FACULTY OF TIPPINGE STUDIES AND TIPPINE SQUEES

LP 21 FMSM 1 2007 LP 21 FMSM 1 2007

A study on density and diversity of benthic fauna at aquaculture area in Setiu, Terengganu / Maizah Mohd Abdullah.

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU

21030 KUALA TERENGGANU			
	11000540	52	

I ihat cahalah

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

A STUDY ON DENSITY AND DIVERSITY OF BENTHIC FAUNA AT AQUACULTUTE AREA IN SETIU, TERENGGANU

By

Maizah binti Mohd Abdullah

Research Report submitted in partial fulfillment of The requirements for the degree of Bachelor of Science (Marine Biology)

Department of Marine Science
Faculty of Maritime Study and Marine Science
UNIVERSITI MALAYSIA TERENGGANU
2007

This project should be cited as;

Maizah, M.A. 2007. A study on density and diversity of benthic fauna at aquaculture area in Setiu, Terengganu. Undergraduate thesis, Bachelor of Science (Marine Biology). Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu. 64p.

No part of this report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisors of the project.

JABATAN SAINS MARIN FAKULTI PENGAJIAN MARITIM DAN SAINS MARIN UNIVERSITI MALAYSIA TERENGGANU

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk:

A study on density and diversity of benthic fauna at aquaculture area in Setiu, Terengganu oleh Maizah binti Mohd Abdullah, No .Matrik UK10582 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukan kepada Jabatan Sains Marin sebagai memenuhi sebahagian daripada keperluan memperolehi lijazah Sarjana Muda Sains (Biologi Marin), Fakulti Pengajian Maritim dan Sains Marin, Universiti Malaysia Terengganu.

Disahkan oleh:	
DR. ZALEHA BT. KASSIM Penyelia Utastæ Vrogram Master Sains (Akuakultur) Struktur C Nama: Institut Akuakultur Tropika Universiti Malaysia Terengganu Cop Rasmi30 Kuala Terengganu	Tarikh:25·4-07
Penyelia Kedua	
Nama:	
Cop Rasmi:	Tarikh:

ACKNOWLEDEGEMENTS

First and foremost I would like to thank the Most Gracious and the Most Merciful Allah for enabling me to conduct this research and completing it. Alhamdulillah.

My special gratitude to my first supervisor Dr. Zaleha Kassim, for her guidance and teach, knowledge and experiences shared and also for all the moments and finances spent. To my second supervisor Dr Anthonina Abdullah, thank you for everything. For my parents Mr. Mohd Abdullah Sulaiman and Mrs. Rahmah Yussoff, there is no more words could express my lovely appreciation for all your support and love. Also my special thanks to my family.

Without their guides and help, it must be hard for me to complete the task. Thank you so much to Shahnon, Sham, A. Wafi, K.E, A.Bijan P.Joe and En. Mahazan. For Marine Biologist 2004-2007, I wish you all the very best of luck in life. Hope all the memories we shared together will be cherished forever.

I wished to put his name here. Mohd Uzair Rusli, may Allah bless you.

Imagination will often carry us to the world that never where, but without it we go nowhere...

TABLE OF CONTENTS

CONTENTS	PAGE
ACKNOWLEDGEMENTS	ii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS/ SYMBOLS	viii
LIST OF APPENDICES	ix
ABSTRACT	xi
ABSTRAK	xii
1.0 INTRODUCTION	1
Objectives	2
2.0 LITERATURE REVIEW	3
2.1 Importance of Benthos	3
2.2 Factors that Influence Density and Diversity of Benthos	5
2.3 Impact of Aquaculture on the Benthos	7
2.4 Studies on Benthos	9
2.5 Setiu Lagoon	10
3.0 METHODOLOGY	11
3.1 Study Area	11
3.2 Sampling Site	11
3.3 <i>In-situ</i> Sampling	13
3.4 Benthos Sampling	13
3.5 Benthos Analysis	14

3.6 Sediment Analysis	15
3.6.1 Particle Size Analysis	15
3.7 Data Analysis	16
3.7.1 Density Analysis	16
3.7.2 Univariate Analysis	17
3.7.2.1 Shannon-Wiener Divers	sity Index (H')
3.7.2.2 Pielou's Evenness Index	(J') 17
3.7.2.3 Margalef's Species Rich	nness Index (d) 18
3.7.3 Multivariate Analysis	18
3.7.4 Analysis of Similarity (AN	NOSIM) 19
4.0 RESULTS	20
4.1 Physicochemical Parameters of Water	20
4.2 Particle Size Analysis	22
4.3 Benthos Community	23
4.3.1 Species composition	23
4.3.2 Density	25
4.3.3 Univariate Analysis	27
4.3.4 Multivariate (Similarity) Analysis	30
4.3.5 Analysis of Similarity (ANOSIM)	35
5.0 DISCUSSION	36
6.0 CONCLUSION	40
REFERENCES	41
APPENDICES	45
CURRICULUM VITAE	64

PAGE

LIST OF TABLES

TABLES

Table 3.1	GPS reading of sampling stations at aquaculture site in Setiu Lagoon.	12

LIST OF FIGURES

FIGURES		PAGE
Figure 3.1	Map of Sampling Site at Kampung Gong Batu in Setiu Lagoon, Terengganu.	12
Figure 4.1	Physicochemical parameters of water column (a) temperature, (b) dissolved oxygen, (c) salinity, and d) pH at eight stations on first and second sampling at aquaculture site in Setiu, Terengganu	21
Figure 4.2	Mean of particle size (Phi) of sediment at stations on first and second sampling	22
Figure 4.3	Density (ind. /m²) of phylum of meiobenthos on (a) first and (b) second sampling and phylumof macrobenthos on (c) first and (d) second sampling at eight stations	24
Figure 4.4	Total density (ind. /m²) of (a) macrobenthos and (b) meiobenthos on first and second sampling	26
Figure 4.5	The (a) Shannon-Wiener Diversity Index (H'), b) The Pielou Evennes Index (J'), and (c) Margalef Species Richness Index (d) for macrobenthos at eight stations on first and second sampling	28
Figure 4.6	The (a) Shannon-Wiener Diversity Index (H'), b) The Pielou Evennes Index (J'), and (c) Margalef Species Richness Index (d) for meiobenthos at eight stations on first and second sampling	29
Figure 4.7	(a) Dendogram of hierarchical cluster analysis (CLUSTER) (Bray-Curtis similarity) and (b) 2-dimensional Non-metric Multi-Dimensional Scaling (MDS) configuration, with superimposed clusters from (a) at similarity levels of 25%-70%.	31

Figure 4.8	(a) Dendogram of hierarchical cluster analysis (CLUSTER) (Bray-Curtis similarity) and (b) 2-dimensional Non-metric Multi-Dimensional Scaling (MDS) configuration, with superimposed clusters from (a) at similarity levels of 45%-75%.	32
Figure 4.9	(a) Dendogram of hierarchical cluster analysis (CLUSTER) (Bray-Curtis similarity) of meiobenthos on first sampling and (b) 2-dimensional Non-metric Multi-Dimensional Scaling (MDS) configuration, with superimposed clusters from (a) at similarity levels of 50%-75%	33
Figure 4.10	(a) Dendogram of hierarchical cluster analysis (CLUSTER) (Bray-Curtis similarity) of meiobenthos on second sampling and (b)2-dimensional Non-metric Multi-Dimensional Scaling (MDS) configuration, with superimposed clusters from (a) at similarity levels of 45%	34

LIST OF ABBREVIATIONS/ SYMBOLS

(Ø) Phi

⁰C Degree Celcius

Ind./m² Individual per meter square

Ppt Part per thousand

PRIMER Plymouth Routines in Multivariate Ecological Research

ANOSIM Analysis of Similarity

MDS Non-metric Multi-Dimensional Scaling

2D Two-dimensions

DO Dissolved oxygen

LIST OF APPENDICES

APPENDICES		PAGE
Appendix 1	The Shannon-Wiener Diversity Index (H'), Pielou Evennes Index (J') and Margalef Species Richness Index (d) of Macrobenthos and Meiobenthos on First and Second Sampling.	45
Appendix 2	Taxa and Density (Ind. /m2) of Macrobenthos	46
Appendix 3	Taxa and Density (Ind. /m2) of Meiobenthos	47
Appendix 4	Physicochemical parameters, particle sizes (Phi), and density (ind/m2) of macrobenthos and meiobenthos on first and second sampling	48
Appendix 5	Analysis of Similarity (ANOSIM) on Replicate of Macrobenthos (first sampling)	49
Appendix 6	Analysis of Similarity (ANOSIM) on Station of Macrobenthos (first sampling)	50
Appendix 7	Analysis of Similarity (ANOSIM) on Replicate of Macrobenthos (second sampling)	51
Appendix 8	Analysis of Similarity (ANOSIM) on Station of Macrobenthos (second sampling)	52
Appendix 9	Analysis of Similarity (ANOSIM) on Replicate of Meiobenthos (first sampling)	53
Appendix 10	Analysis of Similarity (ANOSIM) on Station of Meiobenthos (first sampling)	54
Appendix 11	Analysis of Similarity (ANOSIM) on Replicate of Meiobenthos (second sampling)	55
Appendix 12	Analysis of Similarity (ANOSIM) on Station of Meiobenthos (second sampling)	56
Appendix 13	Analysis of Similarity (ANOSIM) on Sampling of Meiobenthos	57

Appendix 14	Analysis of Similarity (ANOSIM) on Sampling of Macrobenthos	58
Appendix 15	Picture of Phylum Annelida (Macrobenthos)	59
Appendix 16	Picture of Phylum Arthropoda (Macrobenthos)	60
Appendix 17	Picture of Phylum Mollusca (Macrobenthos)	61
Appendix 18	Picture of Meiobenthos Sample	62
Appendix 19	Picture at Aquaculture Site in Setiu Lagoon	63

ABSTRACT

This study was conducted to determine the density, diversity and alteration of species composition of macrofauna and meiofauna in nearby stations and also with distance to the aquaculture cages in Setiu Lagoon, Terengganu. The macrobenthos of Phylum Annelida, Arthropoda, Mollusca, and Nemertea and the meiobenthos of Phylum Arthropoda, Nematoda, Annelida and Nauplii were determined. Multivariate analysis revealed that there were significant differences in macrobenthos composition during both samplings between samples taken near and far to the cages but there were no clear patches of meiofauna. Meiofauna only showed a significant reflects to the changes of physicochemical parameters on November with 1,972,121 (ind. /m²) found during first sampling and decreased to 1,570,909 (ind. /m²) during second sampling. macrofauna did not show significant reflects to the physicochemical changes. density (ind. /m²) of macrobenthos during first sampling was 5,020 (ind. /m²) and 6,412 (ind. /m²) macrobentos found during second sampling. Yet, both macrobenthos and meiobenthos increased their density at stations far from the cages (station five to eight). Particle size analysis of the stations showed that the sediments at sites were classified as fine sand with Phi values ranged from 1.96 until 2.57. Univariate analysis showed the diversity, evenness, and richness indexes for macrobenthos during second sampling which were much higher compared to the first sampling but still in the same pattern, but the values of all indexes for meiobenthos were much lower compared to the values of indexes for macrobenthos without clear pattern. Meiobenthos were much more susceptible to the environmental disturbance compared to macrobenthos.