DISTRIBUTION OF MERCURY IN THE SUNGAL PAKA, DUNGUN, TERENGGANU

FATIMAH BTE USMANG

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2008

UN 6315

1100061784

Perpustakaan Sultanah Nur Zahirah (UMT) Universiti Malaysia Terengganu

1100061784 Distribution of mercury in the Sungai Paka, Dungun, Terenggant / Fatimah Usmang.

PERPUSTAKAAN SULTAMAH MUR ZAHRAH UNIVERSITI MALAYBIA TERENGGAMU (URT) 2400 KUALA TERENGGAMU 1100061284

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

DISTRIBUTION OF MERCURY IN THE SUNGAI PAKA, DUNGUN, TERENGGANU.

By:

Fatimah Bte Usmang

Research Report submitted in partial fulfillment of the requirements for degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2008

JABATAN SAINS MARIN FAKULTI PENGAJIAN MARITIM DAN SAINS MARIN **UNIVERSITI MALAYSIA TERENGGANU**

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk: Distribution of mercury in the Paka River, Dungun, Terengganu, oleh Fatimah binti Usmang, No.Matrik UK11937 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Marin sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains (Sains Samudera), Fakulti Pengajian Maritim dan Sains Marin, Universiti Malaysia Terengganu.

Disahkan oleh:

Penyelia Utama : PROF. MADYA DR. MOHAMMED KAMIL BIN ABDUL RASHID Nama: Cop Rasmi:

PROF. MADYA DR. MOHAMED KAMIL ABDUL RASHID Timbalan Dekan (Siswazah & Penyelidikan) Fakulti Pengajian Maritim dan Sains Mar Universiti Malaysia Terengganu (UMT)

Tarikh: 4.5. 2008

Ketua Jabatan Sains Marin

Nama:

Cop Rasmi:

DR. RAZAK ZAKARIYA Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu (UMT)

45/08 Tarikh:

ACKNOWLEDGEMENTS

Alhamdulillah, thank to the God for his blessing to me to completed this project after facing with many impediment and difficulties. Firstly, I would like to thank my mom, sisters and brothers for their supports whether through the motivation those hearten me to become stronger to done my project or via finance to support the all thing that needed to complete this project.

I would like to thanks also to my supervisor Prof. madya Dr. Mohamed Kamil bin Abd Rashid for his advice, guidance, patience and his supports in this research. To all lectures that help me complete this project especially Dr. Antonina Abdullah for their supported and advices.

Not forgotten to all oceanography lab assistants like En. Sulaiman, En. Raja, En. Kumari and En. Kamarun for their cooperation. Special appreciation belong to Science Officer En. Joseph Anak Bidai for their help and advices. Lastly, I also appreciate and thanks to my best partner in this project Shiqin, aainaa, anies and Ismayani for their cooperation. To all my marine science beahce nice to know you and good luck for everything that your do in this life.

FATIMAH BINTI USMANG

UK 11937

BACHELOR OF SCIENCE (MARINE SCIENCE) (2005-2008)

TABLE OF CONTENTS

TITI	LE		PAGE
ACK	NOWL	EDGEMENT	i
TAB	LE OF	CONTENTS	ii
LIST	OF TA	BLES	vi
LIST	OF FIG	GURES	vii
LIST	OF AB	BREVIATION	x
LIST	OF AP	PENDICES	xii
ABS	TRACT		xiii
ABS	TRAK		xiv
1.0	INTR	ODUCTION	1
	1.1	Objectives	3
2.0	LITE	RATURE REVIEW	4
	2.1	Mercury sources	4
	2.2	Minamata Disease	5
	2.3	Chemistry of Mercury in Marine Environments	5
	2.4	Mercury in Sediment	7
		2.4.1 Mercury concentrations in marine sediments	7
		2.4.2 Mean size of sediment	8
		2.4.3 Total Organic Carbon	9
	2.5	Mercury in Water	9
	2.6	Mercury accumulation in marine biota	10

	2.7	Mercury	v chemical forms and toxicity		12
	2.8	Public H	lealth standard		13
3.0	MET	HODOLO	OGY		15
	3.1	Study A	rea		15
	3.2	Collecti	on of Samples		17
	3.3	Laborat	ory Analysis Preparation		17
		3.3.1	Apparatus Preparation		17
		3.3.2	Sample Preparation		17
	3.4	Labora	tory Analysis		18
		3.4.1	Total Digestion Method for Sediment Samples		18
		3.4.2	Digestion for Biota samples		19
		3.4.3	Water analysis		19
		3.4.4	Recovery Test		20
		3.4.5	Blank Sample Preparation		24
		3.4.6	Determination of Heavy metals		24
		3.4.7	Organic carbon content		25
		3.4.8	Particle size analysis (PSA)		26
		3.4.9	Statistical Tests		27
4.0	RES	ULTS			30
	4.1	Recovery	y Test	-	30
	4.2	Physical	Water Parameters		31
	4.3	Particle	Size of Sediments		32
	4.4	Total or	ganic carbon		35

	4.5	Distril	oution of Hg	36
		4.5.1	Concentration of Hg in Sediment	36
		4.5.2	Concentration of Hg in Water	38
		4.5.3	Concentration of Hg in Biota	40
5.0	DISC	USSIO	Ν	43
	5.1	Mercu	ary in Sediment	43
		5.1.1	Concentration of Hg in sediment	43
		5.1.2	Correlation of Hg with Stations	44
		5.1.3	Correlation of Hg with Seasons	45
		5.1.4	Correlation of Hg with Mean Size	46
		5.1.5	Correlation of Hg with TOC	46
		5.1.6	Correlation of Hg in Sediment with Water	47
	5.2	Mercu	ary in Water	48
		5.2.1	Concentration of Hg in Water	48
		5.2.2	Correlation of Hg with Stations	48
		5.2.3	Correlation of Hg with Seasons	49
	5.3	Mercu	ary in Marine Biota	49
		5.3.1	Concentration of Hg in Biota Samples	49
		5.3.2	Correlation of Hg with Seasons	50
		5.3.3	Correlation of Hg with Diameter	51
		5.3.4	Correlation of Hg with Weight	51
		5.3.5	Correlation of Weight and Diameter of Biota Samples	52
6.0	CON	CLUSI	ON	66

Perpustakaan Sultanah Nur Zahirah (UMT) Universiti Malaysia Terengganu

REFERENCES	67
APPENDICES	73
CURRICULUM VITAE	84

LIST OF TABLES

ТА	TABLE		
1	Coordinate of selected sampling stations. Net 1 and 2 are stations for biota	15	
	samples using fishing net.		
2	Accuracy of recovery test in MESS-3 and DOLT-3 for Hg	26	
3	Accuracy of total organic carbon analysis	26	
4	Water parameter in Pre Monsoon	27	
5	Water parameter in Post Monsoon	28	
6	Result of mean size and its categories from dry sieving analysis	29	
7	Result of mean size and its categories from PSA analysis with seasons	29	
8	Result for percentage of TOC during Pre and Post Monsoon	31	
9	Result for concentration of Hg in sediment during Pre and Post Monsoon	33	
10	Result for concentration of Hg in water during Pre and Post Monsoon	35	
11	Results for weight, diameter and concentration of Hg during Pre Monsoon	37	
12	Results for weight, diameter and concentration of Hg during Post Monsoon	37	
13	Comparison of sediment, biota and water samples in Paka with other countries	es 61	

LIST OF FIGURES

FI	GURE	PAGE
1	Location of the sampling stations	16
2	Method diagram of total digestion method in sediment	21
3	Method diagram of total digestion method in biota	22
4	Method diagram for water analysis	23
5	Method diagram of total organic carbon	28
6	Method diagram of particle size analysis	29
7	Water parameters against stations during Pre Monsoon	31
8	Water parameters against stations during Post Monsoon	32
9	Mean size of sediment during Pre Monsoon	34
10	Mean size of sediment during Post Monsoon	34
11	Percentage of TOC during Pre Monsoon	35
12	Percentage of TOC during Post Monsoon	36
13	Concentration of Hg in sediment during Pre Monsoon	37
14	Concentration of Hg in sediment during Post Monsoon	38
15	Concentration of Hg in water during Pre Monsoon	39
16	Concentration of Hg in water during Post Monsoon	40
17	Concentration of Hg in biota samples during Pre Monsoon	42
18	Concentration of Hg in biota samples during Pre Monsoon	42
19	Concentration of Hg in sediment Vs stations and its comparison with seasons	53
20	Mean size of sediment Vs stations and its comparison with seasons	53

21	Percentage of TOC in sediment Vs stations and its comparison with seasons	54
22	Concentration of Hg in water Vs stations and its comparison with seasons	54
23	Concentration of Hg in biota samples and its comparison with seasons	55
24	Concentration of Hg in biota samples (tissues, liver and egg) and its	55
	comparison with seasons	
25	Relationship between concentrations of Hg in sediment with stations during	56
	Pre Monsoon	
26	Relationship between concentrations of Hg in sediment with stations during	56
	Post Monsoon	
27	Relationship between concentrations of Hg in sediment with seasons	57
28	Relationship between concentrations of Hg in sediment with means size during	57
	Pre Monsoon	
29	Relationship between concentrations of Hg in sediment with means size during	58
	Post Monsoon	
30	Relationship between concentrations of Hg in sediment with percentage of	58
	TOC during Pre Monsoon	
31	Relationship between concentrations of Hg with percentage of TOC during	59
	Post Monsoon	
32	Relationship between concentrations of Hg in sediment and water during	59
	Pre Monsoon	
33	Relationship between concentrations of Hg in sediment and water during	60
	Post Monsoon	
34	Relationship between concentrations of Hg in water with stations during	60

Pre Monsoon

- 35 Relationship between concentrations of Hg in water with stations during61Post Monsoon
- 36 Relationship between concentrations of Hg in water with seasons 61
- 37 Relationship between concentrations of Hg in biota samples with seasons 62
- Relationship between concentrations of Hg in biota samples with diameter duringPre Monsoon
- Relationship between concentrations of Hg in biota samples with diameter duringPre Monsoon
- 40 Relationship between concentrations of Hg in biota samples with weight during63Pre Monsoon
- 41 Relationship between concentrations of Hg in biota samples with weight during64Post Monsoon
- 42 Relationship between weight and diameter of biota samples during Pre Monsoon 64
- 43 Relationship between weight and diameter of biota samples during Post Monsoon 65

LIST OF ABREVIATIONS

ABREVIATION

±	Plus minus
	Minus or to
°C	Degree Celsius
%	Percentage
μm	Micro gram
μg/g	Micro gram per gram
ml	Milliliter
cm	Centimeter
mg/L	Milligram per liter
ppt	Part per thousand
ppm	Part per million
ррЬ	Part per billion
ANOVA	One-way analysis of variance
APDC	Ammonium pyrolidine thiocarbamate
BSMF-N2	Blue-spot mullet fish – net 2
CVAAS	Cold vapor atomic absorption spectrometry
DF – N2	Duri fish – net 2
DFE-N2	Duri fish's eggs
DFL-N2	Duri fish's liver
DO	Dissolve oxygen

DOLT-3	Dogfish liver
FeSO4	Ferrous sulfate
GGF-N1	Gerut – gerut fish – net 1
Hg	Mercury
HCL	Hydrochloric acid
HNO ₃	Nitric acid
H ₂ O ₂	Hydrogen peroxide
H ₃ PO ₄	Phosphoric acid
IBF-N1	Indonesian Barb – net 1
ICP-MS	Inductively Coupled Mess Spectrometry
MC – N2	Mangrove crab – net 2
MESS-3	Marine sediment
MIBK	Methyl isobutyl ketone
PSA	Particle size analysis
RP-N1	River prawn – net 1
SBF-N1	Sea Bass fish – net 1
SBF-N2	Sea Bass fish – net 2
Temp	Temperature
THg	Total Mercury
TOC	Total organic carbon

LIST OF APPENDICES

APPENDIX		
1	Concentration of Hg in sediment against stations (Pre Monsoon)	69
2	Concentration of Hg in sediment against stations (Post Monsoon)	69
3	Concentration of Hg in sediment against seasons	70
4	Concentration of Hg in sediment against mean size (Pre Monsoon)	70
5	Concentration of Hg in sediment against mean size (Post Monsoon)	71
6	Concentration of Hg in sediment against % of TOC (Pre Monsoon)	71
7	Concentration of Hg in sediment against % of TOC (Post Monsoon)	72
8	Concentration of Hg in sediment against water (Pre Monsoon)	72
9	Concentration of Hg in sediment against water (Post Monsoon)	73
10	Concentration of Hg in water against stations (Pre Monsoon)	73
11	Concentration of Hg in water against stations (Post Monsoon)	74
12	Concentration of Hg in water against seasons	74
13	Concentration of Hg in biota against diameter (Pre Monsoon)	75
14	Concentration of Hg in biota against diameter (Post Monsoon)	75
15	6 Concentration of Hg in biota samples against weight (Pre Monsoon)	76
16	6 Concentration of Hg in biota samples against weight (Post Monsoon)	76
17	Relationship between weight and diameter of biota samples (Pre Monsoon)	77
18	Relationship between weight and diameter of biota samples (Post Monsoon)	78
19	The value of r and its strength of relationship	78
20) The range of mean size categories in phi scale	79

Distribution of Mercury in the Sungai Paka, Dungun, Terengganu

ABSTRACT

Total mercury concentrations were determined in environmental samples such as sediment, water and biota from the river areas, and some contaminated sources common to the Paka River of Terengganu. Water, sediment, fishes, mangrove crab, river prawn were collected during pre and post monsoon from targeted areas affected by point and non-point source contaminants. Mean concentrations in water were $0.032 \pm 0.015 \,\mu g \, l^{-1}$ during pre monsoon and were $0.013 \pm 0.006 \,\mu g \, l^{-}$ during post monsoon season. Mean concentrations in sediment were $0.338 \,\mu g \, g^{-1}$ during pre monsoon and were $0.244 \,\mu g \, g^{-1}$ during post monsoon season. Mean total mercury concentrations in fish, mangrove crab, and river prawn were significantly lower than those in sediment. Mean concentrations ($\mu g \, g^{-1} \, dry \, wt$) were $0.048 \pm 0.027 \,\mu g \, g^{-1} \, during pre monsoon and <math>0.030 \pm 0.013 \,\mu g \, g^{-1}$ during post monsoon for all the biota samples. Spatial, intraspecific and interspecific variability in the results limited most generalizations concerning the relative mercury contributions of different stressor types. All residues of seafood were less than the US Federal Drug Administration action limit of $1.0 \,\mu g \, g^{-1}$ for all biota samples.