DF processed with OutePDF evaluation edition www.CutePDF.com

SPERM ACTIVATION IN NILE TILAPIA OREOCHROMIS NILOTICUS AND THE EFFECTS OF ENVIRONMENTALLY RELEVANT POLLUTANTS ON SPERM FITNESS

NADIRAH MUSA

DOCTOR OF PHILOSOPHY UNIVERSITY OF STIRLING 2010 0/770

1100077216

Perpustakaan Sultanah Nur Zahirah Universiti Malaysia Terengganu (UMT)

1100077216

Sperm activation in nile tilapia oreochromis niloticus and effects of environmentally relevant pollutants on sperm fitness / Nadirah Musa.

		tin	007	72	16	
		T	H.H.I		2	5
				-		
		1			<u> </u>	
		1				
				-		
		-				
		-				
				_		
		-				
					1	
2	-4-					
				-		
			-			

SPERM ACTIVATION IN NILE TILAPIA OREOCHROMIS NILOTICUS AND THE EFFECTS OF ENVIRONMENTALLY RELEVANT POLLUTANTS ON SPERM FITNESS

by

Nadirah Musa

A thesis submitted to the University of Stirling for the degree of Doctor of Philosophy

INSTITUTE OF AQUACULTURE

UNIVERSITY OF STIRLING

MAY 2010

Dedicated to my late father who passed away on December 18, 2006.

Declaration

I declare that this thesis has been compiled by myself and is the result of my own scientific investigations. It has not been submitted for any other degree and all sources of information have been duly acknowledged.

Signature	
Signature of supervisor	
Date	

Acknowledgements

I would like to give my gratitude to Prof. Dr Stephen G. George, Dr. Krishen J. Rana and Dr Michael J. Leaver for their expert guidance and who have made a special effort to make this study possible; your generosity on time, help, critism and ideas are truly appreciated.

Thanks are also due to Mr Keith Ranson for providing help on collection of the samples. I would also like to acknowledge my appreciation to Billy (WP), Linton Brown and Dr James Bron of Institute of Aquaculture, your help on technical skill and suggestion are gratefully acknowledged. I am also extremely grateful for the assistance and guidance from numerous staff members at the Institute of Aquaculture and staff at Institute of Zoology (Zoological Society of London), especially to Dr Katrien Van Look and Prof. William Holt, without their training, perseverance, and patience I would never have learned the techniques required to finish this project. I am also especially grateful to Dr Elsa Cabrita of Portugal for her valuable guidance throughout my period of study.

Lastly but not least I would like to thank the Director of Aquaculture himself and Vice Director of the Institute for giving me the opportunity to study in the Institute of Aquaculture, University of Stirling.

I am also grateful to the Public Service Department and Government of Malaysia for financial assistance for the study. And not forgotten Universiti Malaysia Terengganu, especially to the head department of Fisheries Science and Aquaculture and Dean of the Faculty of Agriculture and Food Science for their support during my study.

Finally, my warmest gratitude goes to both my parents, my elder sister (Yong), my husband and my two daughters for their endless love and continuous support throughout the study period.

CONTENTS

Con	tents		iii
List	of Figu	ires	vii
List	of Tabl	es	ix
Abs	tract		x
Сна	PTER	I INTRODUCTION, LITERATURE REVIEW AND AIMS OF STUDY	
1.1	Introd	uction	1
1.2	Game	te quality and fertilization rate	2
	1.2.1	Fish sperm quality	3
	1.2.2	Spermatogenesis in fish	4
	1.2.3	Morphology of fish spermatozoa	6
1.3	Behav	vior of fish spermatozoa: mechanism of activation	10
	1.3.1	Sperm motility	12
	1.3.2	Seminal fluid and osmolality	14
	1.3.3	Seminal fluid and ionic composition	18
	1.3.4	Seminal fluid and pH	21
1.4	Pollut	ion in aquatic environment	23
	1.4.1	Cadmium and toxicity	24
	1.4.2	Pesticides and toxicity	28
		1.4.2.1 Malathion	32
		1.4.2.2 Rotenone	35
1.5	Nile ti	lapia	36
1.6	Proble	em statements	37
1.7	Aims	of study	38
Сна	PTER 2	CENERAL MATERIALS AND METHODS	
2.1	Procu	rement of male fishes	39
	2.1.1	Collection of seminal fluid	39
	2.1.2	Assessment of seminal fluid quality	40

	2.1.3	Estimation of sperm density	40
	2.1.4	Measurement of sperm motility	41
		2.1.4.1 Motility score	41
		2.1.4.2 Computer-aided sperm analysis	41
	2.1.5	Measurement of seminal plasma osmolality and pH	45
	2.1.6	Determination of ionic composition in seminal plasma	45
	2.1.7	Sperm morphology	45
2.2	Prepa	ration of experimental solutions	46
	2.2.1	Ion channel studies	46
		2.2.1.1 Lanthanum	46
		2.2.1.2 Flunarizine	46
		2.2.1.3 Amiloride	47
		2.2.1.4 Quinine	47
		2.2.1.5 Ouabain	47
	2.2.2	Pollutant studies	48
		2.2.2.1 Cadmium	48
		2.2.2.2 Malathion	48
		2.2.2.3 Rotenone	48
2.3	Gener	al statistical analyses	49
Сна	PTER 3	3 SPERM QUALITY OF NILE TILAPIA	
3.1	Introd	uction	50
	3.1.1	Sperm quality in fish	51
	3.1.2	Sperm motility score	53
	3.1.3	Computer-aided sperm analysis (CASA)	53
	3.1.4	Mechanism of fish sperm activation	54
	3.1.5	Morphology of fish spermatozoa	56
	3.1.6	Aims of study	57
3.2	Mater	ials and methods	59
	3.2.1	Physiochemical characteristics of seminal fluid	59
		3.2.1.1 Seminal plasma osmolality	59
		3.2.1.2 Density of spermatozoa	59

		3.2.1.3 Ionic composition	59
	3.2.2	Effect of seminal fluid stripping frequency on osmolality and	60
		sperm density	
	3.2.3	Sperm motility assay	60
		3.2.3.1 Effect of dilution rate on sperm motility	61
		3.2.3.2 Effect of osmolality of non-electrolytes and electrolytes	62
		solution on sperm motility	
		3.2.3.3 Effect of pH on sperm motility	62
	3.2.4	Effect of membrane ion channel inhibitors on sperm motility	62
	3.2.5	Effect of activation on sperm morphology	62
	3.2.6	Statistical analyses	64
3.3	Result	S	66
	3.3.1	Physiochemical characteristics of seminal fluid	66
	3.3.2	Effect of stripping frequency on seminal plasma osmolality and	68
		sperm density	
	3.3.3	Effect of dilution rate on sperm motility	70
	3.3.4	Effect of osmolality of non-electrolytes and electrolytes solution	74
		on sperm motility	
	3.3.5	Effect of pH on sperm motility	78
	3.3.6	Effect of membrane ion channel inhibitors on sperm motility	80
		3.3.6.1 Effect of lanthanum on sperm motility	80
		3.3.6.2 Effect of flunarizine on sperm motility	82
		3.3.6.3 Effect of amiloride on sperm motility	84
		3.3.6.4 Effect of ouabain on sperm motility	84
		3.3.6.5 Effect of quinine sperm motility	84
	3.3.7	Effect of activation on sperm morphology	84
3.4	Discus	ssion	94

CHAPTER 4 POLLUTANTS AND THEIR EFFECT ON SPERM MOTION AND MORPHOLOGY

4.1	Introd	uction	104
	4.1.1	Heavy metals and pesticides	106

	4.1.2	Aims of study	109
4.2	Materials and methods		
	4.2.1	Effect of cadmium on sperm motility	111
	4.2.2	Effect of malathion on sperm motility	111
	4.2.3	Effect of rotenone on sperm motility	112
	4.2.4	Effect of cadmium, malathion and rotenone on sperm morphology	113
	4.2.5	Hobson sperm tracker and sperm motility analysis	114
	4.2.6	Statistical analyses	115
4.3	Results		
	4.3.1	Effect of cadmium on sperm motility	116
	4.3.2	Effect of cadmium on sperm morphology	121
	4.3.3	Effect of malathion on sperm motility	121
	4.3.4	Effect of malathion on sperm morphology	125
	4.3.5	Effect of rotenone on sperm motility	125
	4.3.6	Effect of rotenone on sperm morphology	129
4.4	Discu	ssion	130
Сна	PTER 5	GENERAL CONCLUSIONS	137

CHAPTER 5 GENERAL CONCLUSIONS

Reference list

List of Figures

Fig	ure	Page
1.1	Diagrammatic representation of type 1 sperm with flagellum perpendicular to the nucleus and type 2 sperm with flagellum parallel to the nucleus	8
1.2 1.3	A diagram represents a longitudinal section of fish spermatozoa A diagram illustrates sperm motility descriptors generated by sperm tracker (Boyers et al., 1989)	8 16
2.1	A schematic diagram of equipments used for computer-aided sperm analysis (CASA)	43
3.1	Effect of dilution rate on sperm motility score, determined at 10 sec after activation	71
3.2	Effect of tank water and deionised distilled water on sperm motility score and motility duration determined until 540 sec	71
3.3	Effect of dilution rate on sperm motility variables determined at 5 sec after activation	73
3.4	Effect of tank water and deionised distilled water on sperm motility variables determined at 5 sec after activation	73
3.5	Effect of osmolality of mannitol on sperm motility score, determined at 10 sec after activation	75
3.6	Effect of osmolality of modified fish ringer's on sperm motility score, determined at 10 sec after activation	75
3.7	Effect of osmolality of mannitol on sperm motility variables, determined at 5 sec after activation	77
3.8	Effect of osmolality of modified fish ringer's on sperm motility variables, determined at 5 sec after activation	77
3.9	Effect of pH on sperm motility score, determined at 5 sec after activation	79
3.10	Effect of pH on sperm motility variables, determined at 5 sec after activation	79
3.11	Frequency (percentage) of fish spermatozoa in data set classified as PATN group 1 in relation to lanthanum treatment	81
3.12	Frequency (percentage) of fish spermatozoa in data set classified as PATN group 1 in relation to flunarizine treatment	83
3.13 3.14	SEM imagery of <i>Oreochromis niloticus</i> spermatozoa TEM imagery of <i>Oreochromis niloticus</i> spermatozoa. Longitudinal sagital section of the spermatozoa showing sleeve, mitochondria, flagellar axis, nucleus and cytoplasmic membrane	86 86
3.15	TEM imagery of <i>Oreochromis niloticus</i> spermatozoa. Longitudinal sagital section of the spermatozoa showing mitochondria, flagellum and cytoplasmic channel	87
3.16	TEM imagery of <i>Oreochromis niloticus</i> spermatozoa. Cross section of the flagellum showing lateral fins, peripheral and central microtubules	87
3.17	SEM imagery of <i>Oreochromis niloticus</i> spermatozoa at 30 sec of activation	89
3.18	TEM imagery of longitudinal sagital section of <i>Oreochromis niloticus</i> spermatozoa at 30 sec of activation	89

- 3.19 SEM imagery of *Oreochromis niloticus* spermatozoa at 60 sec of 90 activation
- 3.20 TEM imagery of longitudinal sagital section of *Oreochromis niloticus* 90 spermatozoa at 60 sec of activation
- 3.21 SEM imagery of *Oreochromis niloticus* spermatozoa at 120 sec of 91 activation.
- 3.22 TEM imagery of *Oreochromis niloticus* spermatozoa at 120 sec of 91 activation
- 3.23 SEM imagery of *Oreochromis niloticus* spermatozoa at 480 sec of 92 activation
- 3.24 TEM imagery of longitudinal sagital section of *Oreochromis niloticus* 92 spermatozoa at 480 sec of activation
- 4.1 Interaction plot of frequency of spermatozoa classified as PATN group 119
 1 and 2 in relation to cadmium treatment and pre exposure at 0, 5 and
 15 mins
- 4.2 Frequency (percentage) of fish spermatozoa in data set classified as 120 PATN group 2 in relation to cadmium treatment
- 4.3 Frequency (percentage) of fish spermatozoa in data set classified as 120 PATN group 2 in relation to the period of pre exposure to cadmium
- 4.4 Interaction plot of frequency of spermatozoa classified as PATN group 122
 1 and 2 in relation to malathion treatment and pre exposure at 0, 5 and
 15 mins
- 4.5 Frequency (percentage) of fish spermatozoa in data set classified as 124 PATN group 2 in relation to malathion treatment
- 4.6 Frequency (percentage) of fish spermatozoa in data set classified as 124 PATN group 2 in relation to the period of pre exposure to malathion
- 4.7 Interaction plot of frequency of spermatozoa classified as PATN group 127 1 and 2 in relation to rotenone treatment and pre exposure at 0, 5 and 15 mins
- 4.8 Frequency (percentage) of fish spermatozoa in data set classified as 128 PATN group 2 in relation to rotenone treatment
- 4.9 Frequency (percentage) of fish spermatozoa in data set classified as 128 PATN group 2 in relation to the period of pre exposure to rotenone

List of Tables

Table		Page
1.1	Definitions of sperm motility descriptors generated by Hobson sperm tracker	15
1.2	Summary of world pesticide markets in 2000 and 2001	29
1.3	Relative toxicities to various fish species exposed to malathion	34
2.1	Motility score for sperm motility measurement	41
2.2	Gate parameters of Hobson Sperm Tracker	44
2.3	Features of each element for PERKIN ELMER 2280 for flame spectrophotometry	45
3.1	Sperm quality biomarkers in fish species	52
3.2	Seminal fluid characteristic of Oreochromis niloticus	67
3.3	Mean (\pm s.d.) comparison of major ion composition (mM) in various types of seminal fluid compartment	67
3.4	Mean $(\pm$ s.d.) values of seminal plasma osmolality and sperm density (per ml) during sequential stripping from tilapia	69
3.5	Mean (\pm s.d.) values of seminal plasma osmolality, sperm density (per ml) and fish size during sequential stripping of 8-10 days from tilapia sampled from January 2005 to June 2005	69
3.6	Summary of group means (\pm s.d.) of spermatozoa motility parameters derived from PATN analysis: effect of lanthanum	81
3.7	Summary of group means (\pm s.d.) of spermatozoa motility parameters derived from PATN analysis: effect of flunarizine	83
3.8	Mean (\pm s.d.) diameter of spermatozoa mitochondria and nucleus of <i>Oreochromis niloticus</i> as observed by transmission electron microscopy (TEM)	93
4.1	Summary of group means $(\pm s.d.)$ of spermatozoa motility parameters derived from PATN analysis: effect of cadmium	119
4.2	Summary of group means (±s.d.) of spermatozoa motility parameters derived from PATN analysis: effect of malathion	122
4.3	Summary of group means (\pm s.d.) of spermatozoa motility parameters derived from PATN analysis: effect of rotenone	127

SPERM ACTIVATION IN NILE TILAPIA OREOCHROMIS NILOTICUS AND THE EFFECTS OF ENVIRONMENTALLY RELEVANT POLLUTANTS ON SPERM FITNESS

by

NADIRAH MUSA

Abstract

In externally fertilizing fishes, multiple factors of the spawning environment may affect the sperm viability, and thus the fertilization rate. In this thesis, the sperm activation effect of osmolality of non-electrolytes and electrolytes activation media, pH and ion channel inhibitors on Nile tilapia, *Oreochromis niloticus*, and the effect of environmentally relevant pollutants (cadmium, malathion and rotenone) on sperm fitness (motility and morphology) were investigated.

Seminal fluid samples collected from male fishes (200-250g) were subjected to activation treatments, then analyzed for sperm motility using motility score, and motility variables using Hobson sperm tracker for straight line velocity (VSL), beat cross frequency (BCF) and percentage of motile cells (MOT). For the ion channel inhibitors and pollutants, the effect on sperm motility variables of VSL, VCL (curvilinear velocity) and LIN (linearity) were determined. Multivariate analysis was also carried out to determine the effects of ion channel inhibitors and pollutants on sperm subpopulations. The effects of pollutants on sperm morphology were observed using microscopy techniques, namely, scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Sperm motility was initiated when the sperm were exposed to hypoosmotic electrolytes and non-electrolytes solution. We also found that sperm show optimal activity at pH range of 6-8 which depicts that the effect of pH on sperm motility is negligible. Lanthanum (calcium channel blocker) and flunarizine (sodium-calcium exchanger pump blocker) were found to inhibit sperm motility at 25 and 5 μ M, respectively, suggesting that both ion channels play a significant role in sperm activation in *O. niloticus*. In contrast amiloride, ouabain and quinine showed no effects on activation, indicating that epithelial sodium channels, sodium-potassium ATPase and voltage gated potassium channels respectively are unlikely to have major roles in sperm activation or motility. The spermatozoa of *Oreochromis niloticus* were uniflagellate with clearly differentiated oval-shaped head, midpiece and flagellum. Sperm exposed to hypoosmotic shock showed swelling of the midpiece and sleeve structure.

The pollutants showed dose- and time-dependent effect on sperm motility of the fast linear sperm subpopulation. Sperm morphology was not affected. Sperm motility was

inhibited at 0.44, 0.03 and 0.063 μ M, cadmium, malathion and rotenone respectively. Both cadmium and malathion exerted effects very quickly after exposure. The effect of cadmium, which can exert toxicity by calcium antagonism, is consistent with the effects of calcium channel blockes and further supports an important role for calcium in sperm activation and motility. Malathion had effects at relatively low, environmentally relevant concentrations, suggesting the presence of functionally important acetylcholinesterase activity in sperm, and also the presence of activation cytochrome P450 activity. Rotenone, a well known mitochondrial poison, affected motility only after 15 min of pretreatment. The alteration of sperm trajectories in fast linear spermatozoa subpopulation by pollutants at submicromolar concentrations as demonstrated in our study implies potentially serious consequences for fish populations in polluted environments. Furthermore the results indicate that fish sperm motility as assessed by CASA could be an ecologically relevant, sensitive, and ethically acceptable method for toxicity testing in environmental risk assessment.