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Abstract
The Cox Creek sub-catchment is located in the Piccadilly Valley, South Australia. It 

exports disproportionately high loads of nutrients and sediment to the downstream Mount 

Bold reservoir. The excessive application of inorganic fertilisers to agricultural land in the 

Cox Creek sub-catchment has enhanced nutrient exports downstream. This has led to 

eutrophication and algal blooms in Mount Bold Reservoir, an important water supply for the 

city o f Adelaide, which has a population o f approximately 1.3 million people. The Cox 

Creek constructed wetland includes a sedimentation basin and a series of constructed 

wetland ponds, which were implemented to reduce nutrient loads passing downstream. The 

objective o f this research was to evaluate the capacity of the constructed wetlands to retain 

nutrients and better understand key processes for nutrient retention such as macrophyte 

uptake, sediment sorption and sedimentation in the Cox Creek wetland system. How 

different flow regimes influence these processes was also investigated.

Based on historical inflow and outflow data from 2004 to 2009 for the Cox Creek 

wetland system, six different flow rate classes were classified and the nutrient loads 

delivered by each of these flow rate classes were calculated. It was hypothesized that the 

higher the flow class the shorter the water residence time and so reduced opportunity for 

nutrient retention through processes such as sedimentation. The very dry flow class (0 to 1 

ML day '1) had the longest water residence time (14.8 days) and contributed the lowest total 

phosphorus (TP) and total nitrogen (TN) loads (TP: 10.2 kg yr' 1 and TN: 81.0 kg yr'1). In 

comparison, the high flow class (46 to 300 ML day'1) had the shortest water residence time 

(0.1 days) and contributed the highest nutrient loads (TP: 433.4 kg yr’1 and TN:

1726.2 kg y r'1). The percentage o f TP and TN retention (TP: 60 to 69% and TN: 18 to 76%) 

showed that nutrient loads at the inflow were greater than that o f the outflow after the 

construction of the wetland in 2006. Therefore there was a net retention of nutrients in the 

Cox Creek wetland system during the study period, suggesting it is effective at reducing 

nutrient loads passing downstream.
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In order to investigate the ability o f macrophytes to store nutrients, the seasonal TP 

and TN storage by Schoenoplectus validus and Phragmites australis were compared between 

Reed Bed and Pond 1 of Cox Creek wetland system. The TP and TN storage were 

significantly higher in Reed Bed (TP: 22.0 gP m'2 and TN: 118.5 gP m'2) than in Pond 1 (TP: 

1.0 gP m'2 and TN: 10.3 gP m'2). TP storage peaked in spring 2008 for S. validus and P. 

australis in Pond 1. This was also the case for S. validus in Reed Bed, but TP storage peaked 

in summer 2009 for P. australis in Reed Bed. TN storage peaked in spring 2008 by both 

species in Reed Bed. This was also the case for S. validus in Pond 1, but TN storage peaked 

in summer 2009 for P. australis in Pond 1. Based on the results, it appears that the presence 

of macrophytes can reduce nutrient loads passing downstream, with the amount of nutrients 

stored highest during spring and summer. Therefore, the best timing for harvesting for 

removal of wetland nuft'ients is after spring, when nutrient storages are expected to be 

highest, preferably in mid summer season.

The sediment redox potential was higher in Reed Bed than in Pond 1, suggesting 

macrophytes may have the ability to release oxygen fi’om roots and increase phosphorus (P) 

adsorption in Reed Bed. Using P adsorption-desorption experiments, the equilibrium P 

concentration (EPC) was calculated as a measure the P adsoiption capacity o f sediments in 

Reed Bed and Pond 1. EPC is used to identify sediment as a source or sink o f P. When P 

concentration of porewater is greater than the EPC, then the sediment will adsorb P and vice 

versa. The EPC values were lower in Reed Bed than in Pond 1, indicating greater P 

adsoiption capacity o f Reed Bed sediment than Pond 1 sediment. Phosphorus fractionation 

o f the sediments showed that of the inorganic forms o f P (loosely sorbed-P, Ca/Mg-P and 

Fe/Al-P) and the Fe-P was consistently higher in Reed Bed than in Pond 1. Under oxidised 

conditions, the ferric ion complexes adsorb P, reducing the amount of P available for 

diffusion to the overlying water. Therefore, it appears oxygen release by macrophytes in 

Reed Bed may promote P storage in sediments, with greater P-binding capacity in Reed Bed 

than Pond 1.
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Sedimentation was determined as the main process that determines the nutrient 

retention capacity of the Cox Creek wetland system. Based on measured sedimentation rates 

at the inlet and outlet of Reed Bed and Pond 1 in three different flow events, the average of 

sedimentation rate across the study was 2.2 kg m'2 y r'1. Even though the presence of 

vegetation has been shown to enhance sedimentation elsewhere, P accumulation rates were 

greater in Pond 1 (0.4 to 4.6 kg m’2 day’1) than in Reed Bed (0.3 to 2.0 kg m’2 day’1). This is 

likely a result o f greater inflowing loads of sediment and nutrients in Pond 1 than in Reed 

Bed. Pond 1 receives water from both sedimentation pond and Reed Bed whereas Reed Bed 

only receives overflow from the sedimentation basin.

In order to quantify the performance of the Cox Creek wetland system for reducing P 

exports, a P mass balance was calculated. This study found that 281.6 kg yr' 1 o f P is retained 

in the wetland. Although there is an unaccounted amount of P in the mass balance 

(112 kg yr'1), the relative contributions of uptake by macrophytes (36 kg yr'1), sediment P 

adsoiption (43.5 kg yr'1) and sedimentation (90.1 kg yr'1) are believed to be the most 

important mechanisms in P removal. Consequently, wetland design and operation should aim 

to promote these processes to maximise P removal. This should include increasing 

macrophyte diversity, using nutrient-poor sediments as substrate and increasing residence 

time of water to create favourable conditions for sedimentation in the wetland.


