ISOLATION OF POLYHYDROXYALKANOATE PRODUCING BACTERIA FROM BRACKISH WATER IN UNIVERSITI MALAYSIA TERENGGANU CANAL

JONG TSE KIUN

SCHOOL OF MARINE AND ENVIRONMENTAL SCIENCES UNIVERSITI MALAYSIA TERENGGANU 2015

1100103676

Iniversiti Malaysia Terengganu.

1100103676

Isolation of polyhydroxyalkanoate producing bacteria from brackish water in Universiti Malaysia Terengganu / Jong Tse Kium.

110010	
RECEIVED	1 8 OCT 201

Lihat Sebelah

[HAK MIL	iK		
	PERPUSTAKAAN			LAHINAH	UMI

ISOLATION OF POLYHYDROXYALKANOATE PRODUCING BACTERIA FROM BRACKISH WATER IN UNIVERSITI MALAYSIA TERENGGANU CANAL

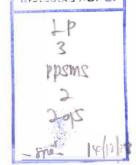
By

Jong Tse Kiun

Project report submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Science (Marine Science)


School of Marine and Environmental Sciences UNIVERSITI MALAYSIA TERENGGANU

2015

This project report should be cited as:

Jong, T. K. (2013). Isolation of polyhydroxyalkanoate producing bacteria from brackish water in Universiti Malaysia Terengganu Canal. Undergraduate thesis, Bachelor of Science in Marine Science, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Terengganu, 81p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project

1100103676

SCHOOL OF MARINE AND ENVIRONMENTAL SCIENCES UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION REPORT FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled *Isolation of polyhydroxyalkanoate producing bacteria from brackish water in Universiti Malaysia Terengganu* by Jong Tse Kiun, Matric No. UK 28221 has been examined and all errors identified have been corrected. This report is submitted to the School of Marine and Environmental Sciences as partial fulfilment towards obtaining the degree of Bachelor of Science (Marine Science), School of Marine and Environmental Sciences, Universiti Malaysia Terengganu.

Verified by:

Supervisor

Official stamp:

DR. KESAVEN A/L BHUBALAN Lecturer School of Marine Science and Environment Universiti Malaysia Terengganu 21030 Kuala Terengganu

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr Kesaven Bhubalan, lecturer from School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, for his caring, guidance and giving me some prudent suggestion throughout my final year project. I would like to thank Mrs Noor Fazielawanie ,Mr The Weng Kern, and Mr Mohd Azran Faris for helping and guiding me in laboratory work.

I wish to thank the laboratory assistances who worked in Oceanography Laboratory, Biodiversity Laboratory and Biotechnology laboratory such as Mr Azahari, Mr Zaidi, Mrs Malzan, Mrs Suilaiman and others for guiding me to use some instruments. Futhermore, I would like to thank my lab mates which are Amelia Tan Suet May, Serena binti Adam, Umaahsreerekah a/p Gopalakrishnan, Nadzirah and Chim Yim Ling for helping me in my laboratory analysis especially accompany me went to sampling at University Malaysia Terengganu Canal.

Last but not least, I would like to give my special appreciation to my beloved parents because they always encouraging me and also supporting me so that I have a fighting power for me to finish my final year project within two semester.

i

TABLE OF CONTENTS

Cont	ent			Page
АСК	NOWLE	DGEMENT		i
LIST	OF TAB	BLES		v
LIST	OF FIG	URES		vi
LIST	OFABE	BREVIATIONS		viii
LIST	T OF APP	ENDICES		х
ABS	TRACT			xi
ABS	TRAK			xii
Chaj	pter 1: In	troduction		
1.1	Backgr	ound of Study		1
1.2	Justification			
1.3	Objecti	ves		4
Cha	pter 2: Li	terature Review		
2.1	Polyhy	droxyalkanoate		5
2.2	Most C	ommon P(3HB) Biosynthesis Pathway		7
	2.2.1	The pathway of P(3HB)		8
	2.2.2	Fatty acid β -oxidation pathway		10
	2.2.3	Fatty acid de novo biosynthesis pathway		11
2.3	Types o	f Carbon Sources Commonly Used to Produce PHA		12
2.4	PHA Pr	roduction by Fermentation		14
	2.4.1	PHA Producing Bacteria		16
2.5	Physical Properties of PHA 18			18

2.6	Biodegradability of PHA	20
2.7	Bacteria Consortium in Brackish water	22
2.8	16S Ribosomal RNA (16S rRNA) Cloning and Sequencing	23
2.9	Application of PHA	26

Chapter 3: Methodology

3.1	Sampling Site 29		
3.2	Mediu	m Preparation	30
	3.2.1	Nutrient rich medium	30
	3.2.2	Mineral Salt Medium	30
3.3	Prepar	ation of Carbon Sources	32
3.4	Isolati	on and Screening of Potential PHA Producers	32
3.5	Screen	ing of PHA Producing Bacteria	33
3.6	PHA E	Biosynthesis	34
	3.6.1	Harvesting the bacterial cell	34
	3.6.2	Biomass measurement	35
3.7	Gas Ch	aromatography (GC) Analysis	35
	3.7.1	Preparation of methanolysis solution	35
	3.7.2	Preparation of caprylic methyl (CME) solution	35
	3.7.3	Methanolysis process	36
	3.7.4	Gas chromatography operation	37
	3.7.5	Calculation of PHA content	37
3.8	Bacter	ria Identification via Microscopic Screening	38
3.9	-	nerase Chain Reaction (PCR) Method and Genetic fication	39
	3.9.1	Direct colony method	39

	3.9.2	Gel electrophoresis	41
	3.9.3	DNA purification process	41
	3.9.4	Sequencing analysis	42
4.0	РНА Ех	traction	42

Chapter 4: Results

4.1	Isolation of Various Bacteria Strains from Brackish water	43
4.2	Screening for Potential PHA Producing Bacteria	44
4.3	Gram Staining of Potential Strains	45
4.4	16S rRNA Gene Sequencing	47
4.5	Characterization of Poly(3-hydroxybutryate)	49
4.6	PHA Extraction	54

CHAPTER 5: DISCUSSION	55
CHAPTER 6: CONCLUSION AND RECOMMENDATION	62
REFERENCES	64
APPENDICES	74
CURRICULUM VITAE	81

LIST OF TABLES

Tables		Pages
2.1	Comparison between the physical properties of various PHA with synthetic plastics	17
2.2	Some examples of gram positive and gram negative PHA producing bacteria	21
2.3	The agarose concontration for separationg the different ranges of DNA molecules	25
3.1	Component used for preparation of mineral salt medium, MSM	31
3.2	Components needed for preparation of trace elements	31
3.3	The essential guidelines for GC operation	37
3.4	PCR components and volumes	39
3.5	Primers used to clone 16s rRNA region	40
3.6	The PCR profile	40
4.1	All 11 potential PHA producing strains were coded and screened by Nile red dye	44
4.2	CDW and PHA content in three different strains by using glucose as sole carbon source.	49
4.3	CDW and PHA content in three different strains by using glycerol as sole carbon source.	52
4.4	CDW and PHA content in three different strains by using sweetwater as sole carbon source.	53
4.5	Mass of crude PHA produced from three strains after extraction process	53

LIST OF FIGURES

Figure		Page
2.1	The general structure of PHA	6
2.2	P(3HB) pathway involved three process which are condensation, reduction and polymerizetion	9
2.3	Fatty acid β-oxidation pathway	10
2.4	Fatty acid de novo biosynthesis pathway	12
2.5	Examples of the PHA materials using in implantation	26
3.1	The sampling site at Unversiti Malaysia Terengganu	29
4.1	Some isolated strains from brackish water sample	43
4.2	Bacteria strains viewed under the UV light. a represented a positive strain with orange fluorescence; b, c, and d represent negative strains	45
4.3	The morphologies of the bacteria on the MSM plates. A, B and C represent the MGLU4, MGLU5 and MSW3 respectively	46
4.4	The gram staining for positive isolates. A, B and C represent MSW3, MGLU5 and MGLU4 respectively	47
4.5	Three DNA bands of 16S rRNA sequences on the 0.7% agarose gel. SM represented as sizes of marker.	48
4.5	P(3HB) shown in the GC chromatogram when <i>M. haematophila</i> cultivated by using 20g/L of glucose as a carbon source	50
4.6	P(3HB) shown in the GC chromatogram when <i>M. plantisponsor</i> cultivated by using 20g/L of glucose as a carbon source	51
4.7	P(3HB) shown in the GC chromatogram when <i>M. haematophila</i> cultivated by using 30g/L of glycerol as a carbon source	52

- 4.8 P(3HB) shown in the GC chromatogram when *N. panipatense* 54 cultivated by using 20g/L of sweetwater as a carbon source
- 4.9 Polymer after PHA extraction process. A represents the polymer 54 extracted from *M. haematophila* and B represents the polymer extracted from *M. plantisponsor*

LIST OF ABBREVIATIONS

KH ₂ PO ₄	:	Potassium dihydrogen phosphate
Na ₂ HPO ₄	:	Disodium hydrogen phosphate
NH4Cl	:	Ammonium chloride
MgSO4.7H2O	:	Magnesium sulphate heptahydrate
HCl	:	Hydrochoride acid
COCl ₂ .H ₂ O	:	Cobalt (II) chloride hydrate
FeCl ₃	:	Iron (III) chloride
CaCl ₃	:	Calcium (III) chloride
NiCl ₂ .6H ₂ O	:	Nickel (II) chloride hexahydrate
CrCl ₃ .6H ₂ 0	:	Chromium (III) chloride hexahydrate
CUSO ₄ .5H ₂ 0	:	Copper (II) sulfate pentahydrate
μL	:	Microliter
Ν	:	Normality
mL/L	5	Milliliter per liter
g/L	:	Gram per liter
% (w/v)	:	Percentage of weight per volume
v/v	:	Volume per volume
kPa	:	Kilopasca
mL/min	\$	Microliter per minutes
mg	:	Milligram
pmol	:	Picomolar

h : Hours

bp : Base pair

LIST OF APPENDICES

I	16S rRNA Partial Sequences from <i>Massilia haematophila</i> .	73
Π	16S rRNA Partial Sequences from Novosphingobium panitense.	74
III	16S rRNA Partial Sequences from Mangrovibacter plantisponsor.	75
ĪV	The Similarities of <i>Massilia haematophila</i> CCUG 38318 Shown in BLAST Result.	76
V	The Similarities of <i>Novosphingobium panipatense</i> SM16 Shown in BLAST Result.	77
VI	The Similarities of <i>Mangrovibacter plantisponsor</i> MSSRF 40 Shown in BLAST Result.	78
VII	Poster for Participated in INOVASI UMT 2015.	79

ABSTRACT

Polyhydroxyalkanoate (PHA) is a type of biodegradable plastic which can be synthesized by bacteria under limited nutrient and excess carbon source. Approximately 11 strains isolated from brackish water in University Malaysia Terengganu canal were screened to determine potential PHA production using Nile red dye. Results showed three strains, Massilia haematophila, Mangrovibacter plantisponsor, and Novosphingobium panipatense, were produced poly(3hydroxybutyrate), P(3HB), a common PHA. These strains were tested for the production of P(3HB) using three renewable carbon sources, which are glucose, sweetwater and glycerol. *Massilia haematophila* produced 33.75 ± 4.49 wt% and 9.83 ± 1.60 wt% P(3HB) from glucose and glycerol respectively. *Massilia plantisponsor* produced 12.14 \pm 3.52 wt% from glucose, and *N. panipatense* produced 10.53 \pm 3.2 wt% P(3HB) when supplemented with sweetwater. P(3HB) polymer in M. haematophila and M. plantisponsor freeze-dried cell pellets were extracted using solvent extraction method. All strains showed ability in converting industrial waste or by-products to valuable biodegradable material as a more beneficial approach in waste management.

Pengasingan Bakteria yang Menghasilkan Polyhydroxyalkanoate dari Air Payau di Universiti Malaysia Terengganu.

ABSTRAK

Polyhydroxyalkanoate (PHA) adalah sejenis plastik yang boleh dihapuskan dalam alam sekitar dan boleh dihasilkan oleh bakteria apabila dalam kaedaan mengehadkan nutrien dan juga melebihi sumber karbon. Sebelas bakteria yang diasingkan dari air payau di Universiti Malaysia Terengganu canal diskrin oleh pewarna nile red untuk menetukan potensi bakteria yang boleh menghasilkan PHA. Keputusan yang didapati dari skrin proses menunjukan hanya Massilia haematophila, Mangrovibacter Novosphingobium panipatense plantisponsor dan terdapat potensi untuk menghasilkan sejenis PHA yang biasa dijumpai iaitu poly(3-hydroxybutyrate), P(3HB). Ketiga-tiga bakteria ini menggunakan sumber karbon yang boleh diperbaharuhi contohnya glukosa, gliserol dan juga *sweetwater* untuk menghasilkan P(3HB). Massilia haematophila mampu menghasilkan sebanyak 33.75 ± 4.49 wt% and 9.83 ± 1.60 wt% P(3HB) daripada glukosa dan gliserol. Massilia. plantisponsor mampu menghasilkan sebanyak 12.14 ± 3.52 wt% P(3HB) daripada glukosa dan N. panipatense hanya menghasilkan 10.53 ± 3.2 wt% P(3HB) daripada sweetwater. Di samping itu, polimer P(3HB) boleh diekstrakan oleh pelarut kloroform daripada M. haematophila dan M. plantisponsor dalam pelet sel yang telah dikerinkangkan. Ketiga-tiga bakteria ini menunjukan keupayaan untuk menukarkan sisa-sisa industri kepada produk yang lebih berharga oleh itu PHA berfaedah dalam pengurusan sisasisa.