CONCENTRATION OF HEAVY METALS IN SEDIMENT AND BIVALVES OF TOK BALI MANGROVE

RAFIDAH BINTI MOHD, SUHAIMI

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2008

UN 6389

1100061814

Perpustakaan Sultanah Nur Zahirah (UMT) Universiti Malaysia Terengganu

1100061814

Concentration of heavy metals in sediment and bivalves of Tok Bali mangrove / Rafidah ohd Suhaimi.

PERPUSTAKAAN SURTANAH MUR ZAHIWAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU

-
-
_
the second s
betah

PERPUSTARAAR SULTANAH KUR ZAHIRAH UHT

CONCENTRATION OF HEAVY METALS IN SEDIMENT AND BIVALVES OF TOK BALI MANGROVE

By

Rafidah Binti Mohd. Suhaimi

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science (FMSM) UNIVERSITY MALAYSIA TERENGGANU 2008

This project report should be cited as:

Rafidah, M.S., 2008. Concentration of Heavy Metals in Sediment and Bivalves of Tok Bali Mangrove. Undergraduate Thesis, Bachelor of Science (Marine Science), Faculty of Maritime Study and Marine Science, Universiti Malaysia Terengganu, Terengganu, 76p.

No part of this project report may be produced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

1100061811

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDY AND MARINE SCIENCE UNIVERSITY MALAYSIA TERENGGANU

APPROVAL AND CERTIFICATION FORM RESEARCH PROJECT I AND II

I certify that the research report entitled: Concentration of Heavy Metals in Sediment and Bivalves of Tok Bali Mangrove by Rafidah Binti Mohd. Suhaimi, No.Matrik UK12239 has been read and all corrections recommended by the examiners have been done. This research report is submitted to the Department of Marine Science in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science), Faculty of Maritime Study and Marine Science, University Malaysia Terengganu.

Approved by:

Supervisor:

Name: Dr. Nor Antonina Binti Abdullah

Stamp: DR. ANTONINA ABDULLAH Lecturer Department of Marine Science Faculty of Maritime Studies and Marine Science Universiti Malaysia Terengganu (UMT) 21030 Kuala Terengganu.

Head of Department

Name: Dr. Razak Bin Zakariya

Stamp:

DR. RAZAK ZAKARIYA Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu (UMT)

Date: 5 May 2008

a/s/os. Date:

ACKNOWLEDGEMENT

First of all, I would like to thank God for the guidance and blessing throughout the project. I also like to thank my supervisor, Dr. Nor Antonina Binti Abdullah for his guidance, advice and support throughout the completion of this project over the past two semester.

I would like to extend my gratitude to the science officer who gave a permission to use the laboratory apparatus and chemicals to run an experiment for this project. Besides that, appreciation also goes to the lab assistant of Oceanography Laboratory for their cooperation and help for allowing me to use the apparatus and instruments during my lab work.

Thanks also to my beloved parents and siblings for their continuous support and help to me during this project. Last but not least, I would like to thank my entire friends that help me during the sampling, lab work and completion of this project. This project will not be able to complete without the help and support of any above.

TABLE OF CONTENTS

CONTENTS		PAGE	
ACKNOWLEDGEMENT			
TABLE OF CONTENTS		iii	
LIST OF FIGURES		vii	
LIST OF TABLES		х	
LIST OF ABBREVIATIONS		xi	
LIST OF APPENDICES		xii	
ABSTRACT		xiii	
ABSTRAK		xiv	
CHAPTER 1: INTRODUCTION			
1.1 Objectives		4	
1.2 Justification of Study		4	
CHAPTER 2: LITERATURE REVIEW			
1.3 Mangrove and Its Importance		5	
1.4 Mangroves Sediments		6	
1.5 Heavy Metals		7	
1.5.1 Aluminium		7	
1.5.2 Lead (Pb)		8	
1.5.3 Copper (Cu)		9	
1.5.4 Zinc (Zn)		9	

	1.5.5 Manganese (Mn)	10
2.4	Bivalves	11

CHAPTER 3: METHODOLOGY

1.6	Study	area	12
1.7	Apparatus Preparation		
1.8	Sampling		
3.4	Heavy Metals Analysis in Bivalve Organisms		
	3.4.1	Sample Preparation	15
	3.3.2	Acid Digestion Method	15
	3.3.3	Blank Correction Factor	16
	3.3.4	Recovery Test	17
	3.3.5	Statistical Analysis	17
3.5	Heavy	Metals Analysis in Sediment	
	3.5.1	Sample Preparation	18
	3.5.2	Acid Digestion Method	18
	3.5.3	Calculation of Heavy Metals Concentration in Sediment	19
	3.5.4	Blank Sample Analysis	19
	3.5.5	Recovery Test for Heavy Metals in Sediment.	20
3.6	Organ	ic Carbon Analysis	
	3.6.1	Chemical Solution Preparation	20
	3.6.2	Methods	21
3.7	Sedim	ent Particle Size	
	3.7.1	Dry Sieving Method	22

64

	3.7.2	Particle Size Analysis	24
CHAPTER 4	: RESU	JLT	
4.1	Water	Parameter	25
4.2	Sedime	entological Characteristic	26
	4.2.1	Mean	26
	4.2.2	Sorting	27
	4.2.3	Skewness	28
	4.2.4	Kurtosis	29
4.3	Standa	rd Solution	30
4.4	Recov	very Test for Bivalve	33
4.5	Distrib	oution of Heavy Metals in Bivalve	33
4.6	Recov	ery Test for Sediment	37
4.7	Distrib	oution of Heavy Metals in Sediment	38
4.8	Total (Organic Carbon	42

CHAPTER 5: DISCUSSIONS

5.1	Heavy Metals Distribution in Sediment	43
5.2	Heavy Metals Distribution in Bivalve	46
5.3	Correlation between Heavy Metals and Particle Size	49
5.4	Correlation of Heavy Metals in Sediment and Bivalve	52
5.5	Correlation between Heavy Metals and Organic Carbon	55
5.6	Normalization	59

CHAPTER 6: CONCLUSION

v

REFERENCES	65
APPENDIX	68
CURRICULUM VITAE	76

LIST OF FIGURES

FIGURE		PAGE
3.1	Map of study area in Tok Bali Mangrove	13
4.1	Mean (\emptyset) particle size for each station	26
4.2	Sorting or standard deviation (\emptyset) particle size for each station	27
4.3	Skewness (Ø) particle size for each station	28
4.4	Kurtosis (Ø) particle size for each station	29
4.5	Cr standard curve	30
4.6	Mn standard curve	30
4.7	Cu standard curve	31
4.8:	Zn standard curve	31
4.9	Sr standard curve	31
4.10	Ba standard curve	32
4.11	Pb standard curve	32
4.12	Fe standard curve	32
4.13	Concentration of Cr in bivalve for each station	35
4.14	Concentration of Mn in bivalve for each station	35
4.15	Concentration of Cu in bivalve for each station	35
4.16	Concentration of Zn in bivalve for each station	36
4.17	Concentration of Sr in bivalve for each station	36
4.18	Concentration of Ba in bivalve for each station	36
4.19	Concentration of Pb in bivalve for each station	37

4.20	Concentration of Cr in sediment for each station	39
4.21	Concentration of Mn in sediment for each station	40
4.22	Concentration of Cu in sediment for each station	40
4.23	Concentration of Zn in sediment for each station	40
4.24	Concentration of Sr in sediment for each station	41
4.25	Concentration of Ba in sediment for each station	41
4.26	Concentration of Pb in sediment for each station	41
4.27	Percentage of organic carbon in each station	42
5.1	Correlation between Cr and mean size (phi)	50
5.2	Correlation between Mn and mean size (phi)	50
5.3	Correlation between Cu and mean size (phi)	50
5.4	Correlation between Zn and mean size (phi)	51
5.5	Correlation between Sr and mean size (phi)	51
5.6	Correlation between Ba and mean size (phi)	51
5.7	Correlation between Pb and mean size (phi)	52
5.8	Correlation of Cr between sediment and bivalve	52
5.9	Correlation of Mn between sediment and bivalve	53
5.10	Correlation of Cu between sediment and bivalve	53
5.11	Correlation of Zn between sediment and bivalve	53
5.12	Correlation of Sr between sediment and bivalve	54
5.13	Correlation of Ba between sediment and bivalve	54
5.14	Correlation of Pb between sediment and bivalve	54
5.15	Correlation between Cr and organic carbon	56

5.16	Correlation between Mn and organic carbon	56
5.17	Correlation between Cu and organic carbon	57
5.18	Correlation between Zn and organic carbon	57
5.19	Correlation between Sr and organic carbon	57
5.20	Correlation between Ba and organic carbon	58
5.21	Correlation between Pb and organic carbon	58
5.22	Graph of Cr normalization	60
5.23	Graph of Mn normalization	60
5.24	Graph of Cu normalization	61
5.25	Graph of Zn normalization	61
5.26	Graph of Sr normalization	62
5.27	Graph of Ba normalization	62
5.28	Graph of Pb normalization	63

LIST OF TABLES

TABLE		
3.1	Location of sampling station in the study area	12
4.1	Physical parameter of water for each station	25
4.2	Sedimentological characteristic	26
4.3	Recovery test for bivalve	33
4.4	Heavy metals concentration ($\mu g/g$) in bivalve	33
4.5	Recovery test for sediment	37
4.6	Heavy metals concentration in $(\mu g/g)$ sediment	38
4.7	Percentage of organic carbon for each station	42
5.1	r values for each heavy metal	49
5.2	r values for each heavy metal	56

LIST OF ABBREVIATIONS

SYMBOL	MEANING
Pb	Lead
Zn	Zinc
Cu	Copper
Mn	Manganese
Fe	Iron
Cr	Chromium
Ba	Barium
Sr	Strontium
g	Gram
mL	Milliliter
GPS	Global Positioning System
μm	Micrometer
μg	Microgram
H_2O_2	Hydrogen peroxide
ICP-MS	Inductive Couple Plasma-Mass Spectroscopy
HNO ₃	Acid Nitric
PSA	Particle Size Analyzer

LIST	OF	APP	END	ICES

APPENDIX		
1	Pictures of Soletellina sp. and the sampling site	68
2	Categories of r value	68
3	Analysis of Varian (Two-way ANOVA) of Cr in the	69
	sediment and bivalve	
4	Analysis of Varian (Two-way ANOVA) of Mn in the	70
	sediment and bivalve	
5	Analysis of Varian (Two-way ANOVA) of Cu in the	71
	sediment and bivalve	
6	Analysis of Varian (Two-way ANOVA) of Zn in the	72
	sediment and bivalve	
7	Analysis of Varian (Two-way ANOVA) of Sr in the	73
	sediment and bivalve	
8	Analysis of Varian (Two-way ANOVA) of Ba in the	74
	sediment and bivalve	
9	Analysis of Varian (Two-way ANOVA) of Pb in the	75
	sediment and bivalve	

ABSTRACT

An assessment of marine contamination due to heavy metals was made in the mangrove areas based on marine bivalves and sediment collected in Tok Bali, Kelantan during 30 August 2007. Sediment samples were analyzed for sedimentological characteristic, heavy metals, and organic carbon. Whereas, the marine bivalves were analyzed for heavy metals contents. Concentrations of Mn, Cu, Zn and Sr were typically high in sediments compared to the bivalve. The average concentration of Cr, Mn, Cu, Zn, Sr, Ba and Pb in sediment is 83.767µg/g, 139.400µg/g, 11.450µg/g, 82.912µg/g, 45.170µg/g, 31.473µg/g and 35.087µg/g. The average concentration of Cr, Mn, Cu, Zn, Sr, Ba and Pb in bivalve is 2.142µg/g, 47.845µg/g, 4.670µg/g, 79.976µg/g, 34.380µg/g, 1.423µg/g, and 1.606µg/g. The percentage of organic carbon in station 1, station 2, station 3, station 4, station 5 and station 6 is 1.08%, 0.81%, 0.84%, 0.93%, 1.31% and 0.89% respectively. Result on normalization showed that all the studied elements (Cr, Mn, Cu, Zn, Sr, Ba and Pb) were derived from natural sources or terrigenous origin.

Kajian Mengenai Kandungan Logam Berat Dalam Sedimen dan Organisma (Bivalvia) di Kawasan Paya Bakau Tok Bali, Kelantan

ABSTRAK

Kajian ini adalah untuk menilai pencemaran marin yang berlaku disebabkan oleh logam berat di kawasan paya bakau berdasarkan sampel tanah dan organisma (bivalvia) yang telah diambil di Tok Bali, Kelantan pada 30 Ogos 2007. Sampel tanah telah dianalisis dari segi kadar sedimentasi, logam berat dan juga jumlah karbon organik. Manakala bagi sampel organisma (bivalvia) pula, ujian logam berat telah dilakukan. Kandungan kepekatan bagi logam berat di dalam sampel tanah (sedimen) didapati lebih tinggi kepekatannya berbanding kandungan yang terdapat di dalam organisma (bivalvia). Purata kepekatan logam berat dalam sediment adalah 83.767µg/g bagi Cr, 139.400µg/g bagi Mn, 11.450µg/g bagi Cu, 82.912µg/g bagi Zn, 45.170µg/g bagi Sr, 31.473 bagi Ba dan 35.087µg/g bagi Pb. Purata kepekatan logam berat di dalam organisma pula adalah 2.142µg/g bagi Cr, 47.845µg/g bagi Mn, 4.670µg/g bagi Cu, 79.976µg/g bagi Zn, 34.380µg/g bagi Sr, 1.423µg/g bagi Ba, dan 1.606µg/g bagi Pb. Manakala bagi peratusan kandungan organik karbon pula ialah 1.08% (Stesen 1), 0.81% (Stesen 2), 0.84% (Stesen 3), 0.93% (Stesen 4), 1.31% (Stesen 5) and 0.89% (Stesen 6). Berdasarkan daripada ujian penormalan yang telah dilakukan didapati bahawa logam berat adalah berpunca daripada sumber semulajadi.