was performed by myself between July 2006 and August 2010. This thesis has not been submitted in any previous application for a higher degree. All sources of information have been acknowledged in the text.

O.Harun Nor Omaima Harun University of Aberdeen February 2012

#### **ACKNOWLEDGEMENTS**

Alhamdulíllah, this four-year journey has come to an end with the help, guidance and encouragement from many people around me.

 $\mathcal{F}$ irst and foremost, I would like to take this opportunity to dedicate this appreciation to both my supervisors; Prof. Christopher J. Secombes for giving me the opportunity of starting this project in his laboratory and for his guidance all along the difficult ways of my PhD, and Dr Tiehui Wang who has taken a considerable amount of his time to teach and advise me. Your invaluable support, guidance, criticisms and time spent throughout my study will be remembered.

My appreciation also goes to Dr Allison C. Carrington for helping me with the work carried out in chapter 2 and to Prof. René J.M. Stet (deceased 12<sup>th</sup> September 2007) for his technical guidance on chapter 2. Not forgotten Dr. Thelma C. Fletcher as my advisor since started my PhD in January 2006. For helping me in preparing vaccination used in Chapter 3 and 4, in addition to provide assistance with the gene expression studies carried out in Chapter 3 and Chapter 4, I would like to acknowledge Dr. Wang and Dr. Patricia Díaz-Rosales. Not forgotten, to Dr. Maria M. Costa for her help with the protein work in Chapter 5, I would like to acknowledge my appreciation. I am also grateful to Dr. Kim Thompson and Dr. Sam Martin for their helpful comments on Chapter 2.

 $\mathcal{M}$ y special thanks also go to all the past and present members of the Scottish Fish Immunology Research Centre (SFIRC), University of Aberdeen for their help especially Dr. Jun Zou, Dr. Steve Bird, Mrs Susan Blaney, Ms Heather Richmond, Mrs Dawn Shewring, Mrs Mansourah Hussin and Mrs Roggai Li (for our helpful discussions and also for the coffee), and those who have been involved either direct or indirectly in sharing their knowledge and assistance, thus made me see science in a different way throughout my study. *I* am also very grateful to the Malaysian Government (Public Services Department especially to Mr. Hussin Mahmud at Scholarship division), and Universiti Malaysia Terengganu (UMT) for funding my PhD. To UMT Vice Chancellor, Prof. Dr. Aziz Deraman, Prof. Dr. Noor Azhar Mohd Shazili (Depute Vice Chancellor, Academic and International), Prof. Emeritus Dato' Dr. Mahyuddin Mohd Dahan (former UMT Vice Chancellor, 1997-2004), Prof. Dato' Dr. Sulaiman Mohd Yassin (former UMT Vice Chancellor, 2004-2008), Prof. Dr. Hamdan Suhaimi (Former Dean of Faculty of Science and Technology) and Prof. Emeritus Dr. Faezah Shaharum. Not forgotten to Prof. Dr. Mohd Effendy Abdul Wahid, Prof. Dr. Nakisah Mat Amin, Assoc. Prof. Dr. Mariam Taib and Dr. Faridah Mohamad at the Department of Biological Sciences, Universiti Malaysia Terengganu and staffs at the registrar office (study leave units).

Last but not least, I would like to express my love to my husband, Fazil Harun, my lovely kids Rayyan and Rannia, mum Hajah Zaimah Ali and dad Harun Mohamad (deceased on the 4<sup>th</sup> December 2005) to whom this thesis is dedicated, brothers and sisters (Sallehuddin, Muhyiddin, Mahani, Yassin and Haflizan), in-laws and family members for their patience and concern throughout my study in Aberdeen. Not forgotten to my sister in Aberdeen, Mansourah Hussin and my wonderful Frances and Bob Farquhar (deceased January 2006). Thank you for all your support, encouragement, belief and love that you have given me in making this ambition come true.

O.Harun Aberdeen University 2012

## PAPERS PRODUCED AND CONFERENCES ATTENDED THAT INCORPORATE RESULTS FROM THIS THESIS

<sup>1</sup>**Harun**, N.O. Wang, T. & Secombes, C.J. 2011a. Gene expression profiling in naïve and vaccinated rainbow trout after Y*ersinia ruckeri* infection: Insights into the mechanisms of protection seen in vaccinated fish. *Vaccine* 29: 4388-4399.

<sup>2</sup>**Harun**, N.O. Costa, M.M. Secombes, C.J & Wang, T. 2011b. Sequencing of a second interleukin-10 gene in rainbow trout *Oncorhynchus mykiss* and comparative investigation of the expression and modulation of the paralogues *in vitro* and *in vivo*. *Fish & Shellfish Immunology* 31: 107-117.

<sup>3</sup>Harun, N.O., Wang, T. & Secombes, C.J. 2009 (Poster). Expression Profiling Of Key Cytokines In Vaccinated Rainbow Trout After Yersinia Ruckeri Challenge. 11<sup>th</sup> International Congress of the ISDCI Prague, Czech Republic. June 28<sup>th</sup> – July 4<sup>th</sup>.

<sup>4</sup>**Harun**, N.O., Wang, T. & Secombes, C.J. 2009 (Oral Presentation). Analysis of Markers of disease resistance in vaccinated fish. UMT-MSD PostGraduate Seminar, Leeds 12-13<sup>th</sup> May 2009. Institute for Transport Studies, University of Leeds, United Kingdom. Proceedings p. 87.

<sup>1</sup> I did sample the fish, perform all qPCR Did the data analysis and help write the paper

<sup>2.1</sup> did the gene sequence analysis. The *in vitro* and *in vivo* stimulation work and sampling with the help from Costa, M.M and Wang, T.W. I did the qPCR and data analysis with the help from Wang, T.W.

<sup>3</sup> I did write the poster with the help from Wang, T.W.

<sup>4</sup> I did prepare for the presentation with the help from Wang, T.W and Secombes, C J

## **LIST OF ABBREVIATIONS**

| AEC     | : 3-Amino-9-Ethyl Carbazole         |
|---------|-------------------------------------|
| μΜ      | : Micro Molar                       |
| AMPs    | : Antimicrobial Peptides            |
| ANOVA   | : One-Way Analysis of Variance      |
| APC     | : Antigen Presenting Cell           |
| BB      | : Bacterial Burden                  |
| BCR     | : B-Cell Receptor                   |
| САТН    | : Cathelicidin                      |
| ССР     | : Classical Complement Pathway      |
| cDNA    | : Complementary DNA                 |
| CFU     | : Colony Forming Unit               |
| Con A   | : Concanavalin A                    |
| CRP     | : C-Reactive Protein                |
| CSF     | : Colony Stimulating Factor         |
| CTL     | : Cytotoxic T cell                  |
| DEPC    | : Diethyl Pyrocarbonate             |
| DNA     | : Deoxyribonucleic Acid             |
| EF-1a   | : Elongation Factor 1-Alpha         |
| ELISA   | : Enzyme linked immunosorbent assay |
| ELISPOT | : Enzyme linked Immunospot assay    |
| ERM     | : Enteric Red Mouth                 |
| FasL    | : Fas Ligand                        |
| FCA     | : Freund's Complete Adjuvant        |
| FCS     | : Foetal Calf Serum                 |
| GAS     | : Gamma Activation Site             |
| GC      | : Germinal centres                  |
| HIV     | : Human Immunodeficiency Virus      |
| HRP     | : Horseradish peroxidise            |
| HSC     | : Hematopoietic Stem Cells          |
| I.P     | : Intraperitoneal                   |
| ICAM    | : Inter-Cellular Adhesion Molecule  |
| IFN     | : Interferon                        |
|         |                                     |

| lg            | : Immunoglobulin                                           |
|---------------|------------------------------------------------------------|
| IgA           | : Immunoglobulin A                                         |
| IgE           | : Immunoglobulin E                                         |
| lgG           | : Immunoglobulin G                                         |
| IgM           | : Immunoglobulin M                                         |
| IHNV          | : Infectious Haematopoietic Necrosis Virus                 |
| IL            | : Interleukin                                              |
| iNOS          | : Nitric Oxide Synthases                                   |
| IROMPS        | : Iron regulated Outer Membrane Proteins                   |
| LD            | : Lethal Dose                                              |
| L.T           | : Long Ton                                                 |
| LIF           | : Leukemia Inhibitory Factor                               |
| LPS           | : Lipopolysaccharides                                      |
| LTα           | : Lymphotoxin Alpha                                        |
| MAF           | : Macrophage Activating Factor                             |
| MCSF          | : Macrophage Colony Stimulating Factor                     |
| MCSFR         | : Macrophage Colony Stimulating Factor Receptor            |
| MDP           | : Muramyl Dipeptide                                        |
| MHC           | : Major Histocompatibility Complex                         |
| mM            | : Milli Molar                                              |
| MMP           | : Matrix Metalloproteinase                                 |
| MuMLV RNase H | : Moloney Murine Leukemia Virus                            |
| МΦ            | : Macrophage                                               |
| NADPH         | : Nicotinamide Adenine Dinucleotide Phosphate-Oxidase      |
| NCC           | : Non-Specific Cytotoxic Cells                             |
| NK            | : Natural Killer Cells                                     |
| NK            | : Natural Killer                                           |
| NLRs          | : Nucleotide-Binding Oligomerization Domain-Like Receptors |
| NO            | : Nitric Oxide                                             |
| NOD           | : Nucleotide-Binding Oligomerization Domain                |
| OMPs          | : Outer Membrane Proteins                                  |
| PAMPs         | : Pathogen Associated Molecular Patterns                   |
| PBS           | : Phosphate Buffer Saline                                  |
| pCDNA         | : Plasmid DNA                                              |
|               |                                                            |

| PHA    | : Phytohemagglutinin                            |
|--------|-------------------------------------------------|
| PKR    | : Protein Kinase R                              |
| PMA    | : Phorbol Myristate Acetate                     |
| PRR    | : Pattern Recognition Receptors                 |
| RIG-I  | : Retinoic Acid-Inducible Gene I                |
| RLRs   | : Retinoic Acid-Inducible Gene I-Like Receptors |
| RNA    | : Ribonucleic Acid                              |
| ROS    | : Reactive Oxygen Species                       |
| RTFS   | : Rainbow Trout Fry Syndrome                    |
| RT-PCR | : Reverse Transcript Polymerase Chain Reaction  |
| S.T    | : Short Ton                                     |
| SAA    | : Serum Amyloid                                 |
| SI     | : Spleen Index                                  |
| SPSS   | : Statistical Package for the Social Sciences   |
| SRBC   | : Sheep Red Blood Cells                         |
| Тс     | : Cytotoxic T cells                             |
| TCR    | : T cell Receptor                               |
| Th     | : Helper T cells                                |
| TLR    | : Toll-Like Receptors                           |
| TNF-α  | : Tumour Necrosis Factor                        |
| TSA    | : Tryptic Soy Agar                              |
| TSB    | : Tryptic Soy Broth                             |
| UK     | : United Kingdom                                |
| VHSV   | : Viral Haemorrhagic Septicaemia Virus          |
|        |                                                 |

## **Tables of Contents**

| DED  | ICATION                                                                                                                          |                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| DEC  | LARATION                                                                                                                         |                                        |
| ACK  | NOWLEDGEMENTS                                                                                                                    | i                                      |
| PAP  | ERS PRODUCED FROM WORK PRESENTED IN THE THESIS                                                                                   | iii                                    |
| LIST | S OF ABBREVIATIONS                                                                                                               | iv                                     |
| LIST | S OF FIGURES                                                                                                                     | xii                                    |
| LIST | S OF TABLES                                                                                                                      | xiv                                    |
| ABS  | TRACT                                                                                                                            | 1                                      |
| СНА  | PTER ONE: Aquaculture, Immunology and Vaccination                                                                                | 5                                      |
| Sumi | mary                                                                                                                             | 6                                      |
| 1.   | General Introduction                                                                                                             | 7                                      |
| 1.1. | Aquaculture                                                                                                                      | 7                                      |
| 1.2. | Fish Diseases: selection of a model for these studies                                                                            | 9                                      |
|      | 1.2.1. Problems with Disease: rainbow trout- why and what are they<br>1.2.1.1. Enteric Redmouth Disease<br>1.2.1.2. Furunculosis | 10<br>11<br>12                         |
| 1.3. | Developments of Control Strategies                                                                                               | 13                                     |
|      | <ul> <li>1.3.1. Fish Vaccination: a gateway for better health</li> <li>1.3.1.1. Antibiotics</li></ul>                            | 14<br>18<br>19<br>19<br>20<br>22       |
| 1.4. | Disease Resistance                                                                                                               | 26                                     |
| 1.5. | Immunology: an overview                                                                                                          | 26                                     |
|      | <ul> <li>1.5.1. The Fish Immune System</li></ul>                                                                                 | 30<br>31<br>33<br>34<br>36<br>37<br>38 |
| 1.6. | Manipulation of the Immune System of Fish to Improve Fish<br>Health by Vaccination or Immunostimulation                          | 40                                     |

| 1.7. | Teleost Fish: general points of interest                                                                | 40       |
|------|---------------------------------------------------------------------------------------------------------|----------|
| 1.8. | Significance/ Contribution of Research                                                                  | 41       |
|      | Aims and Objectives                                                                                     | 42       |
|      | Figures and Tables                                                                                      | 43       |
|      | <b>APTER TWO:</b> Studies on the Expression of Interferon-γmary                                         | 58<br>59 |
| 2.1. | Introduction                                                                                            | 61       |
|      | 2.1.1. Interferons: an overview of the different types known and the cells that produce them            | 62       |
|      | 2.1.1.1. Interferons in Fish                                                                            | 64       |
|      | 2.1.1.1.1. The Discovery of IFN- $\gamma$ in Fish                                                       | 64       |
|      | 2.1.2. Furunculosis<br>Aims and objectives                                                              | 67<br>69 |
|      | •                                                                                                       |          |
| 2.2. | Materials and Methods                                                                                   | 70       |
|      | 2.2.1. Experimental Fish, Maintenance and Study Design                                                  | 70       |
|      | 2.2.2. Vaccines, Bacteria Growth Conditions and Vaccination                                             | 71       |
|      | 2.2.3. Sampling and Sample Processing                                                                   | 72<br>73 |
|      | 2.2.3.1. Total RNA Isolation, cDNA Synthesis and RT-PCR<br>2.2.4. Statistical Analysis                  | 75       |
|      | 2.2.5. Preparation of Head Kidney Leucocytes and Stimulation with<br>Phytohemagglutinin                 | 75       |
|      | 2.2.5.1. Statistical Analysis                                                                           | 76       |
| 2.3. | Results                                                                                                 | 77       |
|      | 2.3.1. Pilot Experiment                                                                                 | 77       |
|      | 2.3.2. Challenge Experiment                                                                             | 77       |
|      | 2.3.3. The Spleen Index                                                                                 | 77       |
|      | 2.3.4. Expression of IFN- $\gamma$ in the Head Kidney                                                   | 78       |
|      | 2.3.5. Expression of IFN- $\gamma$ in the Head Kidney following A. salmonicida (strain MT423) Challenge | 78       |
|      | 2.3.6. Expression of IFN- $\gamma$ in the Spleen                                                        | 79       |
|      | 2.3.7. Expression of IFN- $\gamma$ in the Spleen following A. salmonicida<br>(strain MT423) Challenge   | 79       |
|      | 2.3.8. In vitro Expression of IFN- $\gamma$ in the Head Kidney Leucocytes                               | 79       |
| 2.4. | Discussion                                                                                              | 80       |
|      | Problems During Study                                                                                   | 85       |
|      | Figures and Tables                                                                                      | 86       |

| CHA  | PTER THREE: Gene expression Profiling                                                                                                                                                                                                                                                                                                                                                                | 9'                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Sum  | mary                                                                                                                                                                                                                                                                                                                                                                                                 | 98                         |
| 3.1. | Introduction                                                                                                                                                                                                                                                                                                                                                                                         | 9                          |
|      | Aims and Objectives                                                                                                                                                                                                                                                                                                                                                                                  | 10                         |
| 3.2. | Materials and Methods         3.2.1. Experimental Fish, Maintenance and Study Design         3.2.2. Vaccine and Pathogen                                                                                                                                                                                                                                                                             | 10<br>10<br>10             |
|      | <ul> <li>3.2.3. Vaccination and Challenge</li></ul>                                                                                                                                                                                                                                                                                                                                                  | 10<br>10<br>10<br>10       |
|      | <ul> <li>3.2.4.3. Total RNA Isolation, cDNA Synthesis and Real-Time PCR</li> <li>3.2.4.4. Gene Expression Analysis</li></ul>                                                                                                                                                                                                                                                                         | 10<br>10<br>11             |
| 3.3. | Results                                                                                                                                                                                                                                                                                                                                                                                              | 11                         |
|      | <ul> <li>3.3.1. Challenge Experiment</li> <li>3.3.2. The Spleen Index</li> <li>3.3.3. Detection of Y. ruckeri in the Spleen</li> <li>3.3.4 Comparative Expression Profiling in the Spleen and Gills</li> <li>3.3.5. Correlation Analysis of Bacterial Burden, Spleen Index (SI) and Gene Expression Level in Spleen and Gills of Naïve and Vaccinated Fish Following Y. ruckeri Infection</li> </ul> | 11<br>11<br>11<br>11<br>11 |
| 3.4. | Discussion                                                                                                                                                                                                                                                                                                                                                                                           | 11                         |
|      | Figures and Tables                                                                                                                                                                                                                                                                                                                                                                                   | 12                         |
|      | APTER FOUR:       Disease Resistance Study         mary                                                                                                                                                                                                                                                                                                                                              | 13<br>13                   |
| 4.1. | Introduction                                                                                                                                                                                                                                                                                                                                                                                         | 13                         |
|      | Aims and Objectives                                                                                                                                                                                                                                                                                                                                                                                  | 14                         |
| 4.2. | Materials and Methods                                                                                                                                                                                                                                                                                                                                                                                | 1                          |
|      | <ul> <li>4.2.1. Experimental Fish, Maintenance and Study Design</li></ul>                                                                                                                                                                                                                                                                                                                            | 14<br>14<br>14<br>14       |
|      | 4.2.4.2. Total RNA Isolation, cDNA Synthesis and Real-Time PCR                                                                                                                                                                                                                                                                                                                                       | 1                          |
|      | 4.2.4.3. Gene Expression Analysis                                                                                                                                                                                                                                                                                                                                                                    | 1                          |

| 4.3. | 4.2.4.3. Statistical Analysis                                                                                                                        |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| т.Ј. | 4.3.1. Challenge Experiment                                                                                                                          |
|      | 4.3.2. The Spleen Index                                                                                                                              |
|      | 4.3.3. Detection of Y. ruckeri in the Spleen                                                                                                         |
|      | 4.3.4. Gene Expression Profiles in the Spleen                                                                                                        |
|      | 4.3.5. Correlation Analysis of Bacterial Burden, Spleen Index and<br>Gene Expression Level in Spleen Following Y. ruckeri Infection                  |
| 4.4. | Discussion                                                                                                                                           |
|      | Figures and Tables                                                                                                                                   |
|      | APTER FIVE: Sequencing of a Second Interleukin-10 Gene in<br>Rainbow Trout                                                                           |
| Sum  | mary                                                                                                                                                 |
| 5.1. | Introduction                                                                                                                                         |
|      | Aims and Objectives                                                                                                                                  |
| 5.2. | Materials and Methods                                                                                                                                |
|      | 5.2.1. Cloning and Sequence Analysis of a Second Trout IL-10 Gene<br>5.2.2. Real-Time PCR Quantification of the Expression of tIL-10a and<br>tIL-10b |
|      | 5.2.3. Transcript Expression of tIL-10a and tIL-10b In Vivo                                                                                          |
|      | 5.2.4. Stimulation of Cell Lines by LPS, polyIC and rtIFN- $\gamma$                                                                                  |
|      | 5.2.5. Modulation of the Gene Expression of tIL-10a and tIL-10b in Head Kidney (HK) Cells                                                            |
|      | 5.2.6. The Expression of tIL-10 Paralogues Over the Course of Bacterial Infection                                                                    |
|      | 5.2.7. Statistical Analysis                                                                                                                          |
| 5.3. | Results                                                                                                                                              |
|      | 5.3.1. Sequence Analysis of Trout IL-10b (tIL-10b)<br>5.3.2. Tissues Distribution of the Expression of the Two Trout IL-10<br>Genes In Vivo          |
|      | 5.3.3. Modulation of the Expression of the tIL-10 Paralogues in Cell Lines                                                                           |
|      | 5.3.4. Modulation of the Expression of tIL-10 Paralogues in Head Kidney Leucocytes                                                                   |
|      | 5.3.5. Differential Modulation of Trout IL-10 Paralogues by Y. ruckeri<br>Infection in the Spleen and Gills                                          |
| 5.4. | Discussion                                                                                                                                           |
|      | Figures and Tables                                                                                                                                   |

| CHA  | APTER SIX: General Discussion | 219 |
|------|-------------------------------|-----|
| 6.1. | Rational of the Study         | 220 |
| 6.2. | Summary of the Results        | 221 |
|      | 6.2.1. Chapter Two            | 221 |
|      | 6.2.2. Chapter Three          | 223 |
|      | 6.2.3. Chapter Four           | 225 |
|      | 6.2.4. Chapter Five           | 227 |
| 6.3. | Conclusions                   | 228 |
| 6.4. | Future Work                   | 229 |
|      |                               |     |
| CHA  | APTER SEVEN: References       | 230 |

# **Lists of Figures**

| Figure 1.1.  | : | Antibody responses to vaccination.                                                                                                                                                    | 50  |
|--------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 1.2.  | : | Network of cytokine responses due to viral and bacterial infection.                                                                                                                   | 53  |
| Figure 1.3.  | : | Cytokines found in fish to date and the network.                                                                                                                                      | 54  |
| Figure 1.4.  | : | A classic three circles by Snieszko.                                                                                                                                                  | 57  |
| Figure 2.1.  | : | A schematic illustration of the role of IFN- $\gamma$ in innate and adaptive immune responses to pathogens.                                                                           | 86  |
| Figure 2.2.  | : | Domain structure of IFN-γ.                                                                                                                                                            | 87  |
| Figure 2.3.  | : | PCR product of $\beta$ -actin and IFN- $\gamma$ from the head kidney and spleen cDNA trials samples at day 5.                                                                         | 88  |
| Figure 2.4.  | : | Experimental design.                                                                                                                                                                  | 88  |
| Figure 2.5A. | : | Spleen size of rainbow trout post-vaccination.                                                                                                                                        | 89  |
| Figure 2.5B. | : | Spleen size of rainbow trout over the course of the challenge.                                                                                                                        | 90  |
| Figure 2.6.  | • | Gel Picture showing PCR products obtained at Day 7 post-<br>vaccination (Fig. 2.6A) and at 0 h post-challenge (Fig. 2.6B) for head<br>kidney samples.                                 | 91  |
| Figure 2.7.  | : | Gene expression of IFN- $\gamma$ as a ratio to $\beta$ -actin gene expression in the head kidney samples.                                                                             | 92  |
| Figure 2.8.  | : | Gel Picture showing PCR products obtained from spleen samples.                                                                                                                        | 93  |
| Figure 2.9.  | : | Gene expression of IFN- $\gamma$ as a ratio to $\beta\mbox{-}actin$ gene expression in the spleen.                                                                                    | 94  |
| Figure 2.10. | : | Gene expression of IFN- $\gamma$ as a ratio to $\beta$ -actin gene expression in the head kidney leucocytes at 4 and 24 h post-stimulation with PHA.                                  | 95  |
| Figure 2.11. | : | Gene expression of IFN- $\gamma$ as a ratio to $\beta$ -actin gene expression in the head kidney leucocytes at 4 and 24 h post-stimulation with PHA.                                  | 96  |
| Figure 3.1.  | : | Spleen size of rainbow trout over the course of the challenge.                                                                                                                        | 126 |
| Figure 3.2.  | : | Bacterial burden in spleen of fish infected by Y. ruckeri.                                                                                                                            | 127 |
| Figure 3.3.  | : | Relative expression levels of 12 immune genes and the house keeping gene EF-1 $\alpha$ in the spleen and gills of health rainbow trout.                                               | 128 |
| Figure 3.4.  | : | Comparative expression profiles of the pro-inflammatory cytokines IL-1 $\beta$ , TNF- $\alpha$ , IL-6 and IL-11, in the spleen and gills.                                             | 129 |
| Figure 3.5.  | : | Comparative expression profiles of immune regulatory cytokines IL-<br>2 and IFN- $\gamma$ , and the Th1/Th2 master transcription factors T-bet and<br>GATA3, in the spleen and gills. | 130 |
| Figure 3.6.  | • | Comparative expression profiles of the anti-inflammatory cytokines IL-10 and TGF $\beta$ 1, as well as the Th17 cytokines IL-22 and IL-17A/F, in the spleen and gills.                | 131 |
| Figure 3.7.  | : | Comparative expression profiles of the immune regulatory cytokines IL-4L, IFN- $\gamma$ 2 and RORgamma in the spleen.                                                                 | 132 |
|              |   |                                                                                                                                                                                       |     |

| Figure 4.1.  | : | Prediction of ERM disease-resistance at 48 h after challenge.                                                                                                                              | 164 |
|--------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.2A. | : | Bacterial burden vs spleen index (spleen weight/ body weight x1000) in spleen of fish challenged with Y. Ruckeri.                                                                          | 165 |
| Figure 4.2B. | : | Log2 transformation of bacterial burden and spleen index (spleen weight/ body weight x1000) of selected challenged fish 48h post-infection.                                                | 166 |
| Figure 4.3.  | : | Spleen size of selected samples from challenged rainbow trout.                                                                                                                             | 167 |
| Figure 4.4.  | : | Bacterial burden in the spleen of selected samples from challenged rainbow trout.                                                                                                          | 168 |
| Figure 4.5.  | : | Genes with expression profile 1.                                                                                                                                                           | 171 |
| Figure 4.6.  | : | Genes with expression profile 1.                                                                                                                                                           | 172 |
| Figure 4.7.  | : | Genes with expression profile 1.                                                                                                                                                           | 173 |
| Figure 4.8.  | : | Genes with expression profile 1 or 2.                                                                                                                                                      | 174 |
| Figure 4.9.  | : | Genes with expression profile 1 or 2.                                                                                                                                                      | 175 |
| Figure 4.10. | : | Genes with expression profile 2                                                                                                                                                            | 176 |
| Figure 4.11. | : | Genes with expression profile 2                                                                                                                                                            | 177 |
| Figure 4.12. | : | Genes with expression profile 2.                                                                                                                                                           | 178 |
| Figure 4.13. | : | Genes with expression profile 3.                                                                                                                                                           | 179 |
| Figure 4.14. | : | Genes with expression profile 3                                                                                                                                                            | 180 |
| Figure 4.15. | : | Genes with expression profile 3.                                                                                                                                                           | 181 |
| Figure 5.1.  | : | Comparison of the cDNA and deduced amino acid sequences of trout IL-10 paralogues.                                                                                                         | 210 |
| Figure 5.2.  | : | Multiple alignment of the deduced amino acid sequence of tIL-10b.                                                                                                                          | 211 |
| Figure 5.3.  | : | Phylogenetic tree of the trout IL-10 cytokine subfamily members from fish and other vertebrates.                                                                                           | 213 |
| Figure 5.4.  | : | In vivo expression of trout IL-10a and IL-10b transcripts.                                                                                                                                 | 214 |
| Figure 5.5.  | : | Constitutive expression of trout IL-10 paralogues in four cell lines.                                                                                                                      | 215 |
| Figure 5.6.  | • | Constitutive expression of trout IL-10 paralogues (A), and modulation of expression of tIL-10a (B) and tIL-10b (C) by PHA, IL-21 and IFN- $\gamma$ in HK leucocytes <i>in vitro</i> . (A). | 216 |
| Figure 5.7.  | : | Modulation of expression of tIL-10a (A) and tIL-10b (B) in HK leucocytes in vitro.                                                                                                         | 217 |
| Figure 5.8.  | : | Modulation of the expression of tIL-10a and tIL-10b in spleen (A) and gills (B) after <i>Yersinia ruckeri</i> infection.                                                                   | 218 |

## Lists of Tables

| Table 1.1. | : | Top ten aquaculture producers of food fish supply in 2004: quantity.                                                                                                                                                                    | 43  |
|------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 1.2. | : | Top ten species groups in 2004.                                                                                                                                                                                                         | 44  |
| Table 1.3. | : | Summary of host species and countries from which ERM outbreaks have been reported.                                                                                                                                                      | 45  |
| Table 1.4. | : | A summary of the most economically important diseases in aquaculture.                                                                                                                                                                   | 46  |
| Table 1.5. | : | Commercially available vaccines for fish.                                                                                                                                                                                               | 51  |
| Table 1.6. | : | A summary of immunostimulants shown to be active against particular pathogens, either <i>in vivo</i> or <i>in vitro</i> .                                                                                                               | 52  |
| Table 1.7. | : | List of interleukins identified in mammals and fish.                                                                                                                                                                                    | 55  |
| Table 3.1. | : | Oligonucleotides used for quantitative PCR (qPCR) for bacterial detection, gene expression and antimicrobial peptides.                                                                                                                  | 125 |
| Table 3.2. | : | The Spearman's rho correlation coefficient (R) and the 2-tailed significance (p) between the bacterial burden (BB), spleen index (SI) and gene expression levels in the spleen.                                                         | 133 |
| Table 3.3. | : | The Spearman's rho correlation coefficient (R) and the 2-tailed significance (p) between the bacterial burden (BB), spleen index (SI) and gene expression levels in the gill.                                                           | 134 |
| Table 4.1. | : | Oligonucleotides used for quantitative PCR (qPCR) for bacterial detection, gene expression and antimicrobial peptides in chapter 4.                                                                                                     | 160 |
| Table 4.2. | : | The spleen index (SI), bacterial burden (BB) and genes of interest by one way analysis of variance (ANOVA) and Bonferroni post hoc test.                                                                                                | 169 |
| Table 4.3. | : | The Spearman's rho correlation coefficient (r) and the 2-tailed significance (p) between the bacterial burden (BB), spleen index (SI), and positive correlation genes expression levels in the spleen of challenge fish from profile A. | 182 |
| Table 4.4. | : | The Spearman's rho correlation coefficient (r) and the 2-tailed significance (p) between the bacterial burden (BB), spleen index (SI), and negative correlation genes expression levels in the spleen of challenge fish from profile B. | 183 |
| Table 4.5. | : | The Spearman's rho correlation coefficient (r) and the 2-tailed significance (p) between the bacterial burden (BB), spleen index (SI), and non-correlated genes expression levels in the spleen of challenge fish from profile C.       | 184 |
| Table 5.1. | : | Cellular members of the interleukin-10 family.                                                                                                                                                                                          | 208 |
| Table 5.2. | : | Viral members of the interleukin-10 family.                                                                                                                                                                                             | 208 |
| Table 5.3. | : | Real-Time PCR Primers used and cycling conditions.                                                                                                                                                                                      | 209 |
| Table 5.4. | : | Summary of IL-10 molecules analyzed in this study.                                                                                                                                                                                      | 212 |
|            |   |                                                                                                                                                                                                                                         |     |

## ABSTRACT

Analysis of immune gene expression in infected and vaccinated rainbow trout, Oncorhynchus mykiss with a focus on cytokines of adaptive immunity

#### Abstract

The aquaculture sector is currently thriving, and has expanded to meet the demand for fish and shellfish as an alternative protein source to meat. This is especially true for high value products such as Atlantic salmon, where in Scotland salmon farming is reported to be worth > £1 billion to the national economy. Currently around 40% of farmed fish and shellfish destined for human consumption are derived from aquaculture. Therefore, a great deal of attention is paid to problems that the industry faces, with fish diseases of paramount importance. A variety of species of bacteria, viruses and parasites are common in the aquatic environment, which can result in serious diseases amongst fish stocks. As a result, ways to improve disease resistance have been the focus of much attention, with the use of vaccines considered a desirable way forward. However, other approaches are also followed, such as the use of immunostimulants to improve fish health in a more limited, non-specific way, or the use of genetic markers to allow selective breeding of important disease resistance traits. For all of these approaches more information is needed on the pathways that give rise to disease resistance in fish in different situations, to allow their manipulation or monitoring, and the studies in this thesis are directed towards this goal. Fish has been used as a model to study the evolution of vertebrate immunolity for some deacades, especially work on humoral immune responses where knowledge on antibody production has dominated much of the literature on fish immunology. In contrast, little known about specific cell-mediated immunity in fish, even though it also likely plays an important role in the immune system and disease resistance. Therefore, this thesis has been focused on analysing such responses, taking advantage of the recently discovered cytokines of adaptive immune responses in fish, which allow transcriptomic studies in particular to look at the molecules turned on during infection and after vaccination. Thus the goal of this thesis was to take advantage of some successful vaccines that exist for rainbow trout, and examine the gene expression changes that occur in vaccinated trout post-challenge with the homologus pathogen, and to try to dissect pathways that may correlate with disease resistance in this species.

In Chapter Two, a commercial (Furovac 5) and suboptimal (formalin killed strain MT004) vaccine against furunculosis were used to investigate their modulatory effects on localised and systemic responses following vaccination and subsequently following challenge (by injection) of the causative agent, *Aeromonas salmonicida*. Two immune tissues, head kidney and spleen, were used to study the expression of a major cytokine known to modulate innate response to bacterial infection, interferon- $\gamma$  (IFN- $\gamma$ ). The results showed that soon after vaccination a significantly elevated IFN- $\gamma$  expression could be detected in head kidney leucocytes from fish given the commercial vaccine but that at later timings no significant differences were apparent, and that the spleen showed no clear IFN- $\gamma$  induction at any of the timings sampled post-injection. Post-challenge of the vaccinated and control fish no further increases in IFN- $\gamma$  expression were found, although at 48h post-challenge there was a large induction seen in the head kidney of the fish given the commercial vaccine. This may reflect poor memory induction for IFN- $\gamma$  secreting cells, although it may also be that Th1-type responses are not the most important for protection against this pathogen.

In Chapter Three the disease model was changed to *Yersinia ruckeri*, the causative agent of Enteric Redmoth Disease (ERM), for which a commercial vaccine is also available. Sixty days post-vaccination the fish were challenged and 6, 24, 48 and 72 h later the gills and spleen were sampled for gene expression analysis. These studies showed that pro-inflammatory cytokines were up-regulated post-infection in the spleen of both naïve and vaccinated fish after *Y. ruckeri* challenge, although the pro-inflammatory cytokine expression was much lower in vaccinated fish. A correlated expression between pro-inflammatory cytokines and anti-inflammatory cytokines was only seen in the spleen of vaccinated fish, where a Th1-like response was indicated. In contrast, in the gills, the inflammatory gene response was enhanced in vaccinated fish compared to naïve fish, but intriguingly there was a strong up-regulation of IL-22. Taken together these results suggest that different types of adaptive responses can possibly occur at different sites in vaccinated fish during infection with *Y. ruckeri*, and in this case a Th1 type response may be triggered in systemic tissues (spleen) but a Th17 type response in mucosal sites (gills).

In Chapter Four a different approach was taken, very much focussed on innate resistance to bacterial infection. In contrast to the known protection afforded by vaccination against *Y. ruckeri*, this experiment utilised a predicted variation in resistance to generate a population of fish that showed differential spleen size (SI)/bacterial burden (BB) indices in response to infection, as a means to separate fish that may live or die post-challenge. Many pro-inflammatory genes and antimicrobial peptides were up-regulated in fish with a high SI/BB relative to those with a small SI/BB. However, in addition, these fish also had a number of molecules associated with Th1 responses elevated, as well as various down-regulators of inflammation (IL-10, nIL-1F, SOCS molecules). In contrast the fish with a small SI/BB had elevated MHC class II molecules and CD80/86 molecules, as well as many lymphocyte markers. Thus lymphocyte activation appears to be an important component of the responses in resistant fish.

Finally, in **Chapter Five** a second interleukin IL-10 gene was described in rainbow trout. It was successfully cloned and its expression studied in the context of *Y. ruckeri* infection and after stimulation with various PAMPS and cytokines. This molecule, termed IL-10b. is highly similar to IL-10a, however some interesting differences in expression were found. For example, IL-10a had higher expression levels in tissues from healthy, control fish. However, during *Y. ruckeri* infection, whilst IL-10b was not induced in the spleen, in contrast to IL-10a, the opposite was apparent in the gills. A number of PAMPS were also able to induce both paralogues, although different kinetics were again apparent. Such differences probably reflect divergence of the promoters of the two genes.